Osteocytes and Bone Lining Cells: Which are the Best Candidates for Mechano-Sensors in Cancellous Bone?

M. G. MULLENDER and R. HUISKES

Biomechanics Section, Institute of Orthopaedics, University of Nijmegen, Nijmegen, The Netherlands

Previously, we have investigated the possible role of osteocytes as mechano-sensors, and mediators of bone turnover. It was found that the proposed regulatory mechanism produced morphologies of trabecular bone, under particular loading conditions, which were consistent with morphogenesis and adaptation as seen in reality. The main objective of this study was to discern whether lining cells or osteoblasts could possibly play a similar role as effectively with regard to their capacity for self-optimization of the trabecular architecture, in terms of a low apparent mass to stiffness ratio. For that purpose the earlier analyses with osteocytes as mechno-sensors, distributed throughout the bone, were repeated for mechano-sensors located at bone surfaces only. Compared to the osteocyte model, the surface cell remodeling algorithm was reluctant to change its architecture, which implies that it is less sensitive to changes in the loading pattern. This resulted in less efficient bone adaptation, which was reflected by a considerably higher relative mass for a similar apparent stiffness in the loading direction. In other words, more mass is needed to obtain an equally stiff structure, at the apparent level, with respect to the externally applied loads. Furthermore, stresses and strains at the tissue level vary across a much wider range, relative to the osteocyte model, where the higher incidence of elevated strains indicates an increased failure risk. Therefore, we conclude that mechanical information at the bone surface may not be sufficient to adequately regulate functional bone adaptation. (Bone 20:527-532; 1997) © 1997 by Elsevier Science Inc. All rights reserved.

Key Words: Trabecular bone; Bone remodeling; Mechano-sensory system; Osteocyte; Bone lining cell; Computer simulation.

Introduction

Although it is generally accepted that bone tissue adapts to mechanical demands, the regulatory mechanisms responsible for this process are not understood. For one thing, the mechanism by which the bone tissue senses mechanical stimuli has not been established. Neither the cells responsible for transduction of mechanical into chemical signals nor the means by which the actual bone remodeling processes are subsequently regulated are identified.

Osteocytes, located within the bone matrix, bone lining cells, covering the bone surface, and osteoblasts have all been proposed to play important roles as mechano-sensors in the regulatory process. In vitro studies showed that the activity of both lining cells and osteocytes increased after loading. Osteocytes were suggested as the most suitable candidates for the role of mechano-receptors, because of their location and the interconnections by which they communicate with each other and with cells at the bone surface. It was proposed that these cells are stimulated by fluid flow in the caniculi, due to mechanical loading of the tissue. In fact, it was shown experimentally that osteocytes are very sensitive to fluid flow across their cell membranes. The hypothesis that osteocytes sense mechanical signals and regulate the local adaptation of bone mass was recently investigated for its feasibility, using a computer simulation model. In this regulatory model, bone density was adapted at any location within the tissue, according to a stimulus received from the osteocytes in the vicinity. It was shown that the proposed regulatory mechanism could explain the genesis and adaptation of trabecular patterns in accordance with the external loads, indicating that such a hypothesis is realistic. Nevertheless, in reality, trabecular bone turnover occurs only at surfaces and not within the tissue. Furthermore, the question remains, if sensors located at the bone surface (lining cells and osteoblasts) could regulate bone remodeling equally well. It was shown in many studies that osteoblasts and osteoblast-like cells are very sensitive to mechanical loads as well (see Burger and Veldhuijzen for a review). In addition, Miller et al. and Parfitt suggested that bone lining cells probably play important roles in bone remodeling by mediating the activation of the bone remodeling sequence.

We have investigated two questions in this article. First, do the results of the regulatory model based on osteocytes as mechano-sensors differ from those previously described, if, as in reality, remodeling is allowed only at trabecular surfaces? Second, can a simulation model, based on the assumption that lining cells and osteoblasts are mechano-sensors and regulators of bone turnover, explain mechanical adaptation of trabecular bone equally well? To investigate the latter question, a model was developed based on the alternative hypothesis that sensor cells are located only on the trabecular surfaces. The behavior of this regulatory model was compared to the regulatory models in which the sensors are located within the bone matrix.

Methods

Two hypothetical regulatory mechanisms for trabecular bone (re)modeling were compared. In both regulation schemes, local mechanical signals are appraised by sensor cells which subse-
The change in the relative density \(m(x,t) \) in location \(x \) is governed by the local stimulus value \(F(x,t) \). Hence, in case of overall remodeling

\[
\frac{dm(x,t)}{dt} = \tau F(x,t) \quad \text{with} \quad 0 < m(x,t) \leq 1, \tag{3}
\]

and in case of surface remodeling

\[
\begin{cases}
\frac{dm(x,t)}{dt} = \tau F(x,t), & x \in \text{trabecular surface} \\
\frac{dm(x,t)}{dt} = 0, & x \notin \text{trabecular surface}
\end{cases}
\]

with \(\tau \) (MPa\(^{-1}\) s\(^{-1}\)) is a constant regulating the rate of the process. The local elastic properties were calculated from the local relative density using a cubic power relationship in accordance with experimental data.\(^3\) Hence, the elastic modulus at location \(x \) was calculated from

\[
E(x,t) = C m^3(x,t), \tag{5}
\]

with \(C \) (MPa) a constant.

Numerical Formulation

The regulatory models were applied to a volume of bone tissue. Input to the regulation models was given by the magnitudes and directions of the mechanical loads. In turn, the model predicted the distribution of bone mass in time, i.e., the development of architecture, for given parameter values. The bone tissue was modeled by finite elements (FE), which allowed the calculation of the mechanical variables inside the tissue for externally applied loads. The development of bone architecture in time was simulated numerically, i.e., equations (3) and (4) were solved recursively, using a numerical integration technique (forward Euler) to find the new values for the relative density per element. The procedure was continued until the changes in architecture were virtually zero. A variable time step was used that was calculated from the maximal stimulus and a prescribed maximal change in relative density at any location according to van Rietbergen et al.\(^2\).

For surface remodeling, it was necessary to define a bone-marrow interface within the finite element model as changes in density are only allowed at this location. Bone surfaces were modeled by elements of intermediate density, representing partial volumes of bone and marrow. These elements are located between elements with minimal density (marrow) and elements with maximal density (bone) (Figure 2). The jagged boundaries of the elements prevent an accurate representation of a smooth bone surface. This problem has been solved by allowing boundary elements to have intermediate densities, representing partial volumes of bone.
Figure 3. The equilibrium architectures are presented for the osteocyte models using overall remodeling (a), and surface remodeling (b), and for the surface cell model (c). The architectures produced by both osteocyte models show large resemblance. Note that the architectures produced by the surface cell model are closer to the initial architecture.

Application of the Remodeling Hypotheses

The regulation models were applied to a plate of 2×2 mm (thickness 0.02 mm), meshed with 80×80 four-node elements. The initial architecture was an arbitrary trabecular structure resembling a lattice (Figure 3). The physiological parameters in the models were the reference energy k, the sensor density n [equal to their number N divided by the area of bone tissue (osteocyte model) or divided by the length of the bone perimeter (surface cell model)], the exponential osteocyte-influence function (characterized by the distance parameter D), and the constants τ and C (equal to the maximal elastic modulus). n was taken as 1600 mm$^{-2}$ in the osteocyte model and 40 mm$^{-1}$ in the surface cell model. Osteocyte density was chosen within a physiological order of magnitude, which was estimated from measurements by Marotti et al.11 and Mullender et al.15,16 The value for lining cell density was based on an average length of the cells of 25 μm. However, no actual data of lining cell density were available. A value of 0.02 MPa was used for k and D was 100 μm. C was taken as 6 GPa and the rate constant was arbitrarily set at $\tau = 1$ MPa$^{-1}$ Ls$^{-1}$.

The plate was loaded at each side with uniform stress distributions. The stress magnitudes σ_1 and σ_2 were 5 and -2.5 MPa, respectively. After 200 increments (after which stable configurations were reached), the loading configuration was altered by changing the applied stress orientations from 20° to 0° relative to the plate. Hereafter, the simulations were continued for another 200 increments.

Evaluation of the Results

The resulting architectures were evaluated for their apparent mechanical properties and the relative apparent density. To assess the mechanical properties of the architectures produced by the models, the global stiffness matrices were determined for each equilibrium architecture from the structure morphology and the element stiffness matrices according to van Rietbergen et al.23 The plate was loaded at each side with uniform stress distributions. The stress magnitudes σ_1 and σ_2 were 5 and -2.5 MPa, respectively. After 200 increments (after which stable configurations were reached), the loading configuration was altered by changing the applied stress orientations from 20° to 0° relative to the plate. Hereafter, the simulations were continued for another 200 increments.

All models converged toward equilibrium solutions which resembled trabecular-like structures (Figures 3a–c). The number of increments necessary to reach a stable solution was smaller for

\[
S_i = \frac{1}{2} \sigma_i \varepsilon_i, \quad (6)
\]

where σ_i and ε_i are the stress and strain tensors in the location of sensor i.

Application of the Remodeling Hypotheses

The regulation models were applied to a plate of 2×2 mm (thickness 0.02 mm), meshed with 80×80 four-node elements. The initial architecture was an arbitrary trabecular structure resembling a lattice (Figure 3). The physiological parameters in the models were the reference energy k, the sensor density n [equal to their number N divided by the area of bone tissue (osteocyte model) or divided by the length of the bone perimeter (surface cell model)], the exponential osteocyte-influence function (characterized by the distance parameter D), and the constants τ and C (equal to the maximal elastic modulus). n was taken as 1600 mm$^{-2}$ in the osteocyte model and 40 mm$^{-1}$ in the surface cell model. Osteocyte density was chosen within a physiological order of magnitude, which was estimated from measurements by Marotti et al.11 and Mullender et al.15,16 The value for lining cell density was based on an average length of the cells of 25 μm. However, no actual data of lining cell density were available. A value of 0.02 MPa was used for k and D was 100 μm. C was taken as 6 GPa and the rate constant was arbitrarily set at $\tau = 1$ MPa$^{-1}$ Ls$^{-1}$.

The plate was loaded at each side with uniform stress distributions. The stress magnitudes σ_1 and σ_2 were 5 and -2.5 MPa, respectively. After 200 increments (after which stable configurations were reached), the loading configuration was altered by changing the applied stress orientations from 20° to 0° relative to the plate. Hereafter, the simulations were continued for another 200 increments.

Evaluation of the Results

The resulting architectures were evaluated for their apparent mechanical properties and the relative apparent density. To assess the mechanical properties of the architectures produced by the models, the global stiffness matrices were determined for each equilibrium architecture from the structure morphology and the element stiffness matrices according to van Rietbergen et al.23 The plate was loaded at each side with uniform stress distributions. The stress magnitudes σ_1 and σ_2 were 5 and -2.5 MPa, respectively. After 200 increments (after which stable configurations were reached), the loading configuration was altered by changing the applied stress orientations from 20° to 0° relative to the plate. Hereafter, the simulations were continued for another 200 increments.

Results

All models converged toward equilibrium solutions which resembled trabecular-like structures (Figures 3a–c). The number of increments necessary to reach a stable solution was smaller for

\[
S_i = \frac{1}{2} \sigma_i \varepsilon_i, \quad (6)
\]

where σ_i and ε_i are the stress and strain tensors in the location of sensor i.

Application of the Remodeling Hypotheses

The regulation models were applied to a plate of 2×2 mm (thickness 0.02 mm), meshed with 80×80 four-node elements. The initial architecture was an arbitrary trabecular structure resembling a lattice (Figure 3). The physiological parameters in the models were the reference energy k, the sensor density n [equal to their number N divided by the area of bone tissue (osteocyte model) or divided by the length of the bone perimeter (surface cell model)], the exponential osteocyte-influence function (characterized by the distance parameter D), and the constants τ and C (equal to the maximal elastic modulus). n was taken as 1600 mm$^{-2}$ in the osteocyte model and 40 mm$^{-1}$ in the surface cell model. Osteocyte density was chosen within a physiological order of magnitude, which was estimated from measurements by Marotti et al.11 and Mullender et al.15,16 The value for lining cell density was based on an average length of the cells of 25 μm. However, no actual data of lining cell density were available. A value of 0.02 MPa was used for k and D was 100 μm. C was taken as 6 GPa and the rate constant was arbitrarily set at $\tau = 1$ MPa$^{-1}$ Ls$^{-1}$.

The plate was loaded at each side with uniform stress distributions. The stress magnitudes σ_1 and σ_2 were 5 and -2.5 MPa, respectively. After 200 increments (after which stable configurations were reached), the loading configuration was altered by changing the applied stress orientations from 20° to 0° relative to the plate. Hereafter, the simulations were continued for another 200 increments.

Evaluation of the Results

The resulting architectures were evaluated for their apparent mechanical properties and the relative apparent density. To assess the mechanical properties of the architectures produced by the models, the global stiffness matrices were determined for each equilibrium architecture from the structure morphology and the element stiffness matrices according to van Rietbergen et al.23 The plate was loaded at each side with uniform stress distributions. The stress magnitudes σ_1 and σ_2 were 5 and -2.5 MPa, respectively. After 200 increments (after which stable configurations were reached), the loading configuration was altered by changing the applied stress orientations from 20° to 0° relative to the plate. Hereafter, the simulations were continued for another 200 increments.

Results

All models converged toward equilibrium solutions which resembled trabecular-like structures (Figures 3a–c). The number of increments necessary to reach a stable solution was smaller for

\[
S_i = \frac{1}{2} \sigma_i \varepsilon_i, \quad (6)
\]

where σ_i and ε_i are the stress and strain tensors in the location of sensor i.
The evaluation of the mechanical variables at the tissue level revealed that, for the architectures produced by the osteocyte models, the SED values always varied around 0.02 MPa, which is equal to the target signal. In contrast, the SED distributions for the surface cell model have no clear optimum value (Figure 4).

With osteocytes as the sensors, the maximum principal stress and strain distributions were similar for the two load cases as well as for both the overall and surface remodeling algorithms. The narrow shape of the maximum principal strain distributions show that the greater part of the tissue was strained at a similar level (Figure 5). Compared to the osteocyte models, these distributions were much wider for the surface cell model and also varied more between the two equilibrium architectures.

Discussion

Previously, we have considered a strain adaptive bone-remodeling theory for which it was assumed that osteocytes appraise mechanical signals and regulate bone adaptation. Adaptation of bone density could take place at any location within the tissue represented in the model. It is known, however, that bone remodeling in trabecular bone occurs only at surfaces. A more realistic description of the process, based on surface remodeling, was compared with the previous model. Both remodeling algorithms produced qualitatively similar architectures. This is not surprising, because although the previous model allowed remodeling to take place throughout the tissue, it was in fact limited predominantly to the surfaces of existing trabeculae. Nevertheless, it was found that remodeling occurs much faster in overall remodeling as compared to surface remodeling. This is caused by the restricted volume available for simultaneous transformation in the latter case. We conclude, however, that the results from the surface remodeling algorithm are very similar to the ones from the overall remodeling algorithm reported earlier.

The second goal of this project was to establish whether bone surface cells, such as lining cells and osteoblasts, could potentially regulate bone remodeling by themselves, without mechanosensory stimuli from osteocytes. For this purpose, two regulation models were compared. Some limitations of these models need to be discussed. First, trabecular bone tissue was represented in two dimensions. This limits comparison with actual bone, but possibly has no consequences for the comparison between the regulatory schemes, because van Rietbergen et al. showed that the osteocyte-based regulation process behaves similarly in a three-dimensional model. Second, the use of square elements limits the representation of trabecular geometry. This is partly resolved by allowing intermediate bone densities in boundary elements (Figure 2). More importantly however, digital models...
introduce solution errors at boundary elements. It has been shown that these errors can be significant and that further refinement of the element mesh does not necessarily reduce these boundary artifacts. The use of smooth boundary models does not solve this problem, for these were shown to produce similar errors. To minimize boundary artifacts, the sensors in the surface cell model were chosen at the centers of the boundary elements (as opposed to the element nodes). Nevertheless, errors are inevitable when calculating signals in boundary elements and no solution for this problem is yet available. However, the effect of these errors on the remodeling results should be limited, because the pattern of boundary errors is oscillatory and therefore, errors are averaged out by the sensor influence function, which "filters" the erroneous oscillations and reduces their effect on the stimulus distribution. Another limitation is that only one specific load case was considered, whereas in reality bone is loaded by a variety of loading patterns, changing both in amplitude and direction. However, this probably does not affect the quality of the differences found between the models and it facilitates the assessment of effectiveness of the resulting architectures considerably. Furthermore, only net bone loss or gain was considered. Hence, the models do not account for separate effects of osteoblasts and osteoclasts and effects associated with the remodeling sequence. Finally, strain energy density was chosen as the mechanical signal, because the models used here are too coarse to obtain a more precise measure of the mechanical signals that osteocytes or lining cells perceive when the tissue is loaded. Strain energy density is a measure of the energy stored as a result of deformation of the tissue, and may be considered as a reasonable indication of the mechanical deformation which the cells experience. Although in fact, it is still unclear how bone cells sense mechanical signals, it is also uncertain how a more accurate representation of the mechanical signals might affect the results.

It was found that bone remodeling regulated by osteocytes is very effective indeed. The bone mass is distributed such that the apparent stiffness of the architecture is very well adapted to the externally applied loads, i.e., the equilibrium architecture has properties of (near) minimal mass for a certain average strain energy density value. As a result, the total mass of the structure produced is relatively independent of the loading direction. However, with surface cells as sensors, remodeling is less sensitive to the external loads, which is manifested by less change in the architecture. When bone remodeling is regulated by osteocytes, it leads primarily to adaptation of the architecture, but if it is regulated by surface cells, it mainly causes adaptation of strut thickness in the existing architecture, which leads to changes in the total mass. Apparently, with osteocytes as sensors, the remodeling process drifts more easily toward a significantly different morphology. Bone adaptation is less effective for changes of the loading directions with surface cells as sensors. This is evident from the frequency distribution plots, which indicate that parts of the structure receive relatively little loading, whereas other parts carry relatively high loads. It might be argued, however, that in reality loading patterns are relatively constant. For changes in load magnitudes only, surface cells should be equally capable to regulate adaptation as osteocytes, since changes in the load magnitudes require changes in mass rather than in architecture. It should be noted that adding surface cells to the osteocyte model makes no difference for the output of the model. This is due to the choice of the surface cell location in the boundary elements, which are also included in the tissue area where osteocytes are located.

Computational models, according to which strain derived signals are evaluated at the tissue surface and where bone mass is adapted accordingly, as in the present surface cell model, have been introduced by Luo et al. and Siffert et al. They found changes in strut thickness after changing the load magnitudes in a unit cell model, but also shape changes when applying loads to idealized structures. However, their results cannot be easily extrapolated to larger, more complex structures, which inhibits comparison with our results.

The present results indicate that osteocytes would be more efficient sensors than bone surface cells, in the sense that they produce architectures with a more appropriate mass distribution relative to the applied loads. It has long been suggested or even implicitly assumed that bone is an optimal structure, however, it is uncertain if this is in fact the case. Therefore, the superior performance of osteocytes as sensors gives no direct evidence that they actually fulfill this role.

In conclusion, the incorporation of surface remodeling into the remodeling algorithm had no essential effects on the architectures produced or their properties. The regulation of functional bone adaptation by mechanosensitive osteocytes would be the most effective modality. This indicates that mechanical information at the bone surface may not be sufficient to adequately regulate functional bone adaptation.

References

18. Skerry, T. M., Bitensky, L., Chayen, J., and Lanyon, L. E. Early strain-related

Date Received: December 18, 1996
Date Revised: February 25, 1997
Date Accepted: March 3, 1997