Very-high-precision bound-state spectroscopy near a 85Rb Feshbach resonance

Citation for published version (APA):

DOI:
10.1103/PhysRevA.67.060701

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Very-high-precision bound-state spectroscopy near a \(^{85}\text{Rb}\) Feshbach resonance

JILA, National Institute of Standards and Technology, University of Colorado, Colorado 80309-0440, USA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

(Received 20 January 2003; published 20 June 2003)

We precisely measured the binding energy \((\epsilon_{\text{bind}})\) of a molecular state near the Feshbach resonance in a \(^{85}\text{Rb}\) Bose-Einstein condensate (BEC). Rapid magnetic-field pulses induced coherent atom-molecule oscillations in the BEC. We measured the oscillation frequency as a function of \(B\) field and fit the data to a coupled-channel model. Our analysis constrained the Feshbach resonance position \([155.041(18) \text{G}]\), width \([10.71(2) \text{G}]\), and background scattering length \([-44.3(3)a_{\text{bg}}]\) and yielded new values for the \(Rb\) interaction parameters. These results improved our estimate for the stability condition of an attractive BEC. We also found evidence for a mean-field shift to \(\epsilon_{\text{bind}}\).

DOI: 10.1103/PhysRevA.67.060701 PACS number(s): 34.20.Cf, 03.75.Nt

The phenomenon of a Feshbach resonance in ultracold collisions of alkali-metal atoms has received much theoretical and experimental interest in recent years, sparking interest in the subjects of resonant Bose-Einstein condensates (BECs) and superfluidity in degenerate Fermi gases. Here we focus on ultracold bosonic gases, in which magnetic-field Feshbach resonances [1,2] have been used both to control elastic and inelastic collisions [3–6] and to tune the self-interaction in BEC [7–11].

In a BEC, the magnetic field controls the self-interaction of the condensate by affecting the \(s\)-wave scattering length \(a\). Close to resonance, the scattering length varies with \(B\) field according to

\[
a = a_{\text{bg}} \left(1 - \frac{\Delta}{B - B_{\text{peak}}} \right),
\]

where \(B_{\text{peak}}\) is the resonance position and is defined to be the magnetic field where the magnitude of \(a\) becomes infinite, \(a_{\text{bg}}\) is the background scattering length, \(\Delta = B_{\text{zero}} - B_{\text{peak}}\) is the resonance width, and \(B_{\text{zero}}\) is the field where the scattering length crosses zero. The resonance is due to a (quasi)-bound state that can be tuned in close proximity to the zero-energy threshold via a magnetic field. Measurements of Feshbach resonance positions and widths have been used in a variety of alkali-metal atoms to improve the determination of the interatomic potentials, which in turn can be used for calculating interaction properties relevant for cold atomic gases [12–15].

Recently, we applied rapid magnetic-field variations near a Feshbach resonance to create an atom-molecule superposition state in a \(^{85}\text{Rb}\) BEC [16], which has allowed us to precisely determine the Feshbach resonance position and width. Our technique for studying the Feshbach resonance relies on the presence of atom-molecule coherence [17–19]. By inducing periodic oscillations in the number of condensate atoms, we obtain a direct, high-precision measurement of the molecular bound-state energy \(\epsilon_{\text{bind}}\). Exploiting the resonance, we tune the molecular state very close to threshold \((\epsilon_{\text{bind}} \approx 10^{-7} \text{ cm}^{-1})\)–to our knowledge, this is the most weakly bound diatomic state ever observed in a spectroscopy experiment.

The present method for studying the Feshbach resonance through atom-molecule oscillations offers all of the many inherent advantages of a frequency measurement, including the possibility of high measurement precision, a lack of sensitivity to errors in the absolute atom number calibration, and a simple interpretation of the oscillation frequency in terms of the relative energy difference between the atomic and molecular states. When these advantages are combined with an improved method for magnetic-field calibration [20], the present technique for probing the Feshbach resonance is much more precise than previous experiments that examined such Feshbach resonance observables as variable rethermalization rates in a trapped cloud of atoms [4], enhancements of photoassociation rates [3] and inelastic loss rates [6] near the resonance, and variations of the mean-field expansion energy of a BEC [7].

To complete our precise characterization of the Feshbach resonance, we also made an improved measurement of \(B_{\text{zero}}\), the magnetic field where the scattering length vanishes. This experiment is very similar to our previous work [14,21], where we determined the \(a=0\) field by measuring the critical number \((N_{\text{crit}})\) for collapse of a BEC, and then we extrapolated to the magnetic field where \(N_{\text{crit}}\) would be infinite. We have improved the measurement precision by about a factor of 4 by improving our magnetic-field calibration and using a larger number of condensate atoms to measure the collapse. We find \(B_{\text{zero}} = 165.750(13) \text{ G}\).

The procedure used to generate atom-molecule oscillations in \(^{85}\text{Rb}\) Bose-Einstein condensates has been described in previous work [16], so we merely outline the method here. After creating condensates with initial number of atoms \(N_0 \approx 16000\) at a magnetic field \(B \approx 162 \text{ G}\), we apply two short \(B\)-field pulses (\(\sim 40\)-\(\mu\text{s}\) duration) that approach and then recede from the Feshbach resonance at \(B_{\text{peak}} \approx 155 \text{ G}\). The intermediate value of magnetic field between the pulses, \(B_{\text{evolve}}\), and the time spacing between pulses, \(t_{\text{evolve}}\), are variable quantities. The double pulse sequence is followed by a slow change in the \(B\) field to expand the BEC [9], then
The oscillation frequency is very low \([\nu_0 = 9.77(12) \text{ kHz}] \) so that the damping and atom loss are significant—here \(\beta = 2\pi \times 0.58(12) \text{ kHz} \) and \(\alpha = 7.9(4) \text{ atoms/\mu s} \). Nevertheless, the oscillations remain underdamped, with an effective frequency shift due to damping [see Eq. (2)] of only 0.2%, which is far smaller than the 1% statistical frequency error from the fit. Farther from resonance, the damping of the oscillations and atom loss are negligible in the relatively short time window used to determine \(\nu_0 = 157.8(17) \text{ kHz} \).

As in Ref. [16], periodic oscillations in the BEC number were observed as a function of \(t_{\text{evolve}} \) (see Fig. 1). We fit the BEC number oscillation to a damped harmonic oscillator function with an additional linear loss term:

\[
N(t) = N_{\text{avg}} - \alpha t + A \exp(-\beta t) \sin(\omega_0 t + \phi),
\]

where \(N_{\text{avg}} \) is the average number, \(A \) is the oscillation amplitude, \(\alpha \) and \(\beta \) are the number loss and damping rates, respectively, and \(\omega_0 = 2\pi \sqrt{\nu_0 - [\beta/(2\pi)]^2} \). The quantity of interest here is \(\nu_0 \), the natural oscillator frequency corresponding to the molecular binding energy, \(\nu_0 = \nu_{\text{bind}}/\hbar \). We measured the oscillation frequency for values of \(B_{\text{evolve}} \) from 156.1 G to 161.8 G. Over this range, the frequency varies by \(\sim 5 \text{ kHz} \) near 152 G. Due to interference of the rf radiation with the magnetic-field control circuitry, there was a small systematic shift of the field as a function of the rf power used. The total uncertainty for each magnetic-field determination was \(\sim 20 \text{ mG} \) due to the quadrature sum of the uncertainty from the field shape measurements (~15 mG) and the uncertainty in the extrapolation to zero rf power (~20 mG).

The measured oscillation frequencies versus magnetic field are plotted in Fig. 2. We use these data and the zero-crossing field \(B_{\text{zero}} \) to completely characterize the scattering length and binding energy as a function of magnetic field near the Feshbach resonance. As a starting point, we use the coupled-channel analysis of van Kempen et al. [15], where several high-precision data for \(^{85}\text{Rb} \) and \(^{87}\text{Rb} \) were combined to perform an intersotope determination of the rubidium interactions with unprecedented accuracy. The predictive power of this analysis can be seen from Ref. [16], where the initial data on the atom-molecule coherence were already in good agreement with the predicted binding energy of the underlying Feshbach state. Another example of the accuracy of the analysis in Ref. [15] is its agreement with more than 40 Feshbach resonances recently discovered in \(^{87}\text{Rb} \) [22].

Van Kempen et al. used the best known values [14] for the resonant magnetic field \(B_{\text{peak}} \) and zero crossing \(B_{\text{zero}} \). In this work, we ignore the relatively imprecise value of \(B_{\text{peak}} \) from Ref. [14], and instead use the measured dependence of binding energy on magnetic field along with the new \(B_{\text{zero}} \) measurement given above to determine the interaction parameters. We observe that the fitting procedure is mainly

FIG. 1. BEC number versus pulse spacing, \(t_{\text{evolve}} \). (a) \(B_{\text{evolve}} = 156.840(25) \text{ G} \). The oscillation frequency is very low \(\nu_0 = 9.77(12) \text{ kHz} \) so that the damping and atom loss are significant—here \(\beta = 2\pi \times 0.58(12) \text{ kHz} \) and \(\alpha = 7.9(4) \text{ atoms/\mu s} \). Nevertheless, the oscillations remain underdamped, with an effective frequency shift due to damping [see Eq. (2)] of only 0.2%, which is far smaller than the 1% statistical frequency error from the fit. (b) \(B_{\text{evolve}} = 159.527(19) \text{ G} \). Farther from resonance, the damping of the oscillations and atom loss are negligible in the relatively short time window used to determine \(\nu_0 = 157.8(17) \text{ kHz} \).

FIG. 2. Molecular binding energy versus magnetic-field \(B_{\text{evolve}} \). The points are measured values of the atom-molecule oscillation frequency \(\nu_0 \), while the solid line fit is the molecular binding energy from a coupled-channel scattering theory. Only black points were included in the fit; white points were excluded because they experienced a statistically significant mean-field shift. To improve visibility, the points are larger than the error bars. The inset shows the deviation of the lowest frequency data from the fit to the rest of the data.
TABLE I. Sensitivities of the determined interaction parameters v_{DS}, v_{DT}, and C_6 to fractional uncertainties in C_8, C_{10}, ϕ_6^F, and J. For instance, the systematic error in C_6 due to a 10% uncertainty in C_8 is $123 \times 0.10 = 12.3$ a.u.

<table>
<thead>
<tr>
<th>$\Delta C_8 / C_8$</th>
<th>$\Delta C_{10} / C_{10}$</th>
<th>$\Delta \phi_6^F / \phi_6^F$</th>
<th>$\Delta J / J$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δv_{DS}</td>
<td>-1.53×10^{-4}</td>
<td>-6.80×10^{-5}</td>
<td>-2.59×10^{-3}</td>
</tr>
<tr>
<td>Δv_{DT}</td>
<td>-4.14×10^{-4}</td>
<td>-1.39×10^{-4}</td>
<td>2.31×10^{-3}</td>
</tr>
<tr>
<td>ΔC_6</td>
<td>123</td>
<td>33.4</td>
<td>-47.8</td>
</tr>
</tbody>
</table>

sensitive to only three parameters: the van der Waals dispersion coefficient C_6 and the nonintegral vibrational quantum numbers at dissociation, v_{DS} and v_{DT}, which determine the position of the last bound state in the singlet and triplet potentials, respectively. Varying the additional parameters C_8, C_{10}, ϕ_6^F (the first-order energy dependence of the phase of the oscillating triplet radial wave function), and J, the strength of the exchange interaction, does not improve the fitting because these changes can be absorbed in small shifts of v_{DS}, v_{DT}, and C_6. Therefore, we take the mean values for these four parameters [23] from the most recent determination in Ref. [22].

The best fit to B_{zero} and the seven highest frequency data points yields a reduced $\chi^2 = 0.30$ for 5 degrees of freedom. This value of χ^2 is improbably low due to the fact that the uncertainty in the data is dominated by the systematic uncertainty in magnetic field related to the magnitude of the rf power shift. Figure 2 shows the theoretical fit to the binding-energy data as a function of magnetic field. From the fit, we find substantially improved values for the Feshbach resonance position $B_{\text{peak}} = 155.041(18)$ G, width $\Delta = 10.71(2)$ G, and background scattering length $a_{bg} = -443(3)a_0$. These results may be compared to previously obtained results $B_{\text{peak}} = 154.9(4)$ G and $\Delta = 11.0(4)$ G [14], and $a_{bg} = -450(3)a_0$ [26]. Our best interaction parameter values are $C_8 = 4707(2)$ a.u., $v_{DS} = 0.009 16(17)$, and $v_{DT} = 0.946 60(29)$. Here the error bars do not include systematic errors due to the uncertainties in other interaction parameters that are not constrained by our data. To compare our values with those of Ref. [15], we determined the sensitivity of our three interaction parameters to systematic shifts in the other parameters, as shown in Table I. Using the fractional uncertainties in C_8, C_{10}, ϕ_6^F, and J from Ref. [15], we find $C_6 = 4707(13)$ a.u., $v_{DS} = 0.0092(4)$, and $v_{DT} = 0.9466(5)$. All of these values agree with those given in Ref. [15]: $C_6 = 4703(9)$ a.u., $v_{DS} = 0.0091(1)$, and $v_{DT} = 0.9471(2)$. Our value for v_{DS} is more precise than that of Ref. [15], while v_{DT} and C_6 are slightly less precise. If future experiments allow improvements to the other interaction parameters, then our results will also become more precise since the systematic errors are comparable to or larger than our statistical errors from the fit.

To understand the strong parameter constraints that we obtain with our bound state spectroscopy, one must consider the nonlinear dependence of the binding energy on magnetic field. The magnetic-field dependence of ε_bind as it approaches the collision threshold depends sensitively on the exact shape of the long-range interatomic potentials, which are mainly characterized by the van der Waals coefficient C_6. At magnetic fields far from resonance, the bound-state wave function is confined to a short internuclear distance and ε_bind varies linearly with magnetic field. The linear dependence on B field gives relatively little information about C_6. As the B field approaches resonance, the detuning decreases until the bound-state lies just below threshold. Now the bound-state wave function penetrates much deeper into the classically forbidden region, which causes ε_bind to curve toward threshold as a function of magnetic field. Because the energetically forbidden region stretches out as C_6/r_6^6, the observed curvature depends sensitively on the C_6 coefficient. One can show [25] that an analytical Feshbach model that includes the correct potential range and background scattering processes [26] can reproduce the binding energy curve over the full range of magnetic field.

The coupled-channel theory used in this work applies to two-body scattering; therefore, this theory cannot account for many-body effects in the atom-molecule BEC system, such as a mean-field shift to the observed oscillation frequency [17,27]. Any such mean-field shift must be fractionally largest near the Feshbach resonance, where the binding energy approaches zero while the atom-atom scattering length increases to infinity. We searched for a mean-field shift to the oscillation frequency when B_{evolve} was decreased to ~ 156 G. As shown in Fig. 2, the lowest magnetic-field data display a clear frequency shift with respect to the coupled-channel theory prediction. As B_{evolve} approaches resonance, the observed shift increases to 1.7 kHz, which significantly exceeds a simple estimate for the average atom-atom mean-field shift in the BEC: $4\pi\hbar^2 n/\mu m = 0.5$ kHz at $B_{\text{evolve}} = 156.1$ G. We are presently investigating new experimental techniques to further study the frequency shifts, including their density dependence.

We use a statistical test to exclude the low-frequency data from the (two-body) theory fit. We first fit the dataset including all frequency measurements with $v_0 = 9$ kHz. Eliminating the lowest frequency point from this set causes the reduced χ^2 to decrease from 0.3 to 0.2, and there is no significant change in parameter values. In contrast, adding the next lower frequency point increases the reduced χ^2 to 1.9, causing a large systematic shift in the parameter values. The observed behavior seems sensible since we expect mean-field shifts to increase rapidly as one moves toward resonance. The fact that the two-body theory fits the oscillation data over a frequency range spanning two orders of magnitude, but fails when the B field approaches B_{peak}, strongly suggests the influence of many-body physics. We note that a recent theoretical treatment [27] of the atom-molecule oscillations that includes mean-field effects shows excellent agreement with our data over the entire range of magnetic field shown in Fig. 2.

As a result of our improved determination of the 85Rb Feshbach resonance parameters, we find that our new value for the off-resonant or background scattering length $a_{bg} = -443(3)a_0$, is inconsistent with the value given in Ref. [14], where $a_{bg} = -380(21)a_0$. The most plausible explanation we can find for disagreement is that the theoretical expression used to relate measured rethermalization rate to
cross section is insufficient for the requisite level of accuracy. However, the new value for a_{bg} allows us to revise our previous estimate for the stability condition of a BEC with negative scattering length [21]. The stability condition may be expressed in terms of a stability coefficient $k_{\text{collapse}} = N_{\text{crit}} |a|/a_{ho}$. Here k_{collapse} depends on the critical number of atoms, N_{crit}, the magnitude of the negative scattering length, $|a|$, and the harmonic oscillator length of the trapping potential, a_{ho}. To determine k_{collapse}, we first use Eq. (1) to obtain the linear slope of scattering length versus B field near $B = B_{\text{zero}}$. We then combine the value of $\Delta a/\Delta B = -39.87(22)a_{bg}/G$ with our previously measured slope of $1/N_{\text{crit}}$ versus magnetic field [21] of 0.00126(3) (atoms G)$^{-1}$. We obtain the revised value $k_{\text{collapse}} = 0.547(58)$, where the error is dominated by a 10% systematic uncertainty in the determination of N_{crit}. The present k_{collapse} determination agrees with the most recent theoretical value of 0.55 [28].

In conclusion, we present a unique method for exploring a 85Rb Feshbach resonance. The observed atom-molecule coherence allows us to study the highly nonlinear dependence of the molecular binding energy on magnetic field. We find good agreement with an analysis of van Kempen et al. [15] and we also substantially improve the precision of the 85Rb Feshbach resonance parameters. In addition, we observe mean-field shifts to the molecular binding energy, offering the possibility for future studies of many-body effects in this exciting system.

This research was supported by the Office of Naval Research, the National Science Foundation, and the U.S. Army Research Office (ARO Grant No. DAAD19-00-1-01632).

[23] For the ϕ_0^F value, which is not listed in Ref. [22] we used $\phi_0^F = 0.160(18) \text{ K}^{-1}$ [E.G.M. van Kempen and B.J. Verhaar (private communication)].
[24] The value for $a_{bg} = -450(3)a_0$ was extracted from the Ref. [15] analysis. We refer to this value instead of our earlier experimentally determined value of $a_{bg} = -380(21)a_0$ [14], which is less precise and less accurate.