Formation of InAs wetting layers studied by cross-sectional scanning tunneling microscopy

P. Offermans, a) P. M. Koenraad, R. Nötzel, and J. H. Wolter
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

K. Pierz
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

(Received 13 May 2005; accepted 29 July 2005; published online 6 September 2005)

We show that the composition of (segregated) InAs wetting layers (WLs) can be determined by either direct counting of the indium atoms or by analysis of the outward displacement of the cleaved surface as measured by cross-sectional scanning tunneling microscopy. We use this approach to study the effects of the deposited amount of indium, the InAs growth rate, and the host material on the formation of the WLs. We conclude that the formation of (segregated) WLs is a delicate interplay between surface migration, strain-driven segregation, and the dissolution of quantum dots during overgrowth.

The formation of InAs wetting layers (WLs) has attracted relatively little attention compared to quantum dot (QD) formation. 1–3 In the simple picture of Stranski-Krastanov growth, after the buildup of a critical amount of strain, two-dimensional layer growth is followed by QD formation. It has become increasingly clear, however, that such a simple picture is far from reality. Recently, In incorporation during pseudomorphic InAs/GaAs growth and QD formation were observed by in situ stress measurements. 4 In this work, we study the segregation of InAs WLs by either directly counting the indium atoms or by analysis of the outward displacement of the cleaved surface as measured by cross-sectional scanning tunneling microscopy (X-STM).

By cleaving the sample containing the WLs, the cross-sectional surface of the segregated InAs WLs is exposed, and releases its strain due to the lattice mismatch between the InAs and the surrounding GaAs (or AlAs) matrix, which results in an outward displacement of the cleaved surface. 5 This can be measured with X-STM at high negative sample voltages (<−2 V), where the electronic contribution to the contrast in the image is minimized. 6 By modeling the indium segregation, the outward displacement of the segregated WL can be calculated by integration of the analytical expression derived by Davies 5 for the outward displacement of a cleaved quantum well. Several models for indium segregation have been proposed. 7–10 We use the phenomenological model of Muraki et al. 8 which has been shown to describe the indium composition x(n) of InAs WLs well: 5

\[
x(n) = \begin{cases}
0, & n < 1 \\
(1 - R^n), & 1 \leq n \leq N \\
(1 - R^n)R^{-n}, & n > N
\end{cases}
\]

where \(n \) is the monolayer (ML) index, \(N \) is the total amount of deposited indium, and \(R \) is the indium segregation coefficient. \(N \) and \(R \) are determined by fitting the calculated relaxation profile to the measured relaxation profile.

The WLs were grown by molecular-beam epitaxy on doped GaAs (100) wafers. In Sample A, three different sets of WLs were grown at 495 °C by deposition of 1.5 ML, 2.0 ML, and 2.5 ML of InAs, respectively, at a growth rate of 0.1 ML/s. Each layer was repeated two times, separated by a 50 nm GaAs buffer layer, also grown at 495 °C. A growth interruption of 10 s was applied after the growth of each layer. No dot formation was observed for the layers with 1.5 ML indium deposition. In Sample B, two sets of WLs were grown at 480 °C by deposition of 2.0 ML of InAs at a high and a low growth rate of 0.1 ML/s and 0.01 ML/s, respectively. Each layer was repeated two times and capped by a 20 nm GaAs layer grown at 480 °C, followed by a 30 nm GaAs layer grown at 580 °C. A growth interruption of 10 s was applied after the growth of each layer. In Sample C, one set of InAs layers was grown in GaAs while a second set was grown in AlAs barriers. The InAs layers were grown at 500 °C by deposition of 1.9 ML of InAs in a cycled way, i.e., with a 3 s pause after each deposition of 0.25 ML, at a growth rate of 0.043 ML/s. The following layer sequence was used: 20 nm GaAs/1.9 ML InAs/40 nm GaAs/1.9 ML InAs/40 nm GaAs/50 nm GaAs (doped 1 × 10^9 cm^2)/20 nm GaAs/4× (20 nm AlAs/1.9 ML InAs/20 nm AlAs/40 nm GaAs). To reduce interface roughness, the bottom AlAs barriers were grown at 600 °C followed by a growth interruption prior to InAs deposition.

Sample A was used to study the effect of the amount of indium deposition on the WL formation. We measured the relaxation profiles of the WLs and fitted these with calculated relaxation profiles, by adjusting the fit parameters \(N \) and \(R \). The resulting segregation profiles were verified by directly counting the number of indium atoms in the WL as a function of distance in growth direction. For the counting procedure, we selected four high-quality images of each layer, such as the one shown in Fig. 1. The relaxation and segregation profiles are shown in Fig. 2. In all three cases, we found an excellent agreement between the indium profile determined from the outward relaxation of the surface, and the direct counting procedure. For the 1.5 ML WL, the measured amount of indium \(N \) corresponds to the deposited amount, since no indium has gone into dot formation. For the 2.0 ML and 2.5 ML WLs, however, we find a clear indium enrichment of the WL, despite dot formation.

In Stranski–Krastanov growth mode, strain builds up until the critical amount of indium for dot formation is.

a)Electronic mail: p.offermans@tue.nl
It has been shown that only part of the deposited amount of indium contributes to the strain, by incorporation into the lattice, while the remaining indium forms a floating layer on the surface. During dot formation, part of the floating indium is transferred by lateral mass transport to the dots. The amount of indium that remains in the dots, however, is strongly reduced by the capping process, which dissolves the top of the dots back into the WL. The dissolved indium adds to the remaining floating indium, and is eventually incorporated into the lattice during continued capping.

We used Sample B to study the effect of a reduced growth rate on the WL formation. It is known that a reduced growth rate leads to an increased QD size and a reduced QD density. However, it is not a priori clear how this will affect the formation of the segregated WL in the buried structure. In Fig. 3, we show the average measured and calculated relaxation profiles of the InAs WLs of Sample B. The dashed lines indicate the relaxation profiles calculated directly from indium atom counting using different images. We find that the high (0.1 ML/s) and low (0.01 ML/s) growth rate InAs WLs can be described by the same parameters within errors. However, as expected, there is a marked difference in the size of the QDs, shown in Figs. 4(a) and 4(b). Whereas the QD grown at the high growth rate appears as a rather flat disklike shape with a height of 3 nm, the QDs grown at low rate show an indium distribution with a reversed truncated cone shape with a height of 5.4 nm.

We studied the effect of the host material by analyzing the segregation of InAs WLs grown in the AlAs barriers of Sample C, and comparing this to the segregation of InAs WLs grown—under the same growth conditions—in a GaAs matrix. It has been shown that QD formation in the InAs/AlAs system is kinetically limited due to a reduced growth rate on the WL formation. It is known that a reduced growth rate leads to an increased QD size and a reduced QD density.
lateral In migration on the AlAs surface, because of the larger Al–In bond strength. Recently, we reported on the marked differences in the structural properties of the dots grown in GaAs and AlAs. Figure 5 shows the averaged marked differences in the structural properties of the dots. In the V-groove, it can be seen that a large amount of indium atoms have accumulated in the V-groove. By comparing the extent of the shallow V-groove in which a QD was formed. The V-groove also leads to the almost complete dissolution of the QDs into indium segregation. However, such a capping procedure is the formation of quantum rings. This indicates that, in contrast to the lateral In migration, the vertical indium segregation in AlAs and GaAs can be described by the partial capping of QDs with 2 nm of GaAs and subsequent annealing. Recently, we observed that during this process, a second layer of indium accumulates on the surface of the capping layer, which is due to vertical segregation of indium from the WL and to lateral migration on the surface of the capping layer, which is due to vertical segregation of indium atoms that have been expelled from the QDs during QR formation. After continued capping, the second layer of indium, itself, forms a segregated indium distribution.

Finally, we show in Fig. 6 an overview image of the WLs of Sample B. Surprisingly, one of the layers showed a shallow V-groove in which a QD was formed. The V-groove was unintentionally created on the GaAs substrate. It can clearly be seen that a large amount of indium atoms have accumulated in the V-groove. By comparing the extent of the indium segregation inside and outside of the V-groove, it can be seen that during GaAs overgrowth, the indium segregation and migration facilitates a rapid planarization of the growth front, in the presence of indium atom accumulation in the V-groove.

To summarize, we have shown that the composition of (segregated) InAs WLs can be determined by either directly counting the indium atoms or by analysis of the outward displacement of the cleaved surface as measured by X-STM. We used this approach to study the effects of the deposited amount of indium, the InAs growth rate, and the host material on the formation of the WLs. We conclude that the formation of (segregated) WLs is a delicate interplay between surface migration, strain-driven segregation, and the dissolution of QDs during overgrowth.