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CLASSROOM NOTES

EDITED BY MURRAY S. KLAMKIN

This section contains brief notes which are essentially self-contained applications ofmathematics that
can be used in the classroom. New applications are preferred, but exemplary applications not well known or
readily available are accepted.

Both "modern" and "classical" applications are welcome, especially modern applications to current
real world problems.

Notes should be submitted to M. S. Klamkin, Department of Mathematics, University of Alberta,
Edmonton, Alberta, Canada T6G 2G1.

NOTE ON THE FACTORIZATION OF A SQUARE MATRIX
INTO TWO HERMITIAN OR SYMMETRIC MATRICES*

A. J. BOSCH-["

Abstract. This paper presents elementary proofs of the factorization of a square matrix into two
hermitian or symmetric matdces.

Key words. Jordan normal form, matrix factorization, symmetric matrices

AMS(MOS) subject classification. 15A23

1. Introduction. As we will see, every square matrix (real or complex) is a product
oftwo symmetric matrices (real or complex, respectively). However, not every square
matrix is a product of two hermitian matrices. Although these results were already
published by Frobenius in 19 l0 (see [2]), they are still not well known to mathema-
ticians. They are not even found in modem textbooks on matrix theory or linear
algebra. Consequently, these results and their proofs (see [1], [4], [5]) are not very
accessible to nonmathematicians. But they can use these results. Applications can be
found in mechanics, system theory, structural analysis, etc., and we give one for a
mechanical system at the end. The aim of this paper is to give elementary proofs as
well as a clear summary ofthe conditions. The basis of all proofs is the Jordan normal
form of a matrix.

2. Notation.

A is a complex or real square matrix; Ar is the transpose ofA;
A* gr the conjugate transpose ofA; A-r (At)- (A-t)r;
A is a diagonal matrix ofeigenvalues;
S is a real symmetric matrix: S St; C a symmetric matrix: Cr C;
H denotes a hermitian matrix: H* H; U a unitary matrix: UU* U*U I;
A - D means A is similar to the matrix D" A BDB-;

* Received by the editors November 12, 1985; accepted for publication (in revised form) April 23,
1986. Theorems and 4 appeared in The Factorization ofa Square Matrix into Two Symmetric Matrices,
Amer. Math. Monthly, 93 (1986) pp. 462-464.
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H> 0 means H is positive definite: for all vectors x # 0: x*Hx > 0;

o b

i&(x)= ".. ". s= G(x)=

I

A =diagAi=Al A2( (t)Ar

AI 0

0 Ar

the A are square matrices with the diagonal along the diagonal ofA.

all k x k-matrices;

3. Preliminaries. (For the proofs of Propositions and 4 see [3].)
PROPOSITION 1. Let H be a hermitian matrix. Then there exists a unitary matrix

U such that H U A U* with A real.
IfH> O, then all eigenvalues )i are positive.
PROPOSITION 2. Let Hi > O. Then there exists an H> 0 such that Hi H2.
Proof. Hi U A U* (U A/ U*) (U A /2 U*) =: H2 with H>O.
DEVNITON 1. A Jordan matrix J is a square matrix of the form

J= diag Jk,( ki) Jkl( 1’" (Jkr( kr)’
the ), are not necessarily different.

DEFINITION 2. A special Jordan matrix is Jo J (9 J2 (9 Jl where J2 is real and
contains all real ,’s of Jo; the ),’s in J are all different from the ),’s in (J or J2 can
be "empty").

PROPOSITION 3. J = Jo is equivalent with J = .
Proof i) J = Jo, hence = o. But o= Jo, so J = .
ii) J = means that, if ), is an eigenvalue of J, is also an eigenvalue with the

same multiplicity and the same Jordan structure, so J = Jo.
PaO’OSTON 4. (Jordan normal form of a matrix). Let A be an arbitrary square

matrix, then A = J. This means A BJB -l for some invertible matrix B and some
Jordan matrix J.

COROLLARY 1. IfA is real then A = Jo.
Proof. Let A = J; g A, hence J = and (Proposition 3) J = Jo. So A = J0
PROPOSITION 5. Every Jordan matrix J is a product oftwo symmetric matrices.
Proof. J diag Jk,(h3 diag (Sk,Ck(h)) diag Sk diag Ck,(),3 =" SC, where the

c(x)

first factor S is nonsingular.
Remark 1. If we define

0

then Jk,(X3 C,,(X)Sk, and we have J CS with the second factor nonsingular.
PROPOSITION 6. Every Jordan matrix Jo is a product oftwo hermitian matrices.
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Proof. With Proposition 5:

Jo Jl J2 SI C1($2C2 S11--- [ 0Sl
Note that Hi is nonsingular.

AD=(ADAD2AD3) DJo (DI JI D2J2D3J); AD1 =DIJ1
and hence A/ Jl1 AD2 D2J2.

This means that there exists a real matrix B2 of full rank such that AB2 B2J2. Define
the matrix B := (DB2/I) then AB BJo. B is nonsingular: Dl (SO/1) and B2 are of
full rank. The columns ofDl and Dl, and the columns ofDI(DI) and B2 are mutually
independent, being (generalized) eigenvectors associated with different eigenvalues
(see Definition 2). Hence B is nonsingular.

In the proofofTheorem 1, we saw thatA C C2 (BSBr)C2 and C nonsingular.
Now

CI =BSBV=(DIB2BI)(SI (&IS1) (Dl B2/l)
=(DISlDTl +ISIIT) +B22BI

which is, as sum of two real matrices, also real.
C2 C-lM is, as a product of two real matrices, also real.

D=(DID2D3); Jo=JlJ2Jl; S=Sl([S2(Sl’

Hence, A = A* and J = J*.
ii) J = J* = hence J -- J0 (Proposition 3) and A = Jo. With Proposition 6:

Jo HIH2;A BJoB- B(HH2)B- (BHB*) (B*-IH2B-). Both factors are her-
mitian and the first is nonsingular.

THEOREM 3. Every square matrix A with real Jordan matrix J is a product oftwo
hermitian matrices.

Proof. J is real so J = J* (Corollary 2) and the condition of Theorem 2 is
satisfied.

THEOREM 4. Every real square matrix A is a product of two real symmetric
matrices ofwhich at least one is nonsingular.

Proof. With Corollary A = Jo. Let A DJoD- and Jo SC as in Proposi-
tion 5 with S nonsingular.

Partition S and D in the same way as Jo with respect to the columns:

A * H2H Hi-I(HIH2)H H-?IAHI.

4. Theorems on factorization.
THEOREM 1. Every square matr& A is a product oftwo symmetric matrices.
Proof. IfA = J then with Proposition 5:

A BJB-l B(SC)B-l (BSBT) (B-TCB-l) := C
Note that here C is nonsingular.

COROLLARY 2. Every square matrix A is similar to its transpose: A = AT.
Proof A Cl C2 (see Theorem 1) with C nonsingular. C-?AC C2C AT and

hence A = AT.
THEOREM 2. A square matrix A is a product oftwo hermitian matrices, ofwhich

at least one is nonsingular, iffJ - J*.
Proof. i) Let A H1H2 and suppose H is nonsingular.
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THEOREM 5. A square matrix A is a product oftwo hermitian matrices ofwhich
at least one is positive definite iffJ J*.

Proof. i) Let A HH2 with H >0. With Proposition 2 H---n2; ,4

H(HH2H)H-; HH2H is hermitian, so by Proposition HH2H U A U* with A
real; A H(U A U*)H-l (HU) A (HU)- =: B A B-. Hence, A J J*.

ii) J J* means J ^ real.

A B A B- (BB*) (B*- ^ B-) =:HH2 withH>0.

THEOREM 6. ,4 real square matrix A is a product oftwo real symmetric matrices
ofwhich at least one is positive definite, iffJ J*.

Proof. This follows from the proof in Theorem 5:
i) Replace each H by S and U by an orthogonal matrix G.
ii) J and A are real. From A D A D-1 it follows that there exists a real

nonsingular matrix B such that A B A B-l. SO H S and H2 $2; A S$2 with
S>0.

THEOREM 7. A real square matrixA is a product oftwo symmetric positive definite
matrices iffJ J* > O.

Proof. This follows from the proof in Theorem 5 (and Theorem 6 for the real
case)

i) In Theorem 5i), let A HH2 with H and H2 > 0. Then HHEH> 0, so
HH2H U A U* with A > 0.

ii) A > 0, hence H2 B*- A B- > 0.
See Table 1.

TABLE

Theorem A J iff-condition Factorization

complex complex A C C2
2 complex complex J J* A HH2
3 complex real A HiH2
4 real complex A SS
5 complex complex J J* A HtH2 Ht or H2 > 0
6 real complex J J* A SS S or $2 > 0
7 real complex J J* > 0 A S$2 S and $2 > 0

5. Application. Given a mechanical system governed by the equation

(1) +Ax=0,

where A is a real n x n matrix and x x(t) an R-valued function. We try to find an
invariant quadratic form (a Lyapunov function) V(x, c). To this extent, we rewrite
(1) as Bff, where

and we search for V of the form V($) $P$ (P symmetric).

l?(;) ’P+Tp=,BZp+’PBx_ ff(BZP+PB ).

The invariance of V() reduces to the equation BTP + PB 0 which when P is written

PI2 P22J
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can be rewritten as

ATpT2 + PI2A 0,

pT2 + P2 0,

PII-P22A =0.

The first two equations can be satisfied by Pl2 0, and the third by any symmetric
P22, P with P22 nonsingular and satisfying A PP. It follows from Theorem 4
that this factorization is always possible and moreover gives a factorization explicitly.
The study of the stability of the system is now reduced to the study of the factors P
and P22. The origin is stable iff V() is definite (positive or negative) for O. Hence
for Pl, P22 > 0 (or both negative definite). From Theorem 7, we see that this is iff
A = A > 0 (i.e., A is nondefective with positive eigenvalues).

6. Examlfle. Consider the following mechanical system: two bars AB and BC of
length are connected by hinges in A and B with a torsion-stiffness k (Fig. 1). There
are point-masses m in B and C. The masses of the bars are neglected. These bars
move in a vertical plane under influence of a constant follower force P in C in the
direction BC. We want to study small vibrations (around o t2 0) of this system,
in particular the stability of the system.

P

FG.

The system has 2 degrees of freedom. As generalized coordinates, we take the
angles o and t2 (see Fig. 1). We give, without derivation, the relations:

kinetic energy:
elastic energy:
generalized follower force:

T=ml2(22 + 212c0s(1 "-2)+ 22);
+

Q,,-PI sin (o2-o,); Q,,_=0.

The equations of motion are:

W+- Q,,, i= 1,2;
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After lineadzing and replacing sin a by a, cos a by for small a, we get:

2ml2(6 + ml22 + 2kq ktP2 Pl + PltP2 O,

rolE(b1 + m12(2 kO + kq2 O.

In matrix notation: M +K 0 or +A O, where A M-K;

= 2 ml2 m12] -k k

i) Suppose P 0. Then M and K are both symmetric and positive definite. The
system is stable which follows from 5.

ii) Suppose P> 0. Then K is not symmetric.

with eigenvalues

X,2=-(3k-Pl+_ x/(3k pi)2- k2).

From {}5 it follows that must be real and positive. Hence the system is stable
for P< 2k/l; in this case X # X2 and A is not defective. However, if P 2k/1 then
)k )k 2 k/ml2 and

is defective. Theorem 7 tells us that a defective matrix is not a product oftwo positive
definite matrices. Hence for P-- 2k/l the system is not stable.

ekwlelgems. I thank Dr. Laffey, University College, Dublin, who drew my
attention to Corollary 2 and Professors M. L. J. Hautus and W. J. Ku,pers,
Eindhoven University, for the application in 5.
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