Wigner distribution moments measured as intensity moments in separable first-order optical systems
Bastiaans, M.J.; Alieva, T.

Published in:
EURASIP Journal on Applied Signal Processing

DOI:
10.1155/ASP.2005.1535

Published: 01/01/2005

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 19. Jan. 2019
Wigner distribution moments measured as intensity moments in separable first-order optical systems

Martin J. Bastiaans† and Tatiana Alieva‡

† Technische Universiteit Eindhoven, Faculteit Elektrotechniek, Postbus 513, 5600 MB Eindhoven, Netherlands
Email: m.j.bastiaans@tue.nl

‡ Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain
Email: talieva@fis.ucm.es

Abstract
It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output plane of an appropriate number of separable first-order optical systems (generally anamorphic ones). The minimum number of such systems that are needed for the determination of these moments is derived.

1 Introduction
After the introduction of the Wigner distribution [1] (WD) for the description of coherent and partially coherent optical fields [2], it became an important tool for optical signal/image analysis and beam characterization [3–5]. The WD completely describes the complex amplitude of a coherent optical field (up to a constant phase factor) or the mutual coherence function of a partially coherent field. As the WD of a two-dimensional optical field is a function of four variables, it is difficult to analyze. Therefore, the optical field is often represented not by the WD itself, but by its global moments. Beam characterization based on the second-order moments (usually coherence function of a partially coherent field) is often represented not by the WD itself, but by its global coherence function [14–17] of the stochastic process [18] \(\gamma(x_1, x_2; \omega) \), which represents the intensity distribution of the light for the temporal frequency \(\omega \). Since in the present discussion the explicit temporal-frequency dependence is of

2 Wigner distribution
Let partially coherent light be described by a temporally stationary stochastic process \(f(x, y; t) \); as far as the time dependence is concerned, the ensemble average of the product \(f(x_1, y_1; t_1) f^*(x_2, y_2; t_2) \), where the asterisk denotes complex conjugation, is then only a function of the time difference \(t_1 - t_2 \):

\[
E \{ f(x_1, y_1; t_1) f^*(x_2, y_2; t_2) \} = \gamma(x_1, x_2; y_1, y_2; t_1 - t_2).
\]

The function \(\gamma(x_1, x_2; y_1, y_2; \tau) \) is known as the mutual coherence function [14–17] of the stochastic process \(f(x, y; t) \). The mutual power spectrum [16, 17] or cross-spectral density function [18] \(\Gamma(x_1, x_2; y_1, y_2; \omega) \) is defined as the temporal Fourier transform of the mutual coherence function:

\[
\Gamma(x_1, x_2; y_1, y_2; \omega) = \int_{-\infty}^{\infty} \gamma(x_1, x_2; y_1, y_2; \tau) \exp(j \omega \tau) \, d\tau.
\]

For \(x_1 = x_2 = x, y_1 = y_2 = y \), the cross-spectral density function reduces to the (auto) power spectrum \(\Gamma(x, x; y, y; \omega) \), which represents the intensity distribution of the light for the temporal frequency \(\omega \). Since in the present discussion the explicit temporal-frequency dependence is of

measurements of only intensity distributions in an appropriate number of (generally anamorphic) separable first-order optical systems.
no importance, we shall, for the sake of convenience, omit the
temporal-frequency variable ω from the formulas in the
remainder of the paper.

The Wigner distribution of partially coherent light is
defined in terms of the cross-spectral density function by

$$
W(x, u; y, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Gamma(x + \frac{x'}{2}, x - \frac{x'}{2}; y + \frac{y'}{2}, y - \frac{y'}{2}) \times \exp[-j2\pi(ux' + vy')] dx' dy'.
$$

(3)

A distribution function according to definition (3) was first
introduced in optics by Walther [19, 20], who called it the
generalized radiance. The WD $W(x, u; y, v)$ represents par-
tially coherent light in a combined space/spatial-frequency
domain, the so-called phase space, where u is the spatial-
frequency variable associated to the space variable x, and v
the spatial-frequency variable associated to the space vari-

In this paper we consider the normalized moments of the WD,
where the normalization is with respect to the total
energy E of the signal:

$$
E = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(x, u; y, v) dx du dy dv
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Gamma(x, x; y, y) dx dy.
$$

(4)

These normalized moments μ_{pqrs} of the WD are thus defined by

$$
\mu_{pqrs}E = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(x, u; y, v) \times x^p u^q y^r v^s dx du dy dv
= \frac{1}{(4\pi)^{q+r}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^r \left(\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} \right)^q \times \Gamma(x_1, x_2; y_1, y_2) \bigg|_{x_1=x_2=x, y_1=y_2=y} dx dy.
$$

(5)

Note that for $q = s = 0$ we have intensity moments, which
which can easily be measured:

$$
\mu_{p0r0}E = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(x, u; y, v) \times x^p y^r dx du dy dv
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^r \Gamma(x, x; y, y) dx dy.
$$

(6)

The WD moments μ_{pqrs} provide valuable tools for the
characterization of optical beams, see, for instance [21].
First-order moments yield the position of the beam (μ_{1000}
and μ_{0010}) and its direction (μ_{0100} and μ_{0001}). Second-order
moments give information about the spatial width of the
beam (the shape μ_{2000} and μ_{0200} of the spatial ellipse and
its orientation μ_{1010}) and the angular width in which the
beam is radiating (the shape μ_{2000} and μ_{0002} of the spatial-
frequency ellipse and its orientation μ_{0010}); moreover, they
provide information about its curvature (μ_{1100} and μ_{0011})
and its twist (μ_{1001} and μ_{0110}). Many important beam charac-
teristics, like the overall beam quality [12]

$$
(\mu_{2000}\mu_{0200} - \mu_{1010}^2) + (\mu_{0002}\mu_{0200} - \mu_{0011}^2)
+ 2(\mu_{1010}\mu_{0010} - \mu_{0110}\mu_{1001}),
$$

are based on second-order moments. Higher-order moments are
used, for instance, to characterize the beam’s symmetry and
its sharpness [21].

3 Separable first-order optical sys-
tems

It is well-known that the input-output relationship between
the WD $W_{in}(x, u; y, v)$ at the input plane and the WD
$W_{out}(x, u; y, v)$ at the output plane of a separable first-order
optical system reads [3–5]

$$
W_{out}(x, u; y, v) = W_{in}(dx - b_x u, -c_x x + a_x u;
\quad dy - b_y v, -c_y y + a_y v).
$$

(7)

The coefficients a_x, b_x, c_x, d_x and a_y, b_y, c_y, d_y are the
matrix entries of the symplectic ray transformation matrix [7]
that relates the position x, y and direction u, v of an optical
ray in the input and the output plane of the first-order optical
system:

$$
\begin{bmatrix}
 x_{out} \\
 y_{out} \\
 u_{out} \\
 v_{out}
\end{bmatrix} =
\begin{bmatrix}
 a_x & b_x & 0 & 0 \\
 0 & a_y & 0 & b_y \\
 c_x & 0 & d_x & 0 \\
 0 & c_y & 0 & d_y
\end{bmatrix}
\begin{bmatrix}
 x_{in} \\
 y_{in} \\
 u_{in} \\
 v_{in}
\end{bmatrix}.
$$

(8)

For separable systems, symplecticity reads simply $a_x d_x -
b_x c_x = 1$ and $a_y d_y - b_y c_y = 1$. Note that in a first-order optical
system, with such a symplectic ray transformation matrix,
the total energy E, see Eq. (4), is invariant.

As examples of first-order optical systems we mention in
particular

- a section of free space in the paraxial approximation,
or ‘parabolic’ system [22] (with $a = d = 1$, $c = 0$, and b proportional
to the propagation distance z),
- a fractional Fourier transform system [23], or ‘elliptic’
system [22] (with $a = d = \cos \alpha$ and $b = -c = \sin \alpha$), and
- a ‘hyperbolic’ system [22] (with $a = d = \cosh \alpha$ and
$b = c = \sinh \alpha$).

These three systems are characterized by one parameter. Other one-parameter first-order optical systems are
• a thin lens (with $a = d = 1$, $b = 0$, and c inverse proportional to the focal distance) and

• an ideal magnifier (with $a = m$, $d = 1/m$, $b = c = 0$).

The latter systems however – like all systems for which the input and output planes are conjugate planes – cannot be used to determine the moments, as we will see later, because they have the property $b = 0$.

The normalized moments μ_{out}^{pqrs} of the output WD $W_{out}(x, u; y, v)$ are related to the normalized moments $\mu_{in}^{pqrs} = \mu_{pqrs}$ of the input WD $W_{in}(x, u; y, v)$ as

$$
\mu_{pqrs}^{out} E = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_{in}(x, u; y, v) \times x^p y^q u^r v^s d x d u d y d v
$$

$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_{in}(d_x x - b_x u, -c_x x + a_x u; d_y y - b_y v, -c_y y + a_y v) x^p y^q u^r v^s d x d u d y d v
$$

$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_{in}(x, u; y, v) (a_x x + b_x u)^p (c_x x + a_x u)^q (c_y y + a_y v)^r (c_z z + a_z w)^s d x d u d y d v
$$

$$
= E \sum_{k=0}^{p} \sum_{l=0}^{q} \sum_{m=0}^{r} \left(\frac{p}{k} \right) \left(\frac{q}{l} \right) \left(\frac{r}{m} \right) a_x^{p-k} b_x^{k} c_x^{q-l} d_x^{l-m}
$$

and for the intensity moments in particular (i.e., $q = s = 0$) we have

$$
\mu_{p000}^{out} = \sum_{k=0}^{p} \sum_{m=0}^{r} \left(\frac{p}{k} \right) \left(\frac{r}{m} \right) a_x^{p-k} b_x^{k} d_x^{r-m}
$$

$$
\times \mu_{p-k,k,r-m,m}^{out}. \quad (10)
$$

The remainder of this paper is based on Eq. (10), in which the output intensity moments μ_{p000}^{out} are expressed in terms of the input moments μ_{pqrs} and the system parameters a_x, a_y, b_x, and b_y. Note that only the parameters a and b enter this equation; the parameters c and d can be chosen freely, as long as the simplicity condition $a_x d_x - b_x c_x = a_y d_y - b_y c_y = 1$ is satisfied.

4 Relations between input and output moments

4.1 First-order moments

For the first-order moments, the following two equations are relevant:

$$
\mu_{1000}^{out} = a_x \mu_{1000} + b_x \mu_{10000}, \quad (11)
$$

$$
\mu_{0100}^{out} = a_y \mu_{0100} + b_y \mu_{0001}, \quad (12)
$$

which equations correspond to Eq. (10) with $pqrs = 1000$ and $pqrs = 0010$, respectively, and the four input moments μ_{1000}, μ_{1000}, μ_{0100}, and μ_{0001} can be determined by measuring the intensity moments μ_{1000} and μ_{0010} in the output planes of two systems with different values of a and b, respectively.

In the case of a fractional Fourier transform system we can choose, for instance [24, 25], the fractional angles $\alpha_x = \alpha_y = 0$ (leading to $a_x = a_y = 1$ and $b_x = b_y = 0$) and $\alpha_x = \alpha_y = \frac{\pi}{2}$ (leading to $a_x = a_y = 0$ and $b_x = b_y = 1$), but any other choice could be made as well, as long as it leads to four independent equations. In the case of free space propagation, we simply choose two different values of the propagation distance z, corresponding to two different values of b_x and b_y (with $a_x = a_y = 1$, of course).

Note that the two first-order optical systems can always be chosen such that they are isotropic, $a_x = a_y = a_i$, $b_x = b_y = b_i$, etc. ($i = 1, 2$), with identical behaviour in the x and the y direction.

4.2 Second-order moments

For the $3+4+3=10$ second-order moments, the following equations are relevant:

$$
\mu_{2000}^{out} = a_x^2 \mu_{2000} + 2a_x b_x \mu_{1100} + b_x^2 \mu_{0200}, \quad (13)
$$

$$
\mu_{1010}^{out} = a_x a_y \mu_{1010} + a_x b_y \mu_{1001} + b_x a_y \mu_{1101} + b_x b_y \mu_{0101}, \quad (14)
$$

$$
\mu_{0200}^{out} = a_y^2 \mu_{0200} + 2a_y b_y \mu_{0101} + b_y^2 \mu_{0002}, \quad (15)
$$

which equations correspond to Eq. (10) with $pqrs = 2000$, $pqrs = 1010$, and $pqrs = 0020$, respectively.

The three input moments μ_{2000}, μ_{1100}, and μ_{0200} can be determined by measuring the intensity moment μ_{2000}^{out} in the output planes of three systems with different values of a_x and b_x, see Eq. (13). Likewise, with the transversal coordinate x replaced by y, the three input moments μ_{0020}, μ_{0110}, and μ_{0002} can be determined by measuring the intensity moment μ_{0200}^{out} in the output planes of three systems with different values of a_y and b_y, see Eq. (15). Note that we can choose $a_x = a_y = a_i$ and $b_x = b_y = b_i$ ($i = 1, 2, 3$) for these three systems, in which case we are obviously using isotropic systems.

The other four input moments μ_{1010}, μ_{1001}, μ_{1010}, and μ_{0101} follow from measuring the intensity moment μ_{1010}^{out} in the output planes of four different systems, see Eq. (14).

However, if we would use only isotropic systems, like we could do for Eqs. (13) and (15), Eq. (14) would reduce to

$$
\mu_{1010}^{out} = a_x^2 \mu_{1010} + a b (\mu_{1010} + \mu_{0110}) + b^2 \mu_{1010}
$$

and we can only determine the combination $\mu_{1001} + \mu_{0110}$. Hence, while three systems may be isotropic again – and, for instance, be identical to the ones that we used when we were dealing with Eqs. (13) and (15) – at least one system should be anamorphic.
We conclude that all ten second-order moments can be determined from the knowledge of the output intensities of four first-order optical systems, where one of them has to be anamorphic. In the case of fractional Fourier transform systems we could choose, for instance [24,25], the fractional angles $\alpha_x = \alpha_y = 0$ (leading to $ax = ay = bx = by = 0$), $\alpha_x = \alpha_y = \frac{\pi}{4}$ (leading to $ax = ay = bx = by = \frac{\sqrt{2}}{2}$), $\alpha_x = \alpha_y = \frac{3\pi}{4}$, and the anamorphic combination $\alpha_x = \frac{\pi}{2}$ and $\alpha_y = 0$ (leading to $ax = bx = 0$ and $ay = by = \frac{1}{2}$). If we decide to determine the moments using free space propagation, we should be aware of the fact that an anamorphic free space system cannot be realized by mere free space, but can only be simulated by using a proper arrangement of cylindrical lenses.

Of course, optical schemes to determine all ten second-order moments have been described before, see, for instance [8,9,11–13], but the way to determine these moments as presented in this paper is based on a general scheme that can also be used for the determination of arbitrary higher-order moments.

4.3 Higher-order moments

For higher-order moments we can proceed analogously. For the $4+6+6+4=20$ third-order moments, the following equations are relevant:

\[
\begin{align*}
\mu_{3000}^{\text{out}} &= a_x^3 \mu_{3000} + 3a_x^2b_x \mu_{2100} + 3a_x b_x^2 \mu_{1200} + b_x^3 \mu_{0300} \\
\mu_{2010}^{\text{out}} &= a_x^2 a_y \mu_{2010} + a_x^2 b_y \mu_{2001} + 2a_x b_x a_y \mu_{1110} + b_x^2 a_y \mu_{0210} + a_y^2 b_x \mu_{0201} \\
\mu_{1020}^{\text{out}} &= a_x a_y^2 \mu_{1020} + 2a_x a_y b_x \mu_{1011} + a_y b_x^2 \mu_{1002} + b_y^2 a_x \mu_{0102} + a_x a_y b_y \mu_{0111} \\
\mu_{0030}^{\text{out}} &= a_y^3 \mu_{0030} + 3a_y^2 b_y \mu_{0021} + 3a_y b_y^2 \mu_{0012} + b_y^3 \mu_{0003}.
\end{align*}
\]

(16)

(17)

(18)

(19)

Note again that these equations correspond to Eq. (10) with $pqrs = 3000$, $pqrs = 2010$, $pqrs = 1020$, and $pqrs = 0030$, respectively. The 20 third-order moments can be determined from the knowledge of the output intensities of six first-order optical systems, where two of them have to be anamorphic. Let us consider in more detail how the third-order moments could be determined.

- The four input moments μ_{3000}, μ_{2100}, μ_{1200}, and μ_{0300} can be determined by measuring the intensity moment $\mu_{3000}^{\text{out}}(i = 1, 2, 3, 4)$ in the output planes of four systems with different values of a_x and b_x, see Eq. (16). Likewise, with the transversal coordinate x replaced by y, the four input moments μ_{0030}, μ_{0021}, μ_{0012}, and μ_{0003} can be determined by measuring the intensity moment $\mu_{0030}^{\text{out}}(i = 1, 2, 3, 4)$ in the output planes of four systems with different values of a_y and b_y, see Eq. (19).

- Using the same four isotropic systems as above, the two input moments μ_{2010} and μ_{0201}, together with the two moment combinations $\mu_{2001} + 2\mu_{1110}$ and $2\mu_{1101} + \mu_{0210}$, follow from measuring the intensity moment $\mu_{2010}^{\text{out}}(i = 1, 2, 3, 4)$ in the output planes of these four systems, see Eq. (17), while the two input moments μ_{1020} and μ_{0120}, together with the two moment combinations $2\mu_{1011} + \mu_{0120}$ and $\mu_{1002} + 2\mu_{0111}$, follow from measuring the intensity moment $\mu_{1020}^{\text{out}}(i = 1, 2, 3, 4)$, see Eq. (18). This leads to the set of four equations:

\[
\begin{align*}
i a_x^3 \mu_{2010} + a_x^2 b_x (2\mu_{2001} + \mu_{0210}) + a_x b_x^2 \mu_{1020} + b_x^3 \mu_{0120} & = \mu_{2010}^{\text{out}}(i = 1, 2, 3, 4) \\
,i a_y^3 \mu_{1020} + a_y^2 b_y (2\mu_{1002} + \mu_{0111}) + a_y b_y^2 \mu_{0111} + b_y^3 \mu_{0102} & = \mu_{1020}^{\text{out}}(i = 1, 2, 3, 4)
\end{align*}
\]

(20)

(21)

based on Eqs. (17) and a similar set of four equations

- Twelve of the 20 input moments (together with four moment combinations) can thus be determined by using four isotropic systems. To determine the remaining eight moments, we need four more equations based on Eqs. (17) and (18), for which we have to use two
more systems (labeled $i = 5$ and $i = 6$), which should now be anamorphic. Among the many possibilities, an easy choice would be a system with $a_x = b_y = 0$, $b_x \neq 0$, $a_y \neq 0$, leading to

$$b_x^2 a_y \mu_{0210} = \mu_{2010.5}^\text{out},$$

and a system with $b_x = a_y = 0$, $a_x \neq 0$, $b_y \neq 0$, leading to

$$a_x^2 b_y \mu_{2001} = \mu_{2010.6}^\text{out},$$

$$a_x^2 b_y \mu_{1002} = \mu_{1020.6}^\text{out}.$$

The former system may be an anamorphic fractional Fourier transform system with fractional angles $a_x = \frac{\pi}{2}$ and $a_y = 0$ (and hence $a_x = b_y = 0$ and $b_x = a_y = 1$), while the latter may be an anamorphic fractional Fourier transform system with $a_x = 0$ and $a_y = \frac{\pi}{2}$ (and hence $b_x = a_y = 0$ and $b_y = a_x = 1$).

Altogether we have thus constructed 20 equations for the 20 third-order moments, using a total of six first-order systems (separable, but generally anamorphic ones), and we have derived the minimum number of such systems that are needed for the determination of these moments. The results followed directly from the general relationship (10) that expresses the intensity moments in the output plane of a separable first-order optical system in terms of the moments in the input plane and the system parameters a_x, b_x, c_x, d_x and a_y, b_y, c_y, d_y.

$$N_1 = \frac{1}{2}(n+1)(n+2)(n+3);$$

that N_t (the total number of first-order optical systems) is equal to the highest value that appears in the nth row of the triangle, $N_t = \frac{1}{2}(n+2)^2$ for $n = \text{even}$, and $N_t = \frac{1}{2}(n+3)(n+1)$ for $n = \text{odd}$; that the number of isotropic systems is $n + 1$; and that N_n (the number of anamorphic systems) follows from $N_n = N_t - (n + 1)$.

5 Conclusions

We have shown how all global WD moments of arbitrary order can be measured as intensity moments in the output planes of an appropriate number of first-order optical systems (separable, but generally anamorphic ones), and we have derived the minimum number of such systems that are needed for the determination of these moments. The results followed directly from the general relationship (10) that expresses the intensity moments in the output plane of a separable first-order optical system in terms of the moments in the input plane and the system parameters a_x, b_x, c_x, d_x and a_y, b_y, c_y, d_y.

References

