Four-domain twisted vertically aligned liquid crystal pixels using microrubbing

Citation for published version (APA):

DOI:
10.1063/1.1924896

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Four-domain twisted vertically aligned liquid crystal pixels using microrubbing

Soney Varghese, a) Gregory P. Crawford, and Cees W. M. Bastiaansen b)
Department of Polymer Technology, Faculty of Chemistry and Chemical Engineering, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Dick K. G. de Boer and Dirk J. Broer
Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands and Department of Polymer Technology, Faculty of Chemistry and Chemical Engineering, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands

(Received 28 January 2005; accepted 7 April 2005; published online 29 April 2005)

Microrubbing (μ-rubbing) technique is used to create four-domain twisted vertically aligned liquid crystal pixels for wide viewing angle displays. A metallic sphere of 1 mm diameter is used to locally rub a homeotropic polyimide surface to create a four-domain pixel. We use μ-rubbing to accurately control the surface pretilt angle of the liquid crystal from the normal, which directs the liquid crystal molecules to respective direction on applying a voltage. We report on twisted vertically aligned configurations with symmetric isointensity curves, high contrast, and attractive electro-optic performance. The optical simulations of the liquid crystal director orientation, viewing angle characteristics and switching behavior of the four-domain are also presented.

Patterning surfaces to align liquid crystals has important implications in many industries, including applications for displays,1 telecommunication devices,2 and security elements.3 There are several approaches in which one can prepare patterned surfaces for liquid crystal alignment, including photolithographic techniques,4 photoalignment using lithographic masks5 or holographic methods,6 selected deposition of SiO2,7 nano-scratching of polyimide,8 laser manipulation of azo-dye doped polyimides,9 etc. The most ubiquitous application of patterned alignment is found in the liquid crystal display (LCD) industry, where patterning is performed on the subpixel level in order to average out the strong optical anisotropy introduced by the liquid crystal orientation.10,11,12

With the commercial arrival of liquid crystal television on the near horizon, there is a compelling need for subpixel patterning techniques that can be performed on large area displays in a simple and inexpensive way. Currently used techniques to fabricate wide viewing angle vertical alignment displays13 include four-domain alignment based on ridges applied underneath the alignment layer,14 fringe field structure,15 vacuum deposition techniques,16 photolithographic techniques, etc. These techniques are process intensive and are therefore more expensive to implement on large area displays. In this contribution we demonstrate how a microrubbing (μ-rubbing) technique can be used in conjugation with homeotropic polyimide alignments layers to create high contrast and symmetric viewing twisted vertically aligned display.

The experimental setup used for the μ-rubbing process is depicted in Fig. 1(a). A metallic sphere of 1 mm diameter under a 150 g load comes in physical contact with a polyimide alignment layer (150 nm thickness), which supports homeotropic boundary conditions. The polyimide is rubbed with the metallic sphere as the substrate is moved by a translation stage at a velocity of 10 mm/min. This creates a ∼45 μm line, of which the exact width depends on the load applied, the thickness of the polyimide layer and the diameter of the metallic sphere. The sphere is then translated by 45 μm, and then the substrate is counter rubbed creating an adjacent line with an opposing rubbing direction. This is repeated several times on each substrate.

Glass fiber spacers (5 μm) are then deposited on the substrates, and the substrates are subsequently secured together with UV curable glue at the edges. The rub directions on the top and bottom surfaces are oriented in orthogonal directions. With this particular polyimide, the μ-rubbing creates a small but well-defined unidirectional tilt angle away from the substrate normal \vec{N} as illustrated in Fig. 1(a). We anticipate that the μ-rubbing introduces a small tilt of the aliphatic chains that are present in the polyimide for promoting homeotropic anchoring in the unrubbed normal state. The single line width is found to be 45 μm with a depth range of 5–15 nm. The average surface roughness of the μ-rubbed area is found to be 8±2 nm as determined by atomic force microscopy.

The liquid crystal material which possesses a negative dielectric anisotropy ($\Delta \varepsilon$=−3.1) was filled in the cell by capillary action at 100 °C. The crystal rotation method17 was used for the surface pretilt angle measurement, antiparallel cell with 18 μm cell gap were constructed by recording parallel with same rubbing directions touching each other, and the pretit is measured to be 1° off the surface normal \vec{N}.

Figure 1(b) illustrates the schematic of the four-domain in the OFF (zero-voltage) and ON (high voltage) states. In the zero-voltage state a homeotropic state is obtained with a small but well-defined unidirectional tilt angle. When a high voltage is applied the molecules align perpendicular to the electric field direction since the material possesses a $-\Delta \varepsilon$. Since the pretilt angle of the four regions of a pixel is uniquely defined by the μ-rubbing process, the four mid-
plane tilt angles are pointing in different directions. In the OFF state the sample is perfectly black since the domain boundaries are not visible in this state.

Figures 2 show the optical microscopy pictures and corresponding isointensity curves of the twisted vertically aligned cell, measured under different voltages, for the specific polarization and rub directions depicted in Fig. 1(b). The symmetric nature of the isointensity curve is visible in the ON state clearly showing the attractiveness of this configuration for wide viewing angle applications. The optical simulation of the viewing angle characteristics of the four-domain twisted vertically aligned cell is calculated using extended Jones matrix method. The experimental results are comparable with the simulation results as shown in Fig. 2.

The subpixel size is approximately $45 \times 45 \, \mu m^2$ and the domain boundaries are black. In this pixel, two right-handed and two left-handed subpixels exist. A common problem of all vertically aligned displays, independent of mode, is that there is significant light leakage in the zero voltage state at larger angles due to the polarizers. Our pixels are no exception to this limitation as can be seen in Fig. 2 (top image). However, a simple c-plate compensation can be used to minimize the light leakage and improve the viewing volume in the zero voltage state.

Figure 3 shows the experimental and simulated transmission-voltage ($T-V$) curve of twisted vertically aligned four-domain pixel. A traditional $T-V$ curve is obtained with no on-axis light leakage in the OFF state, there-
in opposite directions. In an applied field this results in the formation of a disclination line in which the director rotates over 180°, giving rise to dark regions in the transmission as shown on the top part of the figure, which are comparable with our experimental observations in Fig. 2.

In conclusion we propose a μ-rubbing process for the construction of a multidomain twisted vertically aligned display. This configuration shows a highly symmetrical viewing volume and extremely high contrast. Optical simulations indicate that the viewing angle and switching behavior are almost identical to that of the experimental results. We believe that our technique will be useful for the industrial manufacturing of full color display based on twisted vertically aligned mode. In practical display manufacturing processes many-balls (comlike) can be utilized. This technique is simple and economical as compared to lithographic techniques currently used for multidomain vertical alignment. We also believe that our μ-rubbing process can be potentially scaled up and used in the production of large area displays in future.

Funding of this project was provided by Netherlands University Federation for International Collaboration (Nufic), S.V. would like to thank Dr. Sunil K. Narayankutty, Cochin University of Science and Technology, India, Dr. Hugo Cornelissen, Mark Hage, Philips Research, The Netherlands, and Chris van Heesch, Pit Teunissen, Peter Minten (GTD), Eindhoven University of Technology, for their support.

23. 2dimMOS, www.autronic-melchers.com