All fiber-optic neural network using coupled SOA based ring lasers

Published in:
IEEE Transactions on Neural Networks

DOI:
10.1109/TNN.2002.804222

Published: 01/01/2002

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
All Fiber-Optic Neural Network Using Coupled SOA Based Ring Lasers

Martin T. Hill, Associate Member, IEEE, Edward E. E. Frietman, Senior Member, IEEE, Huig de Waardt, Giok-djan Khoe, Fellow, IEEE, and H. J. S. Dorren

Abstract—An all-optical neural network is presented that is based on coupled lasers. Each laser in the network lases at a distinct wavelength, representing one neuron. The network status is determined by the wavelength of the network’s light output. Inputs to the network are in the optical power domain. The nonlinear threshold function required for neural-network operation is achieved optically by interaction between the lasers. The behavior of the coupled lasers is explained by a simple laser model developed in the paper. In particular, the winner take all (WTA) neural-network behavior of a system of many lasers is described. An experimental system is implemented using single mode fiber optic components at wavelengths near 1550 nm. A number of functions are implemented to demonstrate the practicality of the new network. The neural network is particularly robust against input wavelength variations.

Index Terms—Optical computing, optical fibers, optical neural networks, semiconductor lasers.

I. INTRODUCTION

An area that has been significantly advanced by the use of optical technology is that of telecommunications. Significant research effort is being focused on directly processing the transmitted optical information in optics, rather than requiring optical to electrical conversion and electronic processing. All-optical processing may provide many benefits such as flexibility in data rates and high speed. In particular, neural-network techniques have already been applied to the tasks of routing in telecommunication networks [1], [2]. In the future, these routing tasks could be performed completely in the optical domain [3]. Another application of interest is optical processing of data packets in packet switched optical networks.

An optical neural network that is for use in optical telecommunication systems must be compatible with the wavelengths used in telecommunications. Furthermore, it must be very robust and reliable to meet the strict bit error rate requirements, and operate at high speed.

In the past, the implementation of neural-network concepts in optics has been investigated by a number of researchers. Most research has focused on exploiting the benefits of optical interconnection between neurons via free space optics. The actual nonlinear threshold function needed for neural operation, however, is typically realized in the electronic domain [4]–[6].

There have been some attempts at obtaining fully optical neural networks using resonators and laser oscillators [7], [8]. These networks employed resonators based on photo-refractive materials and exploited gain competition between the transverse modes of the resonators.

In [9]–[11], a winner take all (WTA) neural network was demonstrated which was based on gain competition between longitudinal modes of laser diode. Each longitudinal mode had a different wavelength and the laser cavity mirror reflectivity for each mode was controlled. Here, the threshold function was in the optical domain. However, the inputs to the neural network were implemented in the optical transmission domain by inserting a liquid crystal display (LCD) in the laser feedback path. The LCD was controlled electronically. An attempt to extend this laser neural-network (LNN) concept to a system with inputs in the optical power domain was described in [12]. However, the system relied on injection locking in laser diodes, which is highly sensitive to frequency shifts between lasers. Hence, the concept was not robust enough experimentally to demonstrate any significant functions.

In this paper, systems of coupled lasers are studied. It is shown that these systems can form an optical neural network which has an optical thresholding functions, and the network inputs are in the optical power domain. Each neuron in the network is represented by a distinct wavelength. The network status being determined by the wavelength of light output λ_i, similar to the LNN in [9]. However, the system described here is not based on gain competition between lasing modes in a shared gain medium.

In particular, coupled ring lasers are considered. The ring lasers are implemented in single mode fiber-optic components at wavelengths near 1550 nm, which is compatible with telecommunication systems. Furthermore, the system could potentially be integrated in an all-optical circuit, reducing the laser cavity round trip time and thereby satisfying the high-speed requirements.

The rest of this paper is organized as follows.

In Section II, a simplified model for a ring laser with external light injection is introduced. How two such lasers when coupled can produce an optical thresholding function is then explained. The number of lasers in the system is then increased, and it is shown that the system can function as a WTA neural network. The structure of the neural network and how weights can be implemented is also described.
In Section III, a neural network, as described in Section II, of four neurons and implemented with fiber-optic components is presented. A learning algorithm is used to calculate the weights necessary to implement a number of multibit functions, including the exclusive OR (XOR) function, and the winner-take-all (WTA) function. Experimental results from the neural network using the calculated weights are given.

In Sections IV and V the potential of the neural network presented here is discussed and conclusions given.

II. PRINCIPLES OF OPERATION

A. Model for a Semiconductor Ring Laser With Light Injection

A simple ring laser implemented with single mode fiber-optic components is shown in Fig. 1. The semiconductor optical amplifier (SOA) [13] acts as the laser gain medium and provides optical amplification of light traveling through it. The optical isolator allows light to travel in only one direction around the ring, thus ensuring lasing in only one direction. The wavelength filter ensures lasing at only one wavelength. The lasing wavelength is specified by the peak in the filter transmission spectrum. The coupler allows light to be coupled in and out of the ring laser.

First, we consider the operation of the solitary laser, that is, with the injected input power \(P_{in} = 0 \). For lasing to occur, the SOA must supply sufficient amplification or gain \(G \), such that any losses incurred transmitting light from the SOA output back to the input are compensated for. The proportion of light transmitted from the SOA output around the loop to the SOA input is denoted by the transmittance around the loop \(T \). \(T \) includes the transmittance of the isolator \(T_{iso} \), the filter \(T_f \), the coupler \(T_c \), and losses due to component interconnections \(T_{com} \).

\[
T = T_{iso}T_fT_cT_{com}. \tag{1}
\]

The relation between power into the SOA \(P_s \) and power out of the SOA at the lasing wavelength \(P_{out} \) is

\[
P_s = TP_{out}. \tag{2}
\]

As mentioned above, \(G \) must compensate for any losses in the loop for laser oscillation to occur [14], [15]. Once lasing occurs, \(G \) is then fixed at this specific threshold gain \(G_{th} \).

\[
G_{th} = 1/T. \tag{3}
\]

For laser oscillation, the lasing wavelength must also satisfy the requirement that an integer number of wavelengths equals the optical length around the ring [14], [15]. The spacing \(\Delta \lambda \) between adjacent wavelengths which satisfy this condition can be found to be

\[
\Delta \lambda = \lambda^2/n_gL_c. \tag{4}
\]

where \(L_c \) is the ring length, \(n_g \) the refractive index in the ring, and \(\lambda \) the wavelength at which lasing occurs. In our experiments, \(L_c \) is of the order of 10 m, resulting in a very small \(\Delta \lambda \). The interference filters we use have a bandwidth much larger than \(\Delta \lambda \), because they are much smaller than \(L_c \), and the minimum bandwidth they can achieve is related to their length. Thus, it is assumed that there is always a wavelength in the filter pass-band which satisfies the ring optical length wavelength requirement. Hence, this condition on wavelength is not considered further in this paper. Furthermore, it is assumed that lasing only occurs at only one wavelength in the band-pass filter, which satisfies the optical length condition mentioned above.

A neural network integrated on an optical integrated circuit may be of the same order as the filter length. In this case, the choice of appropriate filter bandwidth in the optical integrated circuit design may be important [18].

Now, consider when external light via the coupler is also injected into the SOA

\[
P_s = P_{in} + TP_{out}. \tag{5}
\]

Note that \(P_{in} \) is the externally injected light power arriving at the SOA input after passing the coupler (see Fig. 1). Furthermore, the wavelength of \(P_{in} \) is not at the lasing wavelength of the laser and it only passes through the SOA once, as it is blocked from making a trip around the ring by the filter. However, the wavelength of \(P_{in} \) should be sufficiently close to that of the laser, so that there is not a significant difference in SOA gain between the two wavelengths [16].

In the Appendix, it is shown that given fixed operating conditions for the SOA, such as fixed injection current \(I \), SOA parameters, and a fixed gain \(G_{th} \), then \(P_s \) is also fixed at a unique value. This value is denoted here \(TP_{out} \), where \(TP_{out} \) is the value of \(P_{out} \) when \(P_{in} = 0 \), and it has been assumed that \(I \) is sufficiently high so that \(G \) can reach \(G_{th} \). Increasing \(P_s \) above \(TP_{out} \) will cause \(G \) to decrease, and lasing will no longer occur as \(G < G_{th} \). Thus \(TP_{out} \) (which is power at the lasing wavelength) will fall to zero.

Having \(P_s \) pegged at a unique value while maintaining sufficient gain for lasing, implies through (5) that \(TP_{out} \) as a function of \(P_{in} \) is initially a straight line. The equation of the line can be found from (5) to be

\[
TP_{out} = P_{in}/T. \tag{6}
\]

After \(TP_{out} \) reaches zero, which occurs when \(P_{in} = TP_{out}T \), it remains at zero when \(P_{in} \) is increased further. This nonlinear optical behavior of the laser is shown in Fig. 2.

Qualitatively, the behavior shown in Fig. 2 can be explained as follows: The external photons are amplified in the SOA exactly as the photons at the lasing wavelength fed back from the SOA output. The external photons share the supply of carriers [13] used for amplification with the lasing wavelength photons. The carriers are created by the constant SOA injection current \(I \). When the number of external photons is small, \(G \) remains at \(G_{th} \) and lasing occurs. However, each external photon takes the place...
of a photon at the lasing wavelength, and so P_{out} decreases linearly as a function of P_{in}. When the number of external photons is large G can no longer remain at G_{th}, and is reduced, causing lasing to cease and P_{out} to fall to zero. Lasing does not occur at the wavelength of P_{in}, because the filter blocks this wavelength.

The laser model just described is quite simple and does not include the effects of spontaneous emission in the gain medium [14]. Furthermore, only the steady-state characteristics of the laser are modeled. However, the model is sufficient to describe the steady-state behavior of the neural network presented here.

B. Behavior of Two Coupled Ring Lasers

The architecture of the neural network that is considered in this paper is shown in Fig. 3 (see [17] for a discussion of neural-network architectures). The neurons (indicated by circles) are interconnected by inhibitory connections, shown by the dotted curved lines. Inputs are connected to each of the neurons by unidirectional weighted synaptic connections. The weighted synaptic connections will be discussed in Section II-C.

Fig. 4 shows the realization of the neurons and the associated inhibitory interconnections mentioned above. The set of N neurons consists of N coupled ring lasers. The PHASAR [18] (also called arrayed waveguide gratings) is an integrated optics device which provides N optical filters and additionally multiplexes the N outputs of the filters into a single output. Each filter in the PHASAR passes a different wavelength; thus, each ring laser lases at a different wavelength, denoted λ_i, corresponding to input i of the PHASAR.

The polarization controllers (PCs) in each ring laser are used to control the polarization of the light flowing back to the input of the associated SOA. The gain through the SOAs is somewhat dependent on the polarization of the input light. For each SOA in each ring laser, the polarization controllers are adjusted so that light fed back to the SOA has the polarization necessary for maximum gain.

In this section, the behavior of two coupled ring lasers is examined. The two coupled lasers are shown in Fig. 4 (with N set to two). The system of two lasers can be characterized by the following parameters:

- the power at the lasing wavelength out of the ith SOA, with no external input power and no coupling between the two lasers P_{out}^i, $i = 1, 2$;
- the transmittance from the output of the ith SOA back to the input of the ith SOA T_{ii};
- the transmittance from the output of the jth SOA to the input of the jth SOA T_{ij}, $j = 3 - i$.

Note that in subsequent sections, the various optical powers will appear with a subscript indicating the laser or SOA with which they are associated.

Consider for the moment that the external inputs P_{in}^i are set to zero. The SOA injection currents are set unequal to provide asymmetry in the P_{out}^i such that $P_{\text{out}}^1T_{11} > P_{\text{out}}^2T_{21}$ and $P_{\text{out}}^1T_{12} < P_{\text{out}}^2T_{22}$. The model of Fig. 2 predicts that laser 1 will lase under these conditions.

Furthermore, with $P_{\text{out}}^1T_{12} > P_{\text{out}}^2T_{22}$, laser 2 will be extinguished by the light from laser 1, because laser 1 light is also input into SOA 2. Laser 2 will output no light and have no effect on laser 1, and the system will output only light at wavelength λ_1.

As the external input P_{in}^1 is increased, P_{out}^1 is decreased until the light from laser 1 is insufficient to suppress laser 2. With P_{in}^1 being increased further, there may be some transition region with both lasers lasing. Finally when P_{in}^1 is high enough, the light from laser 2 is sufficient to suppress lasing in laser 1, and only laser 2 lases. If P_{in}^1 is now reduced back to zero, the
system returns to the initial state of laser 1 lasing, and laser 2 suppressed.

In this section, the precise behavior of the system as P_1^{in} is increased is examined. It is assumed that the SOA injection currents are set unequal to provide asymmetry in the T_{ij} mentioned above, causing laser 1 to be the dominant laser whenever $P_1^{in} = 0$. In particular, the nature of the transition from laser 1 to laser 2 lasing depends on the relationship between T_{ii} and T_{ij}.

Three cases are considered.

1) $T_{ii} = T_{ij}$. Transmittance from SOA i output back to its own input is the same as that to SOA j.

2) $T_{ii} > T_{ij}$. Transmittance from SOA i output back to its own input is greater than that to SOA j.

3) $T_{ii} < T_{ij}$. Transmittance from SOA i output back to its own input is less than that to SOA j.

Case A—$T_{ii} = T_{ij}$: Initially, for small P_1^{in}, P_2^{out} is sufficiently large such that $T_{11}^{out} > T_{22}^{out}$, and hence, lasing in laser 2 is suppressed due to the light fed from the output of laser 1 into SOA 2. As P_1^{in} increases P_1^{out} decreases with slope $1/T_{11}$, and eventually, $P_2^{out} < T_{22}^{out}$. Thus, laser 1 is suppressed by laser 2 lasing, and P_1^{out} drops immediately to zero, as $T_{12} = T_{11}$ and $T_{22} = T_{21}$. The transition between laser 1 and laser 2 lasing is infinitely small because $T_{ii} = T_{ij}$. This behavior is summarized in Fig. 5(a).

Case B—$T_{ii} > T_{ij}$: Again, for small P_1^{in}, P_2^{out} is sufficiently large such that $T_{11}^{out} > T_{22}^{out}$ and, hence, lasing in laser 2 is suppressed. As P_1^{in} is increased, P_1^{out} becomes less than T_{22}^{out}, and laser 2 can lase. However, initially the light from laser 2 is not sufficient to suppress laser 1 and both lase at the same time. The actual values of P_1^{out} and P_2^{out} in this transition region can be found easily by solving the following coupled linear equations:

$$P_1^{out} = (P_1^{out} - T_{11}^{out}/T_{11}) - (T_{21}/T_{11})P_2^{out}$$

$$P_2^{out} = (P_2^{out} - T_{12}/T_{22})P_1^{out}.$$

The solution to these equations are

$$P_1^{out} = \frac{(P_2^{out} - P_1^{out}/T_{11}) - (T_{21}/T_{11})P_2^{out}}{1 - (T_{12}/T_{11})(T_{21}/T_{22})}$$

$$P_2^{out} = \frac{P_2^{out} - (T_{12}/T_{22})(P_1^{out} - P_1^{out}/T_{11})}{1 - (T_{12}/T_{11})(T_{21}/T_{22})}.$$

When P_1^{in} is further increased such that $P_1^{out}/T_{11} > (P_1^{out} - P_1^{out}/T_{11})T_{11}$, then laser 1 is completely suppressed, and laser 2 lases with output power P_2^{out}. The behavior for this case is summarized in Fig. 5(b).

Case C—$T_{ii} < T_{ij}$: Initially, laser 1 lases. As P_1^{in} is increased, P_2^{out} decreases linearly, until $P_2^{out} < T_{22}^{out}$. At this point, laser 2 starts to lase. In fact, P_2^{out} rapidly builds up to P_2^{out} and suppresses lasing in laser 1 because $T_{22} < T_{12}$. An explanation for this rapid change can be found in [20]. To return to laser 1, lasing P_1^{in} must be decreased such that $(P_1^{out} - P_1^{out}/T_{11})T_{11} > P_2^{out}$. T_{12}, which is a smaller value of P_1^{in} than initially required for laser 2 to switch on. Thus, in contrast to case A and B, there is a certain amount of hysteresis in the transition from laser 1 to laser 2 lasing. Again, the behavior for this case is summarized in Fig. 5(c).

In general, neural networks contain a nonlinear function called a threshold or sigmoid function. These functions are generally monotonically increasing functions but can also include step like functions or step functions with hysteresis in the transition region. From Fig. 5, it can be seen that the system of two coupled lasers can provide a useful sigmoid or thresholding function in the optical domain. The system can be considered as an optical neuron with wavelength λ_2 as the neuron output.

A neuron input is called an excitatory input if an increase in the input causes an increase in the neuron output. Similarly, an input is inhibitory if an increase in the input causes a decrease in the output. Increases in P_1^{in} cause P_2^{out} to increase. Clearly,
P_{1i}^{in} acts as an excitatory input to neuron #2 which outputs light at wavelength λ_1. The input P_{21}^{in} to laser 2 can also be employed. External light input to SOA 2 will cause P_{22}^{opt} to decrease, and so the points where transitions occur as shown in Fig. 5 will be shifted to the right. Thus, P_{21}^{in} can be considered an inhibitory input to neuron #2.

Additionally, the position of the optical transition in the threshold function is controlled by the choice of initial laser powers P_{11}^{opt} and P_{22}^{opt}. These initial powers can be easily changed via the SOA injection currents.

C. N Coupled Ring Lasers to Form a WTA Network

In this section, the system of two coupled lasers is extended to N coupled lasers. However, only the case where $T_{ii}^1 = T_{ij}^j$ is considered. This choice of laser coupling is particularly simple to implement. As shown in Fig. 4, a one to N splitter is all that is required to evenly distribute the output of one laser to its input and the inputs of all other lasers. Furthermore, the system forms a WTA neural network, in which only one laser can be lasing for a given set of inputs.

It is, of course, possible to form other sorts of networks besides WTA using a set of N coupled ring lasers. For example, each laser may only be coupled to nearby lasers. However, these networks are more complex to analyze, as multiple lasers may be lasing. Furthermore, there may be hysteresis in the system, even if $T_{ii}^1 > T_{ij}^j$.

The neural network is required to produce an output based on the optical power in K inputs X_k, where $X_k, k \in 1, 2, \ldots, K$. K gives the numerical value of the optical power in the kth input. As shown in Fig. 3, each of the K inputs are connected via a weighted synaptic connection to each of the inputs of the N neurons. The weight values are denoted $W_{i,j,k}$ with the k and i subscripts representing the input and laser/neuron number, respectively. That is each laser input P_{in}^{i} is given by the following:

$$P_{in}^{i} = \sum_{k=1}^{K} W_{i,j,k} X_k. \quad (11)$$

Fig. 6 shows a single mode fiber optic implementation of the weighted synaptic input connections for $N = 4$ and $K = 2$. The implementation requires only “1 to N” and “1 to K” splitters and variable attenuators. The variable attenuators can be adjusted to give the desired $W_{i,j,k}$. An alternative implementation could employ free space optics to construct a free-space optical matrix vector multiplier [19].

Using the input connection scheme described above, the maximum output for the jth laser given a particular set of inputs and assuming all other lasers are off is

$$P_{i}^{opt} = P_{i}^{in} T_{ii}^i. \quad (12)$$

In Section II-B, it was explained that for a system of two lasers, the laser with maximum $P_{i}^{opt} T_{ii}^i$ will suppress lasing in the other laser. A similar argument holds for the system of N lasers, since the output of one laser effects all lasers equally. The laser which ends up lasing and suppresses lasing in all the other lasers will have the highest value of (13) of all the lasers, furthermore, its output power will be given by (12)

$$P_{i}^{opt} = P_{i}^{in} T_{ii}^i T_{ii}^i. \quad (13)$$

III. EXPERIMENT

A number of experiments were performed to verify the concepts developed in Section II and demonstrate that a small WTA optical neural network could be easily made. The experiments used standard single-mode fiber-optic components, operating at wavelengths near 1550 nm.

The SOAs were supplied packaged and with fiber pigtails attached. The SOAs employed a strained bulk active region and were manufactured by JDS-Uniphase. The SOA residual facet reflectivities were less than 10$^{-4}$ and sufficiently small so that they could be ignored. Furthermore, the maximum gain required of the SOAs in the experiments was low: less than 20 (13 dB). Hence, amplified spontaneous emission was only a small fraction of the SOA output power when they operated in the lasers. Therefore, the assumptions used in the Appendix to derive the simplified laser model used in Section II were satisfied.

A. Two Coupled Ring Lasers

For most of the experiments the setup of Fig. 4 was employed (with $N = 4$). To demonstrate the thresholding function of two lasers with approximately $T_{ii}^i = T_{jj}^j$, the setup of Fig. 4 was employed, but with only lasers 1 and 2 switched on. The SOA injection currents were set asymmetrically to give $P_{11}^{opt} T_{11}^i > P_{22}^{opt} T_{22}^j$ and thus make laser 1 dominant whenever $P_{11}^{in} = 0$, as described in Section II-B. The injection currents for SOA 1 and 2 were 132 and 150 mA, respectively, and with

Note that the weights $W_{i,j,k}$ defined above are actually negative weights, as they inhibit the lasing action in the laser/neuron with which they are associated. Obtaining simultaneously both positive and negative weights is a common issue in optical neural networks [21]–[23]. To enhance a particular laser and achieve a positive weight in the network presented here, the negative weights to the other lasers can be increased. Furthermore, the use of different P_{i}^{opt} acts effectively as an extra bias input, ensuring the correct laser lases when for example all the inputs are zero. A bias input in optical WTA networks was employed successfully in [9]. In the particular network reported here, the bias input is implemented very efficiently as the P_{i}^{opt} can be changed by simply varying the injected current I for each SOA.
these currents $P_{1\text{out}}^{\text{ref}} = 161\text{ mW}$, and $P_{2\text{out}}^{\text{ref}} = 0.73\text{ mW}$. Note that the precise relation between $P_{1\text{out}}^{\text{ref}}$ and the current of the specific SOA depends on the specific SOA characteristics, lasing wavelength, and losses around the ring.

External light of 1550.92 nm wavelength was injected into laser 1 via the coupler at the input of SOA 1. The injected light power $P_{1\text{in}}^{\text{ref}}$ was varied from 0 to 0.32 mW. The values of $P_{1\text{out}}^{\text{ref}}$ and $P_{2\text{out}}^{\text{ref}}$ as a function of the injected light power are shown in Fig. 7.

As can be seen, a threshold function is achieved. However, the transition between laser 1 lasing and laser 2 lasing is not infinitely small as mentioned in Section II. The finite transition region is primarily due to the dependence of gain through the SOA on the polarization of the input light [24]. The polarization dependence means the gain seen by light injected into the laser is less than that seen by the light at the lasing wavelength. The polarization controller was used to obtain the maximum SOA gain for the light at the lasing wavelength and not for injected light from other sources. Furthermore, the addition of spontaneous emission further increases the transition region and causes rounding in the corners of the $P_{1\text{out}}^{\text{ref}}$ and $P_{2\text{out}}^{\text{ref}}$ plots.

To obtain a smaller transition between the laser 1 and laser 2 lasing, the polarization of light in the system needs to be well controlled. This control could be obtained via the use of polarization maintaining optical fibers. Alternatively, SOAs whose gain has very low polarization dependence could be used.

A second experiment was performed, with a setup similar to the one used above, to demonstrate that a threshold function with hysteresis can also be achieved. To achieve $T_{i<j} < T_{i>j}$, the PHASAR was replaced by a discrete Fabry–Perot filter in each ring laser. Furthermore, the one to four splitter was replaced by a fiber coupler with an unequal splitting ratio (60/40) for the two arms. The arm which carried the higher optical power out of SOA 1 was directed to the input of SOA 2. Similarly, the arm with higher optical power from SOA 2 was directed to SOA 1. In this manner, a $T_{i<j} < T_{i>j}$ was achieved.

The injection currents for SOA 1 and 2 were 125 mA and 120 mA, respectively. With these currents, $P_{1\text{ck}}^{\text{ref}} = 3.5\text{ mW}$ and $P_{2\text{ck}}^{\text{ref}} = 2.1\text{ mW}$, which made laser 1 dominant when $P_{1\text{in}}^{\text{ref}} = 0$.

Again, a varying amount of light was injected into SOA 1. The resulting threshold function is shown in Fig. 8. The hysteresis in the transition can be clearly seen.

B. Network of Four Coupled Ring Lasers

A network of four coupled ring lasers, as shown in Fig. 4, was constructed, along with a fiber optic network to implement the weighted synaptic connections (as shown in Fig. 6) for two optical inputs. Note that the PHASAR employed provided eight filters. The four filters with the lowest transmission loss were selected for use. With the four selected filters, the lasing wavelengths of lasers 1, 2, 3, and 4 were 1515, 1516.6, 1518.1, and 1521.3 nm, respectively.

The input weights were programmed to perform two functions of two binary optical inputs. First, a function to select the laser corresponding to the 2-bit binary input, the WTA function [9]. Second, the XOR function of the 2-bit binary input was performed. Note that a binary 1 represents an optical power of 20 mW at the input, while a binary 0 represents 0 mW.

The weights $W_{i,k}$ were calculated by a computer program using a stochastic learning algorithm identical to the one presented in [10]. The program implemented a model of the real network which used values of T_{ij} obtained from measurements of the setup. The program modeled the way the real network operated, as described in Section II-C.

Note that the learning algorithm calculated weights for a third binary input also. This third input was always set to one, and acted as a bias input. As explained in Section II-C, this bias input is necessary to achieve correct network operation. Once the weights for the bias input were found, they were translated into the corresponding $P_{i\text{out}}^{\text{ref}}$ and finally into an appropriate injection current for the SOA.

When the weights $W_{i,k}$ were obtained from the program, the $P_{i\text{out}}^{\text{ref}}$ could be calculated from (11) for the various inputs. The attenuators in the input synaptic connection network were man-
Fig. 9. Results of WTA experiment. Which laser lases is selected by the binary value of the two optical inputs. The inputs are in the optical power domain. A binary 1 represents 20 mW of optical power at the input, and a binary 0 represents 0 mW. Note the vertical scale is a logarithmic scale, and so, there is very high contrast between when a laser is on or off.

Fig. 10. Results of XOR experiment. Laser 2 performs the XOR function for the two binary inputs. Coincidentally, laser 1 is the NOR, and laser 3 is the AND function of the two inputs. Note that the results for the two input vectors 01 and 10 are plotted together on the middle graph and that the vertical scale is a logarithmic scale.

C. Recognition of 4-Bit Address

A target application of the network is in all optical processing of data packets in optical telecommunication systems. In these systems, the addresses of packets need to be recognized and routed to appropriate outputs [11]. Current demonstrations of all-optical address recognition have address lengths of approximately four bits [28]. Even if the address is larger, only a limited number of special patterns can be used [29], [30]. Furthermore, the current methods do not provide very high contrast in the output decisions. Typically, electronic thresholding is used after the address processor to clearly distinguish between patterns.

To demonstrate the ability of the network presented here to perform address recognition, a network as described above, but with only two lasers and four inputs, was trained to recognize the address 1010. The same methods that were used to obtain and set the input weights for the 2-bit input experiments described above were used for the 4-bit experiment.

In particular, laser 2 and 4 out of the four lasers were employed. Also the implementation of the input synaptic connections was similar to that shown in Fig. 6. However, now the four binary inputs entered on the right-hand side of Fig. 6 and the two connections to the laser were from the left-hand side.

The results of applying the 16 possible input vectors are shown in Fig. 11. As can be seen, only the input 1010 vector causes laser 2 to lase; for all other inputs, laser 4 lases. Furthermore, the contrast ratio in light output between when a laser is lasing or not is over 100:1, which is high.

IV. DISCUSSION

Previous optical neural networks [10], [11], have suffered reliability problems due to the mechanical stability of the free space optics setup used to implement them. Environmental changes such as vibrations or temperature changes can have significant effects. The use of fiber optics avoids the free space optics alignment stability problems. The neural network described here operated correctly over a time span of many days, where ambient temperature changes of several degrees Celsius occurred.
To demonstrate the ability of this particular network to perform some moderately complex logic functions [11].

For large WTA networks, the amount of feedback to each laser must be known. Also, how inputs affect each laser will differ due to wavelength and polarization dependence of gain [16], [24]. Thus, larger more complex networks will probably require that the learning procedure is performed with feedback from the actual network. On-line learning will require some way to electrically control the input weights.

In operational telecommunication systems, the address length can be quite long, for example, internet protocol (IP) has 32-bit addresses and a 160-bit packet header. Distinguishing between two long addresses which differ by only one bit is not easy in one WTA neural network, as the threshold function presented here may not be sharp, nor the position of the transition well defined. However, it would be possible to recognize large addresses using a number of smaller connected neural networks.

The neural network presented here provides a way to implement complex logic functions in optics with high output contrast. The neural-network technique allows for programmability (particularly important for address recognition) and also allows compensation for the deviations in the laser device and interconnection specifications that often occur in manufacture.

One final consideration is the size of the neural network that may be implemented due to the filter wavelength spacing and finite SOA bandwidth. The spacing between the PHASAR filter wavelengths can be controlled in the PHASAR design [18]. For our experiment, the spacing was 1.6 nm. The SOAs employed had considerable gain over a bandwidth of more than 100 nm. Thus, reasonable sized networks of more than 60 neurons should be realizable.

V. Conclusion

In this paper, a number of interesting systems based on coupled ring lasers have been studied. In particular, it was shown that two coupled lasers could provide a useful and controllable threshold or sigmoid function. Furthermore, a system consisting of a number of these lasers could be made to perform as a WTA neural network.

A simple laser model was developed and used to explain how the coupled laser systems worked. Also the threshold functions and WTA network were demonstrated experimentally. A number of 2- and 4-bit input logic functions were performed by the WTA network. The neural network was particularly robust against changes in input wavelength and environmental changes.

This work has been targeted toward telecommunication applications by implementing the networks at wavelengths near 1550 nm. If implemented in integrated optics, the neural network presented here could provide high-speed complex all optical logic functions required in telecommunication systems.

APPENDIX

RING LASER MODEL DERIVATIONS

In this Appendix, it is shown that for a given set of SOA parameters and SOA injection current, there exists only one pos-
sible value of gain G for any particular total input power to the SOA P^in. Furthermore, G decreases with increasing P^in.

The SOA has received considerable attention in the literature. The derivations given here are based on the results given in [13], [24]. In this paper, a traveling wave (TW) SOA device is considered. That is, the ends of the SOA have antireflection coatings, and light flows through the device without any reflections at the SOA ends. The active region of the TW-SOA has width W, height d, and length L. Light is injected at the SOA input at position $z = 0$ and flows parallel to the z axis until it reaches the end of the SOA at $z = L$.

The SOA active region provides a net intensity gain per unit length at position z of $g(z)$

$$g(z) = \Gamma a (n(z) - n_0) - \alpha_{\text{int}}$$ \hspace{1cm} (14)$$
where Γ is the optical confinement factor, a is the gain factor, $n(z)$ is the carrier density at position z, n_0 is the carrier density at transparency, and α_{int} accounts for intrinsic losses.

The photon density at position z is $S(z)$. $S(0)$ is related to the power injected into the SOA P^in by

$$S(0) = \frac{P^\text{in}}{Wd\nu_g}$$ \hspace{1cm} (15)$$
where \hbar is Planck’s constant, ν is the optical frequency, and ν_g is the group velocity.

The carrier density, photon density and SOA current I are related as follows [13]:

$$I = \frac{q W d L}{\tau_{\text{sp}}} n(z) + \Gamma \nu_g a (n(z) - n_0) S(z)$$ \hspace{1cm} (16)$$
with q being the electronic charge and τ_{sp} the carrier lifetime.

Assuming that the effects of spontaneous emission can be ignored, then $S(z)$ is given by the solution of the following differential equation:

$$\frac{dS(z)}{dz} = g(z) S(z).$$ \hspace{1cm} (17)$$
Note that $S(z)$ needs to satisfy (14), (16), and (17), and is subject to the boundary condition (15).

G is the gain through the SOA, that is $S(L) = GS(0)$. In [13], [24] a relation is found between G, P^in and the SOA parameters, which satisfies (14)–(17). However, the further assumption of $\alpha_{\text{int}} = 0$ is required. In the derivation given below, the assumption of $\alpha_{\text{int}} = 0$ is not required.

Equations (14), (16), and (17) can be combined to arrive at

$$dz = \frac{1 + C_2 S}{S(C_1 - \alpha_{\text{int}} C_2 S)} dS$$ \hspace{1cm} (18)$$
where

$$C_1 = \frac{I \tau_{\text{sp}} \Gamma a}{q W d L} - n_0 \Gamma a - \alpha_{\text{int}}$$ \hspace{1cm} (19)$$
$$C_2 = \tau_{\text{sp}} \Gamma \nu_g a.$$ \hspace{1cm} (20)$$

The left-hand side of (18) can be integrated from zero to L and the right-hand side from $S(0)$ to $GS(0)$ to obtain

$$C_1 L = \ln(G) + \frac{\alpha_{\text{int}} + C_1}{\alpha_{\text{int}}} \ln \left(\frac{C_1 - \alpha_{\text{int}} C_2 S(0)}{C_1 - \alpha_{\text{int}} C_2 GS(0)} \right).$$ \hspace{1cm} (21)$$
For $G > 1$, the right-most term in (21) is a monotonically increasing function of $S(0)$ that ranges from 0 to ∞. Hence, there can only be at most one $S(0)$ and via (15) one P^in that satisfies (21), given a G. In a similar fashion, it can also be argued that as $S(0)$ is increased, G must be decreased to satisfy (21).

Note that these results have been obtained without making any assumptions on the carrier distribution throughout the SOA. With the assumption of constant gain (and thus constant carrier density) throughout the gain medium, then these results could be derived more easily [20].

In Fabry–Perot lasers, the optical fields travel in both directions through the gain medium, creating an approximately constant carrier density. However, in the ring lasers employed here, the unidirectional optical field is uneven throughout the gain medium. This unevenness can lead to a carrier distribution that is far from constant throughout the gain medium.

REFERENCES
Martin T. Hill (S’96–A’97) was born in Sydney, Australia, in 1968. He received the B.E. degree with first class honors in 1990 and the M.Eng.Sc. degree in 1992 from the University of Western Australia, Adelaide, and the Ph.D. degree in 1997 from the Curtin University of Technology, Perth, Australia.

During 1990, he was a Member of the Technical Staff at QPSX Communications Pty. Ltd., and from 1993 to 1998, he worked at the Australian Telecomcommunications Research Institute. Since 1998, he has been working in the Department of Electrical Engineering at the Technical University of Eindhoven, Eindhoven, The Netherlands, where he is involved in research on photonic components for optical packet switching. His research interests include synchronization, semiconductor laser physics, and photonic digital logic and memory devices.

Edward E. Frietman (S’81–N’82–SM’02) received the Bachelor and Ph.D. degrees from Delft University of Technology, Delft, The Netherlands in 1988 and 1995, respectively.

From 1999 through 2001, he was a Visiting Senior Fellow at the Research Staff at QPSX Communications Pty. Ltd., and from 1993 to 1998, he worked at the Australian Telecommunications Research Institute. Since 1998, he has been working in the Department of Electrical Engineering at the Technical University of Eindhoven, Eindhoven, The Netherlands, where he is involved in research on photonic components for optical packet switching. His research interests include synchronization, semiconductor laser physics, and photonic digital logic and memory devices.