Discharge efficiency in high-Xe-content plasma display panels

Citation for published version (APA):

DOI:
10.1063/1.1641961

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 12. Jan. 2020
Discharge efficiency in high-Xe-content plasma display panels

Daiyu Hayashi and Gero Heusler
Philips Forschungslaboratorien Aachen, Weisshaussstrasse 2, 52066, Aachen, Germany

Gerjan Hagelaar and Gerrit Kroesen
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 2 September 2003; accepted 26 November 2003)

We study theoretically the overall output performance and the dominating reaction processes of the vacuum ultraviolet (UV) radiation production in high-Xe partial pressures in plasma display panels (PDPs) with Ne–Xe gas mixtures. A two-dimensional self-consistent fluid model is applied for the simulations of discharges and UV radiation in sustaining phases of PDPs. The UV intensity increases with the Xe partial pressure (P_{Xe}). The discharge efficiency also increases with P_{Xe}. The resonant radiation from Xe(3P_1) dominates for 3.5%, while that from Xe$_2$($^3\Sigma^+_u$) becomes dominant over Xe(3P_1) for 10%–30%. Remarkably for 30%, the intensity from Xe$_2$($^1\Sigma^+_u$) is even larger than that from Xe(3P_1). It is found that for higher P_{Xe}, the UV radiation mainly consists of the excimer radiation from Xe$_2$($^1\Sigma^+_u$) and Xe$_2$($^3\Sigma^+_u$). Here, Xe(3P_1) does not play a role itself as the UV radiator of the resonant radiation (147 nm), but as the precursor to Xe$_2$($^1\Sigma^+_u$), which results in the excimer radiation (173 nm).

© 2004 American Institute of Physics. [DOI: 10.1063/1.1649161]

I. INTRODUCTION

The plasma display panel (PDP) is regarded as the most promising candidate for the next generation of consumer-oriented, large-size, flat displays. The major trend of the discharge scheme in PDPs is alternating current (ac), capacitive discharges between coplanar electrodes covered by dielectric materials in Xe-noble gas (He, Ar, and Ne) mixtures. Vacuum ultraviolet (UV) radiation from Xe and its excimers from the discharge is converted to visible light by phosphors, in order to display color images. In spite of elaborate efforts in research and development, considerably lower luminous efficiency, approximately by four times than that of cathode-ray-tube displays, is currently a bottleneck of PDP technology in competing against other display technologies in consumer markets. Drastic improvement of the luminous efficiency is the major and urgent objective in PDP technology.

The luminous efficiency of PDPs is given by the following four factors: (1) The discharge efficiency (hereafter, we will refer to it as η_{dis}), i.e., the yield of applied electric energy into UV photon energy via discharges (<5%), (2) the probability of the UV photons to be captured by phosphor (~40%), (3) the quantum efficiency of phosphors (~25%), and (4) the yield of the visible photons reaching the display area (~40%), where the percentages in brackets indicate the estimated efficiencies of each factor. Factors 2 and 4 mostly depend on the geometry of PDP cells. A relatively large Stokes shift (from ~143–173 nm to visible wavelength range ~400–700 nm) of the photon conversion scheme using UV radiation limits the quantum efficiency of factor 3 to as low as 25%. Nonetheless, the values are comparable to that in other gas-discharge light sources using similar schemes of visible photon generation. Regarding factors 2 and 4, a drastic improvement in luminous efficiency has been achieved by increasing the effective luminous areas in PDP cells. The discharge efficiency η_{dis} is, on the other hand, extremely small compared with those of other discharges (~65% in a Hg–rare-gas lamp, and ~60% in a Xe–DBD lamp), and is mainly responsible for the low luminous efficiency of PDPs. It has been clarified that the significant dissipation of the input power to ions and subsequently to neutrals is the major cause for the low η_{dis} in conventional PDPs with Xe–Ne and Xe–He gas mixtures. This is unfortunately an intrinsic feature of cathode-fall dominated discharges, in general, which are the typical discharges generated in conventional PDP cells. A sufficiently large ion flux to a cathode for emitting secondary electrons is inevitable to sustain the discharges. Recently, it was reported that PDPs with high-Xe-content gas mixtures have the potential for improving luminous efficiency under a conventionally used driving scheme. The luminous efficiency exhibits a step-wise increase by increasing the sustain voltages especially for higher-Xe contents. The luminous efficiency increases linearly to total pressure. Almost all of the UV radiation consists of Xe$_2$ excimer emission, not of Xe resonance radiation.

In this article, we study theoretically a Xe–Ne ac-PDP for various Xe contents and describe the decisive physical process of the discharge efficiency improvement in high-Xe-content PDPs. We apply a two-dimensional, self-consistent fluid model to analyze the discharge efficiency η_{dis} in a PDP cell. A focus is on the analysis of the reaction chemistry related to the UV generation. The physical description of gas discharges, and numerical techniques implemented in the two-dimensional fluid model, has been described in detail elsewhere. We apply a boundary condition that correctly takes into account of the contribution from the secondary electron flux. The reaction processes considered in the simulation are listed in Refs. 4 and 13. The imprisonment

Footnote: Electronic mail: daiyu.hayashi@philips.com
of the Xe resonant line (147 nm) is taken into account in the simulation by introducing the escape factor15 for the resonant radiation, which is preliminarily determined by the photon Monte Carlo simulation.16 A standard cell structure widely used for ac-color PDPs is considered here. Simulations are performed in a two-dimensional area of the intersection of the sustain electrodes. A schematic geometry of the cell is depicted in Fig. 1. It consists of two glass plates, separated by a gap of 150 μm, filled with a Ne–Xe gas mixture. A pair of electrodes to sustain discharges (hereafter, sustaining electrodes) is placed on the front panel (at the bottom in Fig. 1). The sustaining electrodes are covered by a dielectric layer consisting of a glass plate (dielectric constant \(\varepsilon = 11.0 \)) and MgO layer at the top (dielectric constant \(\varepsilon = 11.0 \)). The total pressure of the gas fillings is kept constant at 450 Torr. The partial concentration of Xe (\(P_{\text{Xe}} \)) is varied from 3.5%–30%. We first apply a high voltage of 400–500 V between the sustaining electrodes to generate a preliminary discharge. Surface charges that initiate following discharges are separated by a gap of 150 μm, and the cell is depicted in Fig. 1. It consists of two glass plates, separated by a gap of 150 μm, filled with a Ne–Xe gas mixture. A pair of electrodes to sustain discharges (hereafter, sustaining electrodes) is placed on the front panel (at the bottom in Fig. 1). The sustaining electrodes are covered by a dielectric layer consisting of a glass plate (dielectric constant \(\varepsilon = 11.0 \)) and MgO layer at the top (dielectric constant \(\varepsilon = 11.0 \)). The total pressure of the gas fillings is kept constant at 450 Torr. The partial concentration of Xe (\(P_{\text{Xe}} \)) is varied from 3.5%–30%. We first apply a high voltage of 400–500 V between the sustaining electrodes to generate a preliminary discharge. Surface charges that initiate following discharges are separated by a gap of 150 μm. The rise and decay times of the sustaining electrode. For the discharge conditions in this article, \(W_{\text{in}} \) is then given as a simple relation: \(W_{\text{in}} = A \cdot C_{\text{sus}} \cdot (V_s - V_{\text{min}}) \), where \(A \) and \(V_{\text{min}} \) are a constant value and a certain minimum voltage (\(\sim 140–170 \) V), respectively. It is noted that a variation with regard to \(V_s \) therefore corresponds linearly to that with regard to \(W_{\text{in}} \).

II. OVERALL PERFORMANCE

Figure 2 shows the electric input energy (\(W_{\text{in}} \)) per half cycle of the sustaining phase as a function of \(V_s \) for \(P_{\text{Xe}} = 3.5%–30\% \). The \(W_{\text{in}} \) is linear to \(V_s \) and independent from \(P_{\text{Xe}} \). Our preliminary simulation has also found a well-known relation that \(W_{\text{in}} \) is approximately proportional to the capacitance (\(C_{\text{sus}} \)) of the sustaining electrode. For the discharge conditions in this article, \(W_{\text{in}} \) is then given as a simple relation: \(W_{\text{in}} = A \cdot C_{\text{sus}} \cdot (V_s - V_{\text{min}}) \), where \(A \) and \(V_{\text{min}} \) are a constant value and a certain minimum voltage (\(\sim 140–170 \) V), respectively. It is noted that a variation with regard to \(V_s \) therefore corresponds linearly to that with regard to \(W_{\text{in}} \).

Figure 3 schematically depicts the atomic and molecular electronic states involved in the UV radiation. Except negligibly weak emission from Ne, the UV radiation from PDPs with a Ne–Xe mixture consists of an atomic resonant radiation, \(\text{Xe}(^3P_1) \rightarrow \text{Xe}(^1S_0) \), and molecular radiation from three excimers, \(\text{Xe}_2(^3\Sigma_u^+, ^1\Sigma_u^+, O_u^+) \rightarrow \text{Xe}_2(^3\Sigma_g^+) \approx \text{Xe}(^1S_0) + \text{Xe}(^1S_0) \).

The total UV radiation intensities from \(\text{Xe}(^3P_1) \) and \(\text{Xe}_2(^3\Sigma_u^+, ^1\Sigma_u^+, O_u^+) \) are shown in Fig. 4. Here, \(R_{\text{UV}} \) is the rate of the radiative transition processes generating the UV radiation, which corresponds to the number of UV photons generated per unit time. It is therefore equivalent to the photon flux intensity from the PDP. The \(R_{\text{UV}} \) increases with \(P_{\text{Xe}} \). Whereas \(R_{\text{UV}} \) increases roughly linearly to \(V_s \) for 3.5%, \(R_{\text{UV}} \) saturates approximately at \(V_s \sim 350 \) V for 10%–30%. This characteristic of the saturation is more remarkable for higher \(P_{\text{Xe}} \). Choi et al.15 experimentally observed the same trend in the UV intensity of the resonant line (147 nm) emissions, while the excimer emission intensity increased linearly by \(P_{\text{Xe}} \).

We define \(\eta_{\text{dis}} \) as the ratio of the total UV radiation energy (\(W_{\text{UV}} \)) per half cycle to \(W_{\text{in}} \) (\(\eta_{\text{dis}} = W_{\text{UV}} / W_{\text{in}} \)). The dependence of the discharge efficiency \(\eta_{\text{dis}} \) on \(V_s \) is shown in Fig. 5. The \(\eta_{\text{dis}} \) increases with \(P_{\text{Xe}} \), as is consistent with the experimental results.17,18 The \(\eta_{\text{dis}} \) exhibits a slight increase with \(V_s \) for 10% and 13.5%, and it peaks at \(V_s \sim 340 \) V for 20% and 30%, while no significant change is seen for 3.5%.

The \(\eta_{\text{dis}} \) is parametrically given by the product of the electron heating efficiency (\(\eta_e \)) and UV efficiency (\(\eta_{\text{UV}} \)).3,4 The former represents the percentage of \(W_{\text{in}} \) to be transferred to the energy of the electrons (\(W_e \)), and the latter represents...
the percentage of W_e to be converted to the total UV radiation energy W_{UV}. Figure 6 shows the dependence of η_e on V_s. The η_e shows a step-wise increase for 10%–30%, instead of the constant value for 3.5%. The η_e is as small as approximately 27% for $P_{Xe}=3.5%$. This means that the ion heating loss, not the electron heating, of which the efficiency is equivalent to $1-\eta_e$, predominates here. The η_e increases with P_{Xe}, 40%–50% of W_{in} is converted to the electron energy for $P_{Xe}=30%$. Increasing P_{Xe} results in the enhancement in η_e by 1.5–1.9. It is noted that high η_e is attained for higher P_{Xe} and V_s. The UV efficiency η_{UV} is shown in Fig. 7. In the same manner as η_e, the η_{UV} increases with P_{Xe}. η_{UV} for 3.5% does not show any dependence on V_{ss}, while η_{UV} for 10%–30% shows a peak around 300 V. Thus, improvement is achieved both in η_e and η_{UV} by increasing P_{Xe}.

For all P_{Xe}, the ratios of the UV intensities from Xe(3P_1) and Xe$_2$(+$^1Σ_u^+, +1Σ_u^+, O_u^+)$ relative to the total UV photon intensity show a minute change within 10% in accordance with V_s. Figure 8 shows the relative ratio of the intensity from Xe(3P_1) and Xe$_2$(+$^1Σ_u^+, +1Σ_u^+, O_u^+)$ as a function of P_{Xe}. Here, we take values averaged over V_s for each P_{Xe}. The resonant radiation from Xe(3P_1) dominates for 3.5%, while that from Xe$_2$(+$^1Σ_u^+$) becomes dominant over Xe(3P_1) for 10%–30%. Remarkably for 30%, the intensity from Xe$_2$(+$^1Σ_u^+$) is even larger than that from Xe(3P_1). The ratio from Xe(3P_1) decreases with P_{Xe}. The ratios from two eximers Xe$_2$(+$^1Σ_u^+, O_u^+$) increase with P_{Xe} and saturate at 20% and 30%, while the ratio from Xe$_2$(+$^1Σ_u^+$) increases linearly by P_{Xe}. When we take simply the sum of the ratios of Xe(3P_1) and Xe$_2$(+$^1Σ_u^+$), the sum is a constant value of approximately 50% and notably independent from P_{Xe}, except for the value of 3.5%.

III. REACTION SCHEME

In Sec. III., we observed the increase of η_{diss} with P_{Xe}. The parametric studies clarify that both η_e and η_{UV} increase with P_{Xe}, and η_e shows a step-wise increase with V_s while η_{UV} has a peak around $V_s=300$ V. Next, we will get insight into the reactions contributing to these behaviors of η_e and η_{UV}. Here, we restrict our discussion on the reactions for $P_{Xe}=3.5%$ and 30%, in which two extreme conditions can be seen.

A. $P_{Xe}=3.5%$

As can be seen in Fig. 8, the radiation from Xe(3P_1) and Xe$_2$(+$^1Σ_u^+$) dominates for 3.5%. Figure 9 shows the reaction rates of the dominating production ($r1$-$r3$) and loss ($r4$-$r7$)
processes of \(\text{Xe}(^3P_1) \) (for \(V_s = 240 \text{ V} \)). Hereafter, all of the data presented are averaged spatially over the cross section and a half-discharge-cycle period. Most of \(\text{Xe}(^3P_1) \) are produced from \(\text{Xe}^{**} \) via collision with \(\text{Xe} \). The electron impact excitation directly from \(\text{Xe} \) contributes less. The electron impact de-excitation of \(\text{Xe}(^3P_1) \) dominates in the loss reactions. Approximately one-third of the produced \(\text{Xe}(^3P_1) \) is converted into the UV radiation. The molecular state \(\text{Xe}_2(1^3\Sigma_u^+) \) is produced by the three-body recombination with \(\text{Xe} \) and \(\text{Xe}(^3P_1) \). \(\text{Xe}_2(1^3\Sigma_u^+) \) is predominantly produced by the three-body recombination with \(\text{Xe}(^3P_1) \) and lost by emitting VUV radiation. Nevertheless, the process is minority in the loss processes.

It is well known that \(\text{Xe}_2(1^3\Sigma_u^+) \) are produced by the three-body recombination with \(\text{Xe} \) and the metastable state \(\text{Xe}(^3P_1) \), \(\text{Xe} + \text{Xe}(^3P_2) \equiv \text{Ne}/\text{Xe} \rightarrow \text{Xe}_2(1^3\Sigma_u^+) \equiv \text{Ne}/\text{Xe} \).\footnote{13,19,20} Our simulation also has shown that \(\text{Xe}_2(1^3\Sigma_u^+) \) is predominantly produced by the three-body recombination with \(\text{Xe}(^3P_2) \) and lost by emitting VUV radiation. Hence, in order to study the production processes of the radiating excimer state \(\text{Xe}_2(1^3\Sigma_u^+) \), we study the production and loss processes of its precursor, \(\text{Xe}(^3P_2) \).

Figure 10 shows the reaction rates of the production \((m1-m5)\) and loss \((m6-m9)\) processes of \(\text{Xe}(^3P_2) \). Although the de-excitation of \(\text{Xe}^{**} \) via collision with \(\text{Xe}(m4,m5) \) dominates approximately half of the total production rate, the electron impact excitation \((m1)\) and de-excitation \((m2)\) processes and radiative process \((m3)\) also contribute. The main loss process is the electron impact excitation to \(\text{Xe}^{**} \). The three-body processes resulting in the formation of \(\text{Xe}_2(1^3\Sigma_u^+) \) via collisions with \(\text{Ne} \) and \(\text{Xe} \) \((m8,m9)\) are minorities and inefficient in producing \(\text{Xe}_2(1^3\Sigma_u^+) \) in this condition. Despite of the \(\text{Xe}(^3P_2) \) production by the de-excitation of \(\text{Xe}^{**} \) via electron impact collisions and losses with \(\text{Ne} \) and \(\text{Xe} \), they are not efficiently converted to the radiative state \(\text{Xe}_2(1^3\Sigma_u^+) \) generating UV radiation, but mostly they are excited back to \(\text{Xe}^{**} \) via electron impact excitation. This backward process limits the \(\eta_{\text{dis}} \). The resonant radiation from \(\text{Xe}(^3P_1) \), therefore, dominates, as shown in Fig. 8.

Figure 11 schematically summarizes the reactions related to the UV generation for 3.5%. The solid lines in Fig. 11 represent the electron impact processes and the broken lines represent the reaction with the neutral species, \(\text{Ne} \) and \(\text{Xe} \). The UV radiation mainly consists of the spontaneous emissions from \(\text{Xe}(^3P_1) \) and \(\text{Xe}(^3P_2) \). The direct excitations to both \(\text{Xe}(^3P_1) \) and \(\text{Xe}(^3P_2) \) are not dominating production processes. Due to the relatively larger cross section in comparison with those for the direct excitation of \(\text{Xe}(^3P_1) \) and \(\text{Xe}(^3P_2) \),\footnote{21,22} the energetic electrons collide with \(\text{Xe} \) to excite them mainly to \(\text{Xe}^{**} \). The main loss processes of \(\text{Xe}^{**} \) are the collisional de-excitation to \(\text{Xe}(^3P_1) \) and \(\text{Xe}(^3P_2) \) with \(\text{Ne} \) and \(\text{Xe} \) (reaction rate \(\sim 1 \times 10^{19} \text{ cm}^3 \text{ s}^{-1} \)), the de-excitation to \(\text{Xe}(^3P_1) \) and \(\text{Xe}(^3P_2) \) via spontaneous emission \(\sim 1 \times 10^{19} \text{ cm}^3 \text{ s}^{-1} \) and the ionization processes \(\sim 1 \times 10^{19} \text{ cm}^3 \text{ s}^{-1} \). \(\text{Xe}^{**} \) is then converted to \(\text{Xe}(^3P_1) \) and...
Xe\(^{3}P_{2}\) by the collisional de-excitation. Most of Xe\(^{3}P_{1}\)
are still destroyed by the electron impact excitation back to Xe\(^{**}\), as for \(P_{Xe}=3.5\%\). Xe\(^{**}\) is dominantly converted into Xe\(^{3}P_{1}\) and Xe\(^{3}P_{2}\) via collisions with Ne and Xe, in spite of the fact that electron impact de-excitation also contributes. Unfortunately, these states, being direct (resonant radiation) and indirect (excimer radiation) precursors of the UV radiation, are mostly excited back to Xe\(^{**}\) by the electron impact excitations. The spontaneous UV emission from Xe\(^{3}P_{1}\) and the conversion processes of Xe\(^{3}P_{2}\) to Xe\(^{2}(\Sigma_{u}^{+})\), which finally results in the UV excimer radiation, are minor reactions.

B. \(P_{Xe}=30\%\)

The spontaneous emission from Xe\(^{3}P_{1}\) is no longer dominant in the UV radiation processes. The emission processes from the two molecular states Xe\(_{2}(\Sigma_{u}^{+})\) and Xe\(_{2}(\Sigma_{u}^{+})\) are the major UV radiation processes here. As for \(P_{Xe}=3.5\%\), we have confirmed that, also for \(P_{Xe}=30\%\), most of Xe\(_{2}(\Sigma_{u}^{+})\) is produced by the three-body recombination of Xe\(^{3}P_{2}\) with Xe via collisions with the third-body buffer gases (Ne and Xe). Thus, here, we study the production and loss processes of the precursor, Xe\(^{3}P_{2}\), for Xe\(^{2}(\Sigma_{u}^{+})\). The reaction rates of the production and loss processes of Xe\(^{3}P_{2}\) are shown in Fig. 12. The collisional de-excitation of Xe\(^{**}\) with Xe dominates in the production process. Although the electron impact excitation back to Xe\(^{**}\) is still the major loss process, but the conversion processes to Xe\(_{2}(\Sigma_{u}^{+})\) via collision with Ne and Xe [the reactions (m8) and (m9)] also contribute more in comparison with those for \(3.5\%\). The produced Xe\(^{3}P_{2}\) is mainly converted to Xe\(_{2}(\Sigma_{u}^{+})\) that eventually generates the excimer radiation.

As seen in Fig. 9, for \(P_{Xe}=30\%\), the resonant radiation directly from Xe\(^{3}P_{1}\) has a smaller contribution, but the excimer radiation from Xe\(_{2}(\Sigma_{u}^{+})\) rather dominates in the radiation processes involving Xe\(^{3}P_{1}\). Here, Xe\(^{3}P_{1}\) does not play a role as a UV radiator, but as the precursor to Xe\(_{2}(\Sigma_{u}^{+})\) becomes more dominant. Figure 13 shows the reaction rates of the production and loss processes of Xe\(^{3}P_{1}\). Unlike for \(P_{Xe}=3.5\%\), most of Xe\(^{3}P_{1}\) is produced via collisional de-excitation of Xe\(^{**}\) and the electron impact and radiative processes have relatively minute contributions. The electron impact de-excitation is the major loss process. The conversion process of Xe\(^{3}P_{1}\) to Xe\(_{2}(O_{u}^{+})\) via the three-body collisions with Ne and Xe exhibits a larger contribution in the loss process than the radiative decay process \(r3\). The reaction rate coefficient of the process involving Xe as the third collider is larger than that involving Ne. Hence, in the case when the Xe partial pressure is larger, the reaction rate of the reaction \(r9\) becomes larger.

Figure 14 schematically summarizes the reactions related to the UV generation for \(30\%\). The solid lines in Fig. 14 represent the electron impact processes and the broken lines represent the reaction with the buffer gas species, Ne and Xe. The UV radiation mainly consists of the excimer radiation from Xe\(_{2}(\Sigma_{u}^{+})\) and Xe\(_{2}(\Sigma_{u}^{+})\). Exactly in the same way as for \(P_{Xe}=3.5\%\), the energetic electrons excite Xe to Xe\(^{**}\). The direct excitations to Xe\(^{3}P_{1}\) and Xe\(^{3}P_{2}\) are not the dominant production processes. The main loss processes of Xe\(^{**}\) are the collisional de-excitation to Xe\(^{3}P_{1}\) and Xe\(^{3}P_{2}\) with Ne and Xe (reaction rate, \(\sim 5.5 \times 10^{18} \text{ cm}^{3} \text{ s}^{-1}\)), the electron impact de-excitation to Xe\(^{3}P_{1}\) and Xe\(^{3}P_{2}\) (\(\sim 6 \times 10^{18} \text{ cm}^{3} \text{ s}^{-1}\)), and the ionization processes (\(\sim 2.9 \times 10^{19} \text{ cm}^{3} \text{ s}^{-1}\)). The majority of Xe\(^{**}\) is then converted to Xe\(^{3}P_{1}\) and Xe\(^{3}P_{2}\) by the collisional de-excitation. Most of Xe\(^{3}P_{2}\) are still destroyed by the electron impact excitation back to Xe\(^{**}\), as for \(P_{Xe}=3.5\%\). But some part is converted to the molecular state Xe\(_{2}(O_{u}^{+})\) via three-body collisions. Xe\(_{2}(O_{u}^{+})\) is de-excited to Xe\(_{2}(\Sigma_{u}^{+})\) via collisions with Ne and Xe, and then Xe\(_{2}(\Sigma_{u}^{+})\) eventually radiates the UV excimer emissions. Xe\(^{3}P_{2}\) is generated from Xe\(^{**}\) by the collisional de-excitation with Ne and Xe, and also by the electron impact de-excitation. The backward process from Xe\(^{3}P_{2}\) to Xe\(^{**}\) does not dominate here, but Xe\(^{3}P_{2}\) is converted to Xe\(_{2}(\Sigma_{u}^{+})\) via three-body collisions with Xe and the buffer gases (Ne and Xe). Thus, the UV radiation in this condition is dominated by the molecular excimer radiation. It is noted
that, for $P_{\text{Xe}} = 30\%$, due to the high reaction rate of mainly three-body collisions involving Xe, the forward processes toward the radiative states dominates against the backward processes, like the electron impact excitation to Xe**. Therefore, η_{UV}, the UV conversion efficiency, is higher than that for low P_{Xe}.

IV. SUMMARY

We studied the reaction processes related to the UV production in a standard Xe–Ne ac-PDP for various Xe content. The two-dimensional, self-consistent, fluid model under the proposed boundary condition is employed to investigate the discharge mechanisms in PDPs with Xe–Ne gas mixtures.

First, the overall output performance of the PDP cell is studied. The UV intensity, equivalent to R_{UV}, increases with P_{Xe}. The R_{UV} saturates approximately at $V_s \sim 350$ V for 10%–30% and the saturation character is more remarkable for higher P_{Xe}. The discharge efficiency, η_{dis}, increases with P_{Xe}. The η_{dis} peaks at $V_s \sim 340$ V for higher P_{Xe} ($= 20\%$ and 30%), while no significant change is seen for $P_{\text{Xe}} \leq 5\%$. The electron heating efficiency, η_e, and the UV conversion efficiency, η_{UV}, are both enhanced by increasing P_{Xe}.

The relative ratio of the UV intensities from Xe(3P_1) and Xe$_2$(3$^P_{3/2}$) to Xe(3P_1) is even larger than that from Xe(3P_1) decreases with P_{Xe}. The sum of the intensity ratios of Xe(3P_1) and Xe$_2$(3$^P_{3/2}$) is a constant value of approximately 50% and notably independent of P_{Xe}, except for the value of 3.5%.

For the partial Xe pressures of 3.5% and 30%, where we see the extreme contrast in the relative contribution of the resonant and excimer radiation in the total UV radiation processes, we study the reaction processes of the excited Xe states [Xe(3P_1) and Xe(3P_2)] which play important roles in the UV processes.

For $P_{\text{Xe}} = 3.5\%$, the UV radiation mainly consists of the spontaneous emissions from Xe(3P_1) and Xe$_2$(3$^P_{3/2}$). The direct excitations to both Xe(3P_1) and Xe(3P_2), the precursors to Xe$_2$(3$^P_{3/2}$) are not dominant production processes. Xe(3P_1) and Xe(3P_2) are produced dominantly by collisional de-excitation of Xe** with Ne and Xe, in spite of the fact that electron impact de-excitation also contributes. Most of them are unfortunately excited back to Xe** by the electron impact excitations. The spontaneous UV emission from Xe(3P_1) and the conversion processes of Xe(3P_2) to Xe$_2$(3$^P_{3/2}$), which results finally in the UV excimer radiation, are minor reactions.

For $P_{\text{Xe}} = 30\%$, the UV radiation mainly consists of the excimer radiation from Xe$_2$(3$^P_{3/2}$) and Xe$_2$(3$^P_{3/2}$). Here, Xe(3P_1) does not play a role as the UV radiator itself, but as the precursor to Xe$_2$(3$^P_{3/2}$). The direct excitations to Xe(3P_1) and Xe(3P_2) are not the dominant production processes. Then, Xe** is converted into Xe(3P_1) and Xe(3P_2) via collisions with Ne and Xe. Most of Xe(3P_1) is still destroyed by the electron impact excitation back to Xe**, as for $P_{\text{Xe}} = 3\%$. Xe(3P_2) is generated from Xe** by the collisional de-excitation with Ne and Xe, and also by the electron impact de-excitation. The backward process from Xe(3P_2) to Xe** does not dominate here, but they are converted to Xe$_2$(3$^P_{3/2}$) via three-body collisions with Xe and the buffer gases (Ne and Xe). Thus, the UV radiation in this condition is dominated by the molecular excimer radiation. It is remarked that, for $P_{\text{Xe}} = 30\%$, due to the high reaction rate of mainly three-body collisions involving Xe, the forward processes toward the radiative states dominates against the backward processes, like the electron impact excitation to Xe**. Therefore, η_{UV}, the UV conversion efficiency, is higher than that for low P_{Xe}.

ACKNOWLEDGMENTS

The authors acknowledge G. Oversluizen, S. de Zwart, M. Gilles, and T. Dekker for discussions on the discharge efficiency. One of the authors (D. H.) likes to express his gratitude to M. Klein for his valuable contributions in developing the simulation code.