Raman spectroscopic study of Co-Mo/gamma-Al2O3 catalysts

Citation for published version (APA):

DOI:
10.1016/0021-9517(78)90110-0

Document status and date:
Published: 01/01/1978

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Raman Spectroscopic Study of Co–Mo/γ-Al₂O₃ Catalysts

J. Medema,* C. van Stam,* V. H. J. de Beer,† A. J. A. Konings,†
and D. C. Koningsberger†

*Chemical Laboratory, National Defence Research Organisation TNO, Lange Kleiweg 157, Rijswijk (Z.H.),
and †Department of Inorganic Chemistry and Catalysis, Eindhoven University of Technology, Eindhoven, The Netherlands

Received May 2, 1977

Laser Raman spectroscopy is used to study the structure of molybdenum and cobalt species present in Co–Mo/γ-Al₂O₃ catalyst systems. From comparison with Raman spectra of Mo and Co in known structures it is derived that these catalyst systems contain Mo and Co in different modifications depending on the degree of surface coverage. In the absence of Co, four different Mo species are found. At low coverages isolated molybdate tetrahedra are observed. Increasing the surface coverage results in formation of a polymolybdate phase in which Mo is octahedrally surrounded. At higher coverages “bulk” aluminum molybdate is formed. At very high coverages formation of “free” MoO₃ occurs. In Co/γ-Al₂O₃ samples the color indicates the presence of CoO₄- and CoAl₂O₄-like species. When Co is introduced in Mo/γ-Al₂O₃ (Co/Mo atomic ratio, 0.64) various effects occur. “Free” MoO₃, as well as Al₂(MoO₄)₉, is converted into “CoMoO₄.” Cobalt addition results in a decrease of the isolated Mo tetrahedra concentration in favor of the polymeric molybdate form, which apparently is not qualitatively affected by the presence of Co. In Co–Mo/γ-Al₂O₃ most of the Co is present in a structure comparable to CoAl₂O₄. The influences of the nature of the support, heat treatment, reduction in hydrogen and the effect of sulfiding are discussed briefly.

INTRODUCTION

Oxidic Co–Mo/γ-Al₂O₃ is the precursor of a widely used hydrodesulfurization (HDS) catalyst (1−5). As the interaction between the precursor and sulfur in various chemical forms is an essential step in the formation of the actual active (sulfided) catalyst modification, this oxidic catalyst system was selected for the study of the decomposition of dichlorodiethyl sulfide (mustard gas). From infrared spectroscopic data the structure of mustard gas adsorbed on the catalyst surface could be derived (6). Because the catalyst was found not to be transparent in the spectral region below 1000 cm⁻¹, an attempt was made to obtain more insight into the behavior of the C–Cl and C–S–C vibrations by means of Raman spectroscopy. However, it appeared that the background spectrum due to cobalt and molybdenum obscured to a large extent the Raman spectrum of adsorbed species. Moreover, it appeared that the background spectrum showed considerable changes when changing the composition of the catalyst. From these observations it was concluded that Raman spectroscopy might be a useful experimental tool to study the structure of Mo and Co species present in oxidic and sulfided HDS catalysts.

The use of Raman spectroscopy to study catalyst structures has been reviewed by
RAMAN SPECTRA OF Co-Mo/Al₂O₃ CATALYSTS

Cooney et al. (7), Oganowski et al. (8), Müller et al. (9), and Leroy et al. (10) have demonstrated that by means of Raman spectroscopy valuable information concerning the structure of Mo- or W-containing species can be obtained. MoS₂ (11, 12) and MoS₃ (13) have also been studied. In the case of oxidic and sulfided Co-Mo/γ-Al₂O₃ or related HDS catalyst systems only a few laser Raman studies are reported in the literature and the results obtained are conflicting. Villa et al. (14) state that Mo/γ-Al₂O₃ and Co-Mo/γ-Al₂O₃ samples do not contain Raman-active Mo and/or Co compounds. Pott and Stork (15) have reported successful application of Raman spectroscopy in an investigation on the structure of W/γ-Al₂O₃ catalysts. After completion of the experimental part of our Raman study, Brown and Makovsky (16) published spectra of oxidic and sulfided Co-Mo/γ-Al₂O₃, MoO₃ and MoS₂. These authors have found the presence of "free" MoO₃ and CoMoO₄ in oxidic Co-Mo/γ-Al₂O₃ to be unlikely. In sulfided catalysts they showed that at least part of the Mo is present as MoS₂. No explicit interpretation for the observed Mo–O stretching vibrations was given.

Since the combined data published so far in many papers (1–5) dealing with the structure of oxidic Co–Mo/γ-Al₂O₃ catalyst systems still do not give a complete picture of the Mo and Co species present in these HDS catalyst precursors, a Raman study concentrating mainly on oxidic samples was begun.

In the present investigation four different carrier materials have been used. These comprised two types of alumina: (i) one having a low specific surface area but especially suited for Raman spectroscopy because of a low fluorescence level and (ii) a typical HDS base alumina. Two silicas have also been used, mainly for comparison. These carriers were impregnated with various amounts of molybdenum and/or cobalt. Structural changes with composition have been studied. In order to interpret the results obtained for the supported samples, the Raman spectra of pure compounds of known structure have also been recorded.

EXPERIMENTAL METHODS

Materials. (a) γ-Alumina (Degussa, Type C) with a specific surface area of 80 m² g⁻¹ was used as a carrier material. It has favorable properties for recording Raman spectra because the fluorescence in this type of alumina is found to be rather low. (b) A typical HDS base γ-alumina (Kayjen fluid powder alumina, grade B) with a specific surface area of 240 m² g⁻¹ was obtained from Akzo Chemie, Kayjen catalyst division. (c) Degussa SiO₂ (Type Aerosil 200; surface area: 150 m² g⁻¹) was used for oxidic Co–Mo/SiO₂ samples, and Kayjen SiO₂ (fluid silica F-2; surface area 397 m² g⁻¹) was used for the sulfided catalysts. Both silicas were neutralized with ammonia before use. (d) Aqueous solutions of ammonium heptamolybdate and cobalt nitrate (both Merck A.G. products, purity grade, pro analysis) were used to impregnate the carrier materials. (e) Co₃O₄ was prepared by heating Co(NO₃)₂ at 673 K in air for 24 h. CoO was obtained by heating Co(NO₃)₂ in nitrogen at 1273 K (17). (f) Co₃O₄, α-CoMoO₄, Fe₂(VO₄)₃, Cr₂(VO₄)₃, Al₂(MoO₄)₃, and Al₂(WO₄)₃ were prepared by mixing stoichiometric quantities of the corresponding oxides in a ball mill and heating the mixtures at temperatures between 973 and 1273 K for 24 h (α-CoMoO₄ was prepared by grinding the originally obtained β-CoMoO₄ in a ball mill). (g) MoO₃ was obtained by thermal decomposition of ammonium heptamolybdate at 873 K in air. (h) MoS₂ (purity > 98.5%) was obtained from Schuchardt. (i) Co₅S₈ was prepared by sulfiding Co₃O₄ at atmospheric pressure at 673 K in a H₂S:H₂ flow (volume ratio 1.6) for 4 h.
TABLE 1
List of Catalysts Studied

<table>
<thead>
<tr>
<th>Notation</th>
<th>MoO₃ (wt%)</th>
<th>CoO (wt%)</th>
<th>Surface area (m² g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degussa γ-Al₂O₃</td>
<td>—</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>—</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>—</td>
<td>58</td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>—</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>—</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>—</td>
<td>58</td>
</tr>
<tr>
<td>Ketjen γ-Al₂O₃</td>
<td>—</td>
<td>—</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>1.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>3.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>6.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>8.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>10.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>—</td>
<td>240</td>
</tr>
<tr>
<td>Degussa SiO₂</td>
<td>—</td>
<td>—</td>
<td>155</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>147</td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>—</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>—</td>
<td>146</td>
</tr>
<tr>
<td>Ketjen SiO₂</td>
<td>—</td>
<td>—</td>
<td>397</td>
</tr>
<tr>
<td>12</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(j) A commercial Ketjen Co–Mo/γ-Al₂O₃ catalyst (Type 124-1.5; surface area: 217 m² g⁻¹) containing 12.4 wt% MoO₃ and 4.1 wt% CoO was also used as a reference compound.

Catalyst preparation. The oxidic catalyst samples were prepared according to standard sequential impregnation methods (pore volume impregnation, drying for 12 h at 383 K, and calcining for 2 h at 873 K in air) as described earlier for alumina-supported (18) and silica-supported (19) systems. Mo was always introduced first. All supported samples prepared are listed in Table 1. Ketjen HDS base alumina gave rise to a rather high fluorescence during recording of the Raman spectra. After heating the samples in oxygen for 17 h at 873 K this fluorescence was greatly suppressed.

Some oxidic samples [Mo(12)/Al–K, Co(4)Mo(12)/Al–K, Mo(12)/Si–K, and Co(4)Mo(12)/Si–K] were sulfided for 2 h in an H₂S/H₂ flow (volume ratio, 1:6; flow rate, 50 cm³ min⁻¹) at atmospheric pressure and 673 K. Co–Mo/SiO₂
underwent an intermediate sulfiding according to the preparation method described earlier (19).

It is important to stress the fact that the catalysts were not sulfided \textit{in situ} since there was no rotating \textit{in situ} cell available and in the nonrotating \textit{in situ} cell the samples would be heated too much by the laser beam. Reduction of some samples [Mo(6)/Al–D and Mo(12)/Al–D] was carried out \textit{(not in situ)} in a hydrogen flow at 523 K for 2 h.

\textbf{Methods}. Laser Raman spectra were recorded with a Jeol JRS-1 spectrometer. This instrument was equipped with a Coherent Radiation Model 52 argon ion laser. The output power of the laser was reduced to 50–100 mW (4880-A line). The scanning speed was usually low in the case of colored samples (10 cm$^{-1}$ min$^{-1}$), the slit width amounted to 7 cm$^{-1}$, and the sensitivity of the recording was adjusted to the intensity of the Raman scattering. In order to reduce the fluorescence and to prevent warming up of the samples, they were rotated at a speed of 1700 rpm during recording. In some cases spectra were recorded without rotation, giving rise to an increase in temperature on the spot where the laser beam hit the sample. This temperature increase strongly depends on the absorptive properties of the samples (color). A white sample such as ammonium heptamolybdate is converted into MoO$_3$ with a laser power of 100 mW within 15 min. All samples were pelletized at a pressure of 1.52×10^4 N m$^{-2}$ before being mounted in the Raman spectrometer sample holder. Specific surface area and pore size distribution of some samples were derived from N$_2$ adsorption isotherms.

\textbf{RESULTS AND DISCUSSION}

From the work of Cord \textit{et al.} (20) and from other data presented in the literature it follows that the spectra of molybdates can be grouped according to their crystal
structure and symmetry. Compounds having the same symmetry will produce similar infrared spectra. This holds for the overall spectrum, the approximate position of the absorption bands, and the intensity of the absorptions. The exact band position is related to the Mo–O distance and to the Mo–O bond order as was shown by Cotton and Wing (21). From their work it also follows that it is rather inconclusive to relate the frequency of an absorption to the presence of a terminal or bridged Mo–O bond as was done by Mitchell and Trifirò (22). First, one should identify identical vibrations. From the corresponding frequencies, force constants corrected for mutual interactions can be calculated and, thus, bond orders and bond distances can be calculated. The bond order is a better indication for bridged or terminal oxygens. Looking only at the frequency one has to deal with the problem that there is a considerable overlap in the frequencies of bridged and terminal oxygens. For MoO₃, Cotton and Wing (21) gave frequencies ranging from 1046 to 840 cm⁻¹, and for Mo–O₅, from 946 to 820 cm⁻¹. Because the assignment of the Raman lines in the spectra of pure compounds is not unambiguous, force constants cannot be calculated accurately. We therefore prefer to compare overall spectra and to relate these spectra to a certain symmetry class on the basis of data in the literature. Once the crystal structure is known it can be decided how much bridged and terminal oxygen is present.

Oxidic Mo/γ-Al₂O₃

In the catalyst samples the spectral features change considerably with increasing Mo content. The spectra are composed of signals arising from three to four different Mo modifications (see Figs. 1 and 2). For Mo(3)/Al–K samples with surface coverage lower than 30% [Mo(5)/Al–K and Mo(10)/Al–K] the first type of Mo species is found. The corresponding Raman lines are remarkably sharp. Pure tetrahedral MoO₄²⁻ as present in aqueous solutions gives a sharp strong line at about 890 cm⁻¹, a line at 325 cm⁻¹, and a weak line at 825 cm⁻¹. The 890 and 325 cm⁻¹
RAMAN SPECTRA OF Co-Mo/Al₂O₃ CATALYSTS

The Raman spectra of some selected compounds are shown in Fig. 3. The bands at 840 cm⁻¹ and 800 cm⁻¹ are both observed in the supported samples but the 825 cm⁻¹ seems to split into two, viz., one at 840 cm⁻¹ and another at 800 cm⁻¹. A slight distortion of the tetrahedral symmetry is sufficient to explain the splitting of this 825 cm⁻¹ band. We therefore conclude that the sharp lines present at low coverages belong to isolated MoO₄ tetrahedra in or at the alumina surface. They are most probably at the surface; otherwise Al₂(MoO₄)₃ formation would have resulted. Similar sharp Raman shifts were observed by Brown and Makovsky (16).

These authors also observed a broad band centered around 950 cm⁻¹, a vibration present in all our samples. In addition a shoulder at 875 cm⁻¹ is observed. The broadening of the lines indicates that we are not dealing with well-defined molybdenum compounds. The position and the intensity of the bands showed a resemblance with the Raman shifts present in α-CoMoO₄ (see Fig. 3). The resemblance to the spectrum of (NH₄)₂Mo₇O₂₁.4H₂O is even better because in this case also a slight broadening can be observed. In both cases the structure of the molybdates is that of distorted octahedra (23), the distortion being of the same type. In addition both structures are bridged. In α-CoMoO₄ the MoO₄ octahedra are bridged by CoO₆ octahedra, whereas in (NH₄)₂Mo₇O₂₁.4H₂O the principal bridging occurs via the molybdate octahedra. It has been found that, when the degree of polymerization of molybdates changes from hepta to octa, a small shift in the Raman lines as well as line broadening occurs (24). In view of the band position and the broadening of the band as observed in Mo/γ-Al₂O₃ samples we conclude that the broad band at 950 cm⁻¹ is due to a bridged or a two-dimensional polymeric form of distorted molybdate octahedra. This con-

![Fig. 3. Raman spectra of some selected compounds. (a) α-CoMoO₄; (b) (NH₄)₂Mo₇O₂₁; (c) Al₂(MoO₄)₃; (d) MoO₃; (e) Al₂(WO₄)₃; (f) Al₂(MoO₄)₃; (g) Cr₂(MoO₄)₃; (h) Fe₂(MoO₄)₃.](image)

![Fig. 4. Possible structure of polymeric molybdate. In this picture a certain competition between the Mo-O surface bonds, dotted lines, and the protruding Mo-O bonds is presumed.](image)
elusion is in accordance with the findings of Giordano et al. (25). From uv reflectance spectroscopy (26) it follows that the main fraction of the molybdenum is tetrahedrally surrounded by oxygen in Mo/γ-Al₂O₃ at medium surface coverages. As Cord et al. (20) pointed out, the distortion of the octahedral symmetry is such that a nearly perfect tetrahedral coordination results. We prefer to speak of octahedra although two oxygens are at large distances (0.23 nm) and these do not influence the Mo very much. The bridging between the molybdate octahedra is such that two terminal oxygens are present, two oxygen ions are used for bridging, and two oxygen ions are used for interaction with the alumina surface. It cannot be ruled out that the latter two oxygens form part of the alumina lattice. This picture as shown in Fig. 4 is very similar to the one presented by Giordano et al. (25). Comparing catalyst samples Mo(5)/Al-K, Mo(10)/Al-K, and Mo(15)/Al-K increasing in Mo content, one has the impression that the polymeric form of molybdate grows at the expense of the monomeric species. In order to check this, we recorded a Raman spectrum of a 1:1 mixture of Mo(25)/Al-K and Mo(5)/Al-K.

If the absolute quantity of monomeric molybdate is constant for all samples of the Mo(x)/Al-K series, one would expect to find for this mixture an intensity of the sharp lines that is about equal to the intensity found in the spectrum of Mo(15)/Al-K. However, the intensity of the sharp line at 890 cm⁻¹ in the mixture was at least fourfold the intensity of the line found in Mo(15)/Al-K. This result leads to the conclusion that the monomeric molybdates do indeed combine to polymeric molybdate when the Mo concentration is increased.

The Mo(9)/Al-D and Mo(12)/Al-D samples show additional lines in comparison with the Mo(6)/Al-D spectrum (see Fig. 2). The line or combination of lines slightly above 1000 cm⁻¹ is particularly peculiar. In the Mo(20)/Al-K, Mo(25)/Al-K, and Mo(30)/Al-K samples these lines appear as a shoulder around 1010 cm⁻¹. Comparison with the spectra of pure compounds shows that we are dealing with Al₂(MoO₄)₃ (Fig. 3). To our knowledge the structure of this compound is not reported in the literature. It is, however, stated that Al₂(MoO₄)₃, Cr₂(MoO₄)₃, and Fe₂(MoO₄)₃, as well as Al₂(MoO₄)₃ and Al₂(WO₄)₃, are isomorphous (15, 27). The Raman spectra as given in Fig. 3 confirm this statement. The structure of Al₂(WO₄)₃ given by Craig and Stephenson (28) and by de Boer (29) is identical to the proposed structure of Fe₂(MoO₄)₃ (30). A tetrahedral surrounding of Mo by oxygen and an octahedral surrounding of the cation without terminal oxygens was proposed. Therefore, it is concluded that the structure of Al₂(MoO₄)₃ is based on MoO₄ tetrahedra and AlO₆ octahedra ions and that in this structure terminal oxygens are absent. It is therefore unlikely that Al₂(MoO₄)₃ as found in the catalyst is a “two-dimensional surface complex.” Al³⁺ octahedral sites from the Al₂O₃ spinel lattice play an essential part in the formation of bulk Al₂(MoO₄)₃; moreover, as no terminal oxygens are present, the molybdate tetrahedra must be formed inside the alumina lattice, probably on the subsurface.

Further increase of surface coverage results in samples like Mo(15)/Al-D and Mo(30)/Al-K (see Figs. 1 and 2) having two sharp lines at 990 and 820 cm⁻¹, a band at 670 cm⁻¹, and another band at 375 cm⁻¹. These lines can be attributed to “free” MoO₃ on top of the alumina surface, as the position and the relative intensities are the same for MoO₃. On prolonged heat treatment [sample Mo(30)/Al-K was heated for 17 h in oxygen at 873 K; sample Mo(15)/Al-D for 2 h at 1073 K] these bands disappear from the spectrum due to sublimation of the MoO₃.
The formation of "free" MoO$_3$ at higher coverages is in accordance with the results of Giordano et al. (25).

Other investigators also describe the formation of "free" MoO$_3$ (26). In this case the structure of the compound consists of MoO$_6$ octahedra as was reported by Kihlborg (31). At this point it is interesting to note the influence of heat treatment on the structure of Mo in Mo/\gamma-Al$_2$O$_3$ samples. Except for the disappearance of MoO$_3$ no other influence was noted in the Degussa alumina samples, not even after prolonged heating for 15 h at 1073 K. In the Ketjen alumina samples heat treatment for 17 h at 873 K in oxygen has been used in order to reduce the fluorescence. In those samples where spectra could be recorded without this heat treatment, identical spectra were obtained except for "free" MoO$_3$ and of course fluorescence. Heating of Ketjen alumina with low-Mo-content compounds for a longer time at 1023 K influences the amount of monomeric molybdate in favor of polymeric molybdate, which is formed slowly. It is justified therefore to treat the Ketjen alumina samples as normal HDS catalyst precursors, despite the fact that they are heated for 17 h at 873 K.

In Fig. 5a the various Mo species present in the supported samples are shown schematically. At low surface coverages monomeric molybdate tetrahedra are found. At medium coverages the empty spaces between the solitaire molybdates become filled, resulting in formation of polymolybdate with distorted octahedra. Further increase in surface coverage results in the formation of subsurface Al$_2$(MoO$_4$)$_3$ in which Mo$^{6+}$ is tetrahedrally surrounded and Al$^{3+}$ takes octahedral positions. At very high coverages "free" MoO$_3$ is formed consisting of strongly distorted octahedra. This "free" MoO$_3$ can be removed from the surface by sublimation. This scheme greatly resembles the detailed structural model presented by Giordano et al. (25).

If corrections for the differences in surface areas are made, the differences between the two types of alumina are small, the main difference being that, in Degussa alumina, the formation of Al$_2$(MoO$_4$)$_3$ is
more pronounced. This is probably due to the differences in texture and/or impurity content, for instance, SiO₂ in the two aluminas. Degussa alumina has a biperse pore structure, a small fraction of micropores, and a large fraction of pores 12.5 nm in diameter. Ketjen alumina has pores in the range of 3.5–7.0 nm in diameter. The molybdate present in micropores is already surrounded by Al₂O₃ at “three” sites, and the formation of Al₃(MoO₄)₃ might be facilitated through this surrounding.

Oxidic Co/γ-Al₂O₃

In the spectra recorded for Co(y)/Al–D samples one Raman line was clearly visible (see Fig. 6). Only in the case of low fluorescence [Co(8)/Al–D] could a second relatively weak and broad line at about 530 cm⁻¹ be observed. This line at 690 cm⁻¹ is also present in α-CoMoO₄ and Co₃O₄, compounds differing in symmetry. In α-CoMoO₄, the Co³⁺ ions are situated in octahedra, whereas in Co₃O₄ the Co³⁺ is tetrahedrally coordinated (32). Both CoO (CoO₆ octahedra) and CoAl₂O₄ (CoO₄ tetrahedra) gave no detectable Raman signal under our experimental conditions. Apparently they do not have disturbed symmetries. Obviously the line at 690 cm⁻¹ as present in α-CoMoO₄ and Co₃O₄ is due to a Co–O stretching mode. As this line is also found in the Co(y)/Al–D catalysts, at least part of the Co³⁺ is in a Raman-detectable form. The color of both CoO and Co₃O₄ is nearly black and so is that of Co(8)/Al–D, whereas the color of Co(2)/Al–D is blue gray. The blue component in the 2% sample is probably due to Co³⁺ ions in a spinel system like CoAl₂O₄ (33). Thus we have a mixture of CoAl₂O₄ and Co₃O₄. At higher coverages the Co₃O₄ content increases to such an extent that the color of CoAl₂O₄ becomes invisible. The presence of CoO is unlikely as it is not a stable component at the temperature of preparation of the Co(y)/Al–D samples (34).

Oxidic Co–Mo/γ-Al₂O₃

Introducing Co into the Mo(x)/Al catalysts (at such a concentration that the CoO/MoO₄ weight percentage ratio is 1/3) results in the following effects (see Fig. 7). Blue-colored samples were obtained. The monomeric MoO₄ phase in the low coverage samples is converted partly into the polymolybdate MoO₆ phase. In Co(3.7)–Mo(10)/Al–K, the monomeric MoO₄ phase is no longer observed. Based on the color of the samples one should expect the presence of either CoAl₂O₄ or CoMoO₄. No Raman lines characteristic of CoMoO₄ (960 and 690 cm⁻¹) can be observed. Thus in low coverage samples Co³⁺ is present in the form of CoAl₂O₄ in the lattice of alumina. The formation of a polymeric phase of MoO₆ octahedra under the in-

![Fig. 6. Raman spectra of Co/Al–D catalysts. (a) Co(2)/Al–D; (b) Co(8)/Al–D; (c) Co₃O₄.](image-url)
fluence of Co was also suggested by Grimblot and Bonnelle (35) on the basis of ESCA and TGA measurements. In this case the Co\(^{2+}\) is supposed to be present in a tetrahedral configuration inside the alumina lattice, and every Co interacts with an ensemble of four combined molybdate ions on the surface. In fact this is an elaborated picture of the monolayer model described by Schuit and Gates (1).

At medium Co concentrations (e.g., Co(2)Mo(6)/Al–D and Co(5)Mo(15)/Al–K) a shift appears at 690 cm\(^{-1}\). The color of this sample is still blue. It is very unlikely that the Raman shift at 690 cm\(^{-1}\) is caused by CoMoO\(_4\), because the strongest line for this compound at 960 cm\(^{-1}\) is absent. We therefore conclude that in these samples, beside CoAl\(_2\)O\(_4\) a small amount of microcrystalline Co\(_3\)O\(_4\) is also present. This is in accordance with data reported in the literature (19, 33, 36–38).

When the Co concentration is increased further [i.e., high surface coverage: Co(6.7)Mo(20)/Al–K, Co(8.3)Mo(25)/Al–K, Co(10)Mo(30)/Al–K, and Co(4)Mo(12)/Al–D], the 950 cm\(^{-1}\) band (poly-molybdate phase) is doubled as a result of the presence of a line at 960 cm\(^{-1}\). Remarkably the relative intensity of the line at 690 cm\(^{-1}\) decreases as the Co concentration increases. In the spectrum recorded from Co(10)Mo(30)/Al–K the intensity ratios of the 960 cm\(^{-1}\) line and the 690 cm\(^{-1}\) line are approximately in accordance with the ratio found for pure CoMoO\(_4\). Apparently the Co\(_3\)O\(_4\) concentration decreases and the CoMoO\(_4\) concentration increases when the surface coverage is increased. The samples are still intensely blue colored, indicating that CoAl\(_2\)O\(_4\) is probably present also (37). It is noteworthy that CoMoO\(_4\) is apparently formed at the expense of the Al\(_2\)MoO\(_4\) present in the Mo/\(\gamma\)-Al\(_2\)O\(_3\) samples used for the preparation of the Co-containing catalysts.

The spectrum of the commercial Ketjen Co–Mo/\(\gamma\)-Al\(_2\)O\(_3\) catalyst containing 12.4 wt\% MoO\(_3\) and 4.1 wt\% Co shows

![Fig. 7. Raman spectra of cobalt and molybdenum on Degussa and Ketjen alumina. (a) Co(1.7)Mo(5)/Al–K; (b) Co(3.4)Mo(10)/Al–K; (c) Co(5)Mo(15)/Al–K; (d) Co(6.7)Mo(20)/Al–K; (e) Co(8.3)Mo(25)/Al–K; (f) Co(10)Mo(30)/Al–K; (g) Co(2)Mo(6)/Al–D; (h) Co(4)Mo(12)/Al–D; (i) Co(4)Mo(12)/Al–K, commercial Ketjen catalyst.](image)
Raman lines that can be attributed to polymeric MoO₆ octahedra. There is no indication of the presence of any other Mo compounds, in accordance with the findings of other investigators (33). The absence of the strongest CoMoO₄ line (960 cm⁻¹) and the 690 cm⁻¹ line (CoMoO₄ or Co₂O₃) and the fact that the catalyst is blue justify the conclusion that Co is exclusively present as Co²⁺ ions in the alumina lattice in a form comparable to that of CoAl₂O₄.

In Fig. 5b the effect of Co introduction into oxidic Mo(x)/Al catalysts is given schematically. At low surface coverages Co²⁺ ions present in the γ-alumina surface or subsurface layers as CoAl₂O₄ facilitate the transformation of isolated tetrahedral MoO₄ species into a polymolybdate phase (this is a monolayer of MoO₆ octahedra on top of the alumina surface). At medium surface coverages an additional Co phase, viz., Co₂O₃, is formed. In this range of Mo and Co concentrations no indication for the formation of a known Co/Mo compound was obtained. This strongly suggests that there is only a moderate interaction [for instance, of the type described by Grimblot and Bonnelle (35)] between the Co and Mo species present in these Co-Mo/γ-Al₂O₃ catalysts. At higher coverages the subsurface Al₂(MoO₄)₃ phase and “free” MoO₄ on top of the monolayer are converted into CoMoO₄. The structure of oxidic Co-Mo/Al described above is in some respect different from that given by Ratnasamy et al. (39), based on findings from reduction (TGA and DTA), acidity, and activity measurements, as well as on infrared spectra. However, we tend to believe that especially for fresh nonreduced oxidic samples laser Raman spectroscopy results in more direct information about the nature of Co and Mo present in these catalysts. For Co(y)Mo(x)/Al–D and Co(y)Mo(x)/Al–K the results are similar provided that the surface coverages are comparable (in Fig. 7 compare curves c with curves g, f, and h). This was also the case for the commercial Ketjen Co(4)Mo(12)/Al–K and the laboratory-prepared Co(3.4)Mo(10)/Al–K catalysts, indicating again that the pretreatment in oxygen for 17 h at 873 K, treatment to which the laboratory-prepared samples were subjected, has not affected the catalyst structure significantly (the commercial catalyst was not subjected to this treatment).

The earlier finding (19, 40) that the commercial Ketjen catalyst has optimum Co and Mo concentrations with respect to thiophene HDS activity and the observation that in this catalyst Mo is mainly present in the polymolybdate phase (Co induces the formation of additional polymolybdate) strongly suggest that this phase is the most important precursor for the main active compound (MoS₂) in sulfided Co–Mo/γ-Al₂O₃ HDS catalysts. Additional support for this suggestion can be derived from previously published data (19) showing that addition of 4 wt% Co to Mo(4)/Al–K increases the thiophene HDS activity considerably. On the basis of the model described here this phenomenon can be explained by an increase in the polymolybdate concentration and a decrease in the isolated MoO₄ species as a result of Co introduction. The isolated MoO₄ species in samples with low surface coverages are probably highly resistant to reduction by hydrogen as well as to sulfidation by H₂S/H₂, and they are very probably the same as the phase A sites mentioned by Ratnasamy et al. (39). Based on thiophene HDS and olefin hydrogenation activity measurements, it was concluded earlier (19) that these MoO₄ tetrahedra species are preserved to a certain extent in oxidic and sulfided Ketjen and laboratory-prepared Co(4)Mo(12)/Al–K catalysts. Their presence is not observable by means of Raman spectroscopy in the commercial catalyst and only small peaks in the spectra of some laboratory-prepared
catalysts might be attributed to these tetrahedra. Therefore their concentration is probably very low.

Reduction Experiments

Reduction (not in situ) of the Mo(x)/Al samples in hydrogen at 523 K for 1 h results in disappearance of the Raman lines ascribed to polymolybdate species. At the same time the samples show a very strong fluorescence level, the lines characteristic of MoO₄ tetrahedra cannot be detected, and the "free" MoO₂ phase is no longer detectable. Note that MoO₂ does not show Raman activity. Al₂(MoO₄)₃ is the only compound clearly observable in reduced samples (bands at 1000 and 375 cm⁻¹). Samples which originally did not contain Al₂(MoO₄)₃-like species surprisingly also showed a band at 1000 cm⁻¹ after reduction.

Oxidic Mo/\text{SiO}_2 and Co–Mo/\text{SiO}_2

As can be seen in Fig. 8 the spectra recorded for Mo(6)/Si–D and Mo(12)/Si–D almost show merely the lines characteristic for "free" MoO₃. These spectra also indicate the presence of small amounts of poly-MoO₄ species. The intensities of the MoO₃ lines in these spectra are about equal despite the fact that they are recorded at sensitivities that differ by a factor of 20. This strongly suggests that Mo(12)/Si–D contains much more than twice the amount of "free" MoO₃ present in Mo(6)/Si–D and that consequently in the latter catalyst a substantial fraction of the Mo is present as polymolybdate. The observed differences are very likely to be caused by differences in Raman cross sections of "free" MoO₃ and polymolybdate. It is noteworthy that the color of the Mo(x)/Si–D samples turned from white to blue immediately after exposure to the laser beam, even when the samples were rotated. This points to the formation of molybdenum blue, which is a reduced form of molybdenum oxide containing molybdenum ions with valences between 4 and 6 (41).

Addition of Co to Mo(6)/Si–D resulted in formation of α-CoMoO₄ (see Figs. 3a and 8c). After impregnation of Ketjen silica with Mo and Co [Co(4)Mo(12)/Si–K] a violet-gray catalyst was obtained. It was concluded earlier (19) that this catalyst contains β-CoMoO₄ (violet modification) and Co₂O₄ (black). The Raman spectrum of Co(4)Mo(12)/Si–K (see Fig. 8d) indicates the presence of Co₃O₄ and shows a good resemblance to the spectrum of the metastable high-temperature CoMoO₄ modification as given by Cord et al. (20). It is noteworthy that Co addition led to the disappearance of the "free" MoO₃ Raman scattering. This might indicate that CoMoO₄ formation occurs preferentially via interaction of Co with the "free" MoO₃ phase, which was originally present in the Mo/SiO₂ samples. From the Raman data it can be concluded that silica interacts with Mo species to a lesser extent than does alumina. Both
silicas show less interaction with the Mo species than does alumina. “Free” MoO₃ or crystalline modifications of CoMoO₄ are formed at lower surface coverage than in the case of alumina-supported catalyst systems. This agrees with the data published by Castellan et al. (42) and de Beer et al. (19).

Effect of Sample Rotation

So far the structural model of Co-Mo/γ-Al₂O₃ catalysts as derived from Raman spectroscopy is consistent with data derived via a number of other techniques. However, the Raman data were found to be dependent on the way in which the spectra were recorded, viz., with or without sample rotation. With rotation the samples were heated only slightly above room temperature. Nonrotating samples were heated much more and the temperature in most cases was above 523 K. This induces a strong fluorescence in the samples and it becomes difficult to record Raman spectra.

In those cases in which we were able to record a spectrum of a catalyst sample without rotation, the spectrum was different from the spectrum at “room temperature.” It seems as if, as a result of the temperature increase, the polymeric molybdate is converted in a similar way as mentioned before for bulk (NH₄)₆Mo₇O₂₄·4H₂O (see Experimental Methods). In the latter case bulk MoO₃ is formed whereas polymeric molybdate is converted into a structure resembling aluminium molybdate. Even prolonged heat treatment in an oven at 1073 K could not induce this change. Preliminary experiments with the commercial Ketjen catalyst have shown that the conversion under the influence of the laser beam is reversible. Experiments will be performed to elucidate these effects further.

Sulfided Catalysts

Preliminary experiments have been carried out with H₂S/H₂ sulfided alumina and silica-supported catalysts, viz., Mo(12)/Al-K, Co(4)Mo(12)/Al-K, Mo(12)/Si-K, and Co(4)Mo(12)/Si-K. The spectra are given in Fig. 9. Although these catalysts were not sulfided in situ (i.e., they were exposed to air after sulfiding) only Raman shifts (405 and 380 cm⁻¹) characteristic of bulk MoS₂ (11) were observable, as is also shown by Brown and Makovsky (16). As shown in Fig. 9 there was no significant difference between these spectra and the one recorded for a mechanical mixture of
bulk MoS$_2$ (10 wt%) and Ketjen γ-Al$_2$O$_3$ [MoS$_2$(10)/Al-K-K]. No evidence of the presence of Co$_3$S$_8$, MoS$_2$, oxomolybdenum, oxocobalt, and oxosulfomolybdenum or oxosulfocobalt species could be obtained from these spectra. These results again (5, 19) demonstrate that for sulfided samples the influence of the support on the actual active catalyst structure is much weaker than for oxidic samples.

CONCLUSIONS

From the data presented above it is concluded that laser Raman spectroscopy is very useful in studies of fresh oxidic HDS catalyst precursors. Raman spectra clearly distinguish between Mo and Co phases present in these catalysts. Relations between the concentration of some of these phases and catalytic activity for certain reactions may be worked out via quantitative Raman spectroscopy studies.

Further studies could also be made, for instance with respect to the influence of sodium or silica on the nature and distribution of the Mo species present on the alumina carrier surface. It also seems worthwhile to study the effect of partial reduction by hydrogen on oxidic samples as well as the effect of $\text{H}_2\text{S}/\text{H}_2$ sulfidation by means of in situ Raman techniques.

ACKNOWLEDGMENTS

Thanks are due to Miss Marleen Vos for her skillful assistance in recording the Raman spectra and to Leo Steenweg and Hans van der Vliet for preparation and characterization of the samples.

REFERENCES

6. van Stuij, C., Internal report TNO.