Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Binding: GFN1-xTB Method

José Manuel Vicent-Luna, Sofia Aperi, and Shuxia Tao*

ABSTRACT: In recent years, metal halide perovskites (MHPs) for optoelectronic applications have attracted the attention of the scientific community due to their outstanding performance. The fundamental understanding of their physicochemical properties is essential for improving their efficiency and stability. Atomistic and molecular simulations have played an essential role in the description of the optoelectronic properties and dynamical behavior of MHPs, respectively. However, the complex interplay of the dynamical and optoelectronic properties in MHPs requires the simultaneous modeling of electrons and ions in relatively large systems, which entails a high computational cost, sometimes not affordable by the standard quantum mechanics methods, such as density functional theory (DFT). Here, we explore the suitability of the recently developed density functional tight binding method, GFN1-xTB, for simulating MHPs with the aim of exploring an efficient alternative to DFT. The performance of GFN1-xTB for computing structural, vibrational, and optoelectronic properties of several MHPs is benchmarked against experiments and DFT calculations. In general, this method produces accurate predictions for many of the properties of the studied MHPs, which are comparable to DFT and experiments. We also identify further challenges in the computation of specific geometries and chemical compositions. Nevertheless, we believe that the tunability of GFN1-xTB offers opportunities to resolve these issues and we propose specific strategies for the further refinement of the parameters, which will turn this method into a powerful computational tool for the study of MHPs and beyond.

INTRODUCTION

Metal halide perovskites (MHPs) are novel semiconductors that have gained great scientific attention in the recent years due to their excellent optoelectronic properties, which make them suitable for applications such as perovskite solar cells and light-emitting diodes. MHPs have the chemical formula ABX₃, where A is a monovalent organic or inorganic cation [Cs⁺, CH₃NH₃⁺, and CH(NH₂)₂⁺], B is a metal divalent cation (typically Pb²⁺ or Sn²⁺), and X is halide anions (I⁻, Br⁻, and, to a lesser extent, Cl⁻). Combining these compounds results in a semiconductor that exhibits suitable band gaps, high light absorption performance, low exciton binding energies, long carrier diffusion lengths, and high charge carrier mobility. In addition, MHPs exhibit a competitive fabrication cost together with a simple route to synthesize. Despite all these desirable properties, instability issues critically hamper their industrial application. Nowadays, many experimental and theoretical researchers are engaged in extending the understanding of the fundamental physicochemical properties of MHPs, which is crucial for increasing their stability. Computational modeling has proven to be a valuable tool to this endeavor since it can provide essential atomistic and microscopic insights into the fundamental properties of materials that are difficult, if not impossible, to obtain experimentally. There are diverse computational methods, and each has its own advantages and limitations to investigate processes at different sizes and time scales. Density functional theory (DFT) is the golden standard in materials science in predicting material properties. In recent years, DFT calculations have been used to study many properties of MHPs, such as geometrical, optoelectronic, and vibrational properties, enthalpies of formation, defect activity, and ion migration, among others. On the other hand, molecular dynamics simulations based on classical force fields have proven to be useful in the study of the dynamical features of MHPs, such as ionic
diffusion, structural phase transitions, thermal and ionic conductivities, or phonon density of states (DOS).

Despite the advantages of the aforementioned techniques, there are also plenty of limitations. The high computational cost of DFT calculations limits the study to small systems and short timescales. This is a considerable restriction since many of the most relevant and challenging advances in MHPs require the study of larger systems. These include alloys combining several cations, metals, and anions, the effect of the concentration of vacancies and defects in the crystal, the confinement of MHPs within porous materials such as silica matrices or metal–organic frameworks, and the interface of perovskites with other materials acting as charge-transport layers. Classical simulations seem to be an “in part” solution to the above-mentioned size limitations of DFT calculations; however, they suffer from other drawbacks, such as the inability to simulate electrons and chemical reactions that are essential for the description of many properties of MHPs. Besides, classical simulations need a suitable and realistic force field, which is challenging to parameterize.

Semiempirical quantum mechanics methods, such as density functional tight binding (DFTB), could provide an ideal and complementary platform, combining the functionalities of both electronic and ionic description. Traditional DFTB methods are based on simplifying the Kohn–Sham DFT total energy as a function of the electron density using precomputed interactions of element pairs, considerably reducing the computational cost. These pair interactions as a function of the distance are tabulated and stored in the so-called Slater–Koster files. However, this parameterization lacks transferability and is limited to a number of elements. Parameters for the most common perovskite constituents, such as Cs, Pb, Sn, and the halides, are not yet available.

GFN1-xTB is a new extended tight binding method, recently developed by Grimme et al., that covers most of the elements of the periodic table up to Z = 86. To the best of our knowledge, GFN1-xTB is the first DFTB method that includes a complete parameterization of all the atoms existing in MHPs. This method comprises a limited number of physically interpretable parameters that can be refined to study several key properties of given material systems. The GFN1-xTB method was first designed for the calculation of molecular complexes but not for periodic systems. Recently, the computation of periodic systems became possible in the Amsterdam density functional suite, however, its performance is still unknown.

In this work, we investigate the effectiveness of GFN1-xTB by calculating the main properties of MHPs via a comprehensive comparison with DFT and experimental data. To achieve that, we analyze the energetic, structural, electronic, and vibrational properties of all primary (18) MHPs with the formula ABX₃ (A = CH₃NH₃⁺ or MA⁺, CH(NH₂)₂⁺ or FA⁺, and Cs⁺; B = Pb²⁺ and Sn²⁺; and X = I⁻, Br⁻, and Cl⁻) in their cubic, tetragonal, and orthorhombic forms. Our results suggest that the original parameterization of GFN1-xTB describes targeted properties of MHPs properly. However, its performance in geometry relaxation calculations still requires further improvements, especially for the structures with a lower symmetry. We find that electronic properties of formamidinium cations are incorrectly predicted due to the presence of complex chemical bonds, such as dynamic covalent bonds. We conclude that GFN1-xTB is a promising method for the study of molecular and periodic systems of larger sizes, unattainable for standard DFT. However, further targeted refinement of its parameters is required to eliminate the current limitations.

SIMULATION DETAILS

The DFTB simulations presented in this work were carried out in AMS2019.3 SCM software, with the implementation of the GFN1-xTB method for periodic systems. The GFN1-xTB Hamiltonian comprises four independent terms based on functional forms with adjustable parameters: electronic, repulsion, dispersion, and halogen-bonding terms (see refs 35 and 37 for a detailed description of the method).

The GFN1-xTB method. The nuclear gradient convergence and the Coulombic interactions were computed with the Ewald summation method with a tolerance of 5 eV and a 4 × 4 × 4 k-point grid. The D3 correction that accounts for the van der Waals interactions was
employed when specified. In addition, reference DFT data using the PBEsol functional used for comparison were taken from a previous publication of Tao et al.

RESULTS AND DISCUSSION

Structural Properties. K-Points Convergence. The number of k-points used in quantum calculations to sample the Brillouin zone is an important parameter that influences the accuracy of the results. The use of many k-points not only ensures higher precision but also increases the computational cost of the simulations. A compromise between accuracy and computational cost is necessary. We first performed a set of calculations to determine how the number of k-points affects the results. By performing small deformations, that is, isotropic expansions and compressions of the unit cell, we calculated the energy of the systems as a function of the lattice parameter. The systems were confined in a fixed volume, and only the ionic positions were optimized, as described in the Simulation Details section. We selected cubic CsPbI3 and MAPbI3 as test systems with inorganic and organic cations, respectively. We analyzed the convergence of the k-points with n = 15 k-points in each direction as the reference (where the total number of k-points is n × n × n), a choice justified by our results, since the deviation of the computed energies compared with those obtained for n = 11 and 13 is almost negligible (Figure S1).
Lower values of \(n \) lead to the prediction of smaller structures and more significant deviations on the extremes of the curves. The rmsd presented in Figure 1a decreases fast up to \(n = 5 \) and plateaus for higher values. We found a good compromise between accuracy and computational cost for \(n = 9 \), and we therefore chose this number of \(k \)-points to simulate systems with lattice parameters around 6 Å, which is the standard size of the unit cell of cubic perovskites. For the larger tetragonal and orthorhombic unit cells, we reduced the number of \(k \)-points accordingly; it is 7 \(k \)-points for lattice parameters around 9 Å and 5 \(k \)-points for lattice parameters around 12 Å.

Equation of States. The ability of a computational method to describe the energy changes upon a small deformation of the structures around the equilibrium is important not only for the description of the materials but also for the development of potential parameters for classical simulations. To assess the ability of GFN1-xTB in this regard, we compared its performance with DFT (PBE + D3) in producing energy curves after isotropic distortions of the cubic MHPs. We also analyzed the effect of the dispersion correction in the simulation of MHP crystals.

In Figure 2, the results for lead-based MHPs containing Cs\(^+\) or MA\(^+\) cations and I\(^-\) and Br\(^-\) anions are presented, with and without the dispersion energy (see the Simulation Details section for more details) and compared to DFT (PBE + D3) data. The D3 dispersion term tends to shift the curve to lower lattice parameters, resulting in the over-compression of the crystal. This correction describes the attractive part of the van der Waals interactions, which is very prominent in the molecular systems for which GFN1-xTB was initially developed to describe. In our case, the correction does not accurately describe the dispersion forces in the MHP crystals, therefore eliminating it from the GFN1-xTB Hamiltonian. Out of all the studied compositions, the largest discrepancy is found in the FA\(^+\) perovskites. Because MA\(^+\) and FA\(^+\) cations are quite similar, being formed by carbon, nitrogen, and hydrogen atoms, one would expect GFN1-xTB to perform similarly with structures containing these cations. However, as shown in Figure 3, upon compression and expansion of the unit cell, the relative energies of FAPbI\(_3\) and FAPbBr\(_3\) exhibit an erratic behavior. Specifically, we found that small changes in the lattice parameters of the perovskite produce relatively high energy jumps, contrary to the smooth trends depicted in Figure 2. This unexpected behavior is due to the molecular structure of the FA\(^+\) cations. Unlike MA\(^+\), FA\(^+\) cations contain a dynamic double bond between the carbon atom and one of the two attached nitrogen atoms. The presence of a double bond in a charged molecule affects the electronic configuration of the atoms, in a way that does not seem to be accounted for in the original GFN1-xTB parameterization, and as a result, the method fails to describe FA\(^+\)-containing MHPs.

Organic Cation Rotation Barrier. Another significant property that a computational method should be able to
describe accurately is the configuration of the cations within the PbI₆ octahedra of the MHPs. We put GFN1-xTB to the test by calculating the energy of our systems as a function of the MA⁺ cation rotation angle. Specifically, starting from the equilibrium configuration, we rotated the MA⁺ cations in the unit cells of MAPbI₃ and MAPbBr₃ around the C−N axis and the energies were acquired by single-point calculations (Figure 4). We found good agreement between GFN1-xTB and DFT, with GFN1-xTB being able to reproduce the energy barrier for the rotation of MA⁺ cations predicted with DFT (PBE + D3). Both methods suggest that the peak of the rotation energy barrier is around 180° from the equilibrium angle. We observe slight differences in the energy values, which can be attributed to the fact that equilibrium geometries from GFN1-xTB and DFT (PBE + D3) are slightly different, and the rotation energies can only be calculated via single-point calculations. It is also worth noting that for single-point calculations, the D3-relative energies are almost the same (each configuration deviates less than 0.002 eV) as the ones without D3. This is because the geometry of the system does not change during the calculation, and then, the D3 term only contributes to the total energy with a constant value. Figure S5 shows the corresponding results for the rotation of FA⁺ cations in FAPbI₃, where the inability of GNF1-xTB to properly describe FA⁺ is manifested once more.

Structural Optimization. All the previous results of relative energies are based on the calculations of the cubic systems having fixed lattice constants (volume) describing an equation of state. However, a successful computational method needs to be able to predict equilibrium structures through full geometry optimizations. In Figure 5, the results of the full geometry optimizations of the cubic, tetragonal, and orthorhombic phases of all MHPs studied in this work are compared with the DFT (PBEsol) reference values. In general, GFN1-xTB tends to underestimate the lattice parameters of the MHPs, resulting in an over-compression of the material (Figure 5a). Most of the GFN1-xTB-calculated data nevertheless follow the same trend as the reference. However, a few points deviate considerably from the reference values, indicating a vast deformation of some of the crystal structures.

To distinguish which structures and/or elements are harder for GFN1-xTB to describe, we analyzed the interatomic deviations for each system separately. The data are taken from Figure 5b, where the range of interatomic distances is chosen to take into account the relative positions between each atom of one unit cell with atoms of the adjacent unit cell. Figure 6 shows the percentage of deviation of the interatomic distances by varying the A, B, and X species and the crystal shape. In general, GFN1-xTB predicts better the geometries of more symmetrical phases than the crystals with a less symmetry following the order: cubic > tetragonal > orthorhombic. The higher distortion is observed for orthorhombic phases reaching values of deviation up to 20−30% from the reference data, while cubic structures are predicted with a maximum error lower than 10−15%.

MHPs containing Cs⁺ and I⁻ seem to be better predicted, and Pb-based MHPs are better than their respective Sn-based MHPs. Overall, the geometry seems to be a more influential factor than the composition. The method describes the simplest and high-symmetry cubic geometries better than the more complex and distorted orthorhombic phases. This can be related to the fact that the GFN1-xTB Hamiltonian is based on the interatomic distances between pairs of atoms, which are more uniformly distributed in more symmetrical systems.
Electronic Properties. Band Structure. Another advantage of the DFTB methods over classical simulations is the ability to describe electronic properties. To benchmark the performance of GFN1-xTB in the prediction of the electronic properties of MHPs, we compared the GFN1-xTB-calculated electronic band structure of the most typical CsPbI₃ and MAPbI₃ MHPs with the respective DFT (PBE + D3) band structures. As can be seen in Figure 7, there is excellent agreement between GFN1-xTB and DFT, with the same observed trends for the more important bands, that is, those closer to the conduction and the valence bands. Both MHPs exhibit a direct band gap at the Γ point with values of 1.91 and 1.93 eV for CsPbI₃ and 1.61 and 1.66 eV MAPbI₃ obtained with DFT (PBE + D3) and GFN1-xTB calculations, respectively. We also confirmed that these predictions are in line with the experimental observations (Figure 8) by calculating the band gaps of the CsBX₃ and MABX₃ MHPs.

From the geometrical analysis, we know that some of the GFN1-xTB-optimized systems can suffer a considerable structural distortion. To account for these deformations and their effect on the calculated band gaps, we compared the band structures of the systems previously optimized with DFT (PBE + D3) (DFTB-DFT-opt) to those optimized with GFN1-xTB (DFTB-DFTB-opt). The results are presented in Figure 8, together with the experimental data reported by Tao et al. Most of the calculated band gaps are very close to the experiments and only a few deviate, with the largest differences observed for the CsPbCl₃ and CsSnCl₃ MHPs. GFN1-xTB also predicts the correct behavior of the band gap evolution when changing the halide anion, that is, the band gap increases as the size of the anion decreases. We can also observe that the GFN1-xTB optimization worsens the agreement with experiments but still predicts the correct tendency. It is worth mentioning that GFN1-xTB can predict the band gaps of the perovskites similar to more expensive DFT calculations reported in the literature. We note that standard DFT generally underestimates band gaps; however, not taking into account spin orbit coupling/relativistic effects also leads to band gap predictions comparable to the experiments due to

Figure 6. Histogram of the percentage of deviation of interatomic distances between all atom pairs calculated with GFN1-xTB with respect to the reference DFT values in cubic, tetragonal, and orthorhombic MHPs. The reference DFT results were computed using the PBEsol functional without D3 dispersion corrections.

Figure 7. Calculated PBE + D3 (DFT, blue) and GFN1-xTB (DFTB, red) band structure for the orthorhombic CsPbI₃ (a,c) and tetragonal MAPbI₃ (b,d).
error cancelation. Nevertheless, our results indicate that GFN1-xTB is also suitable for the reasonable prediction of the electronic properties of MHPs.

Density of States. To analyze the electronic properties of the MHPs in more detail, we computed the contribution of each species to the electronic DOS. In Figure 9, the GFN1-xTB-calculated partial DOS for the DFT (PBEsol)-optimized CsPbI$_3$, MAPbI$_3$, and FAPbI$_3$ is compared to its DFT counterpart. In general, GFN1-xTB gives similar results to DFT (PBEsol), at least around the band gap; there are however some discrepancies far away from the band edges, with some peaks deviating up to 2 eV. The performance of GFN1-xTB is generally acceptable but with two notable exceptions: the absence of peaks for Cs$^+$ around -9 and -14 eV in CsPbI$_3$ and a systematic shift to higher energies of the FA$^+$ signals. The latter deviation produces a peak within the band gap of FAPbI$_3$, close to the valence band maximum that hinders the estimation of a reliable band gap value. In MHPs, there should not be any contribution of the cations between the valence and conduction bands. However, MA$^+$ cations (which have the same elements than FA$^+$ cations) do not show any feature within the band gap. We attribute this to the presence of nonlocalized double C=N bonds in FA$^+$ cations. The presence of these complex bonds affects the electronic environment of C and N atoms, and it is not correctly captured by the GFN1-xTB method. The problem with the description of the electronic behavior of FA$^+$ seems to be the underlying reason for the erroneous description of the relative energies depicted in Figure 3.

Vibrational Properties. The last examination conducted in this work involves the calculation of the vibrational properties of MHPs, which are a fundamental aspect for the study of the MHP stability and the differences between the various structural phases. In Figure 10, the GFN1-xTB-calculated phonon dispersion for the cubic CsPbI$_3$ and CsPbBr$_3$ is presented and compared to its DFT counterpart reported in the literature. A certain agreement is observed between the two methods, with most of the identified vibrational modes in both MHPs fluctuating around the same energies (or frequencies). Remarkably, GFN1-xTB predicts the existence of imaginary acoustic modes with negative energies or frequencies, also known as soft modes, at the M and R points, which is a common aspect of the cubic MHPs, indicative of the dynamical instabilities of the structures. Similarly, GFN1-xTB predicts the disappearance of the imaginary modes, when replacing the cubic with the tetragonal structure.

![Figure 8](image_url)

Figure 8. Comparison between experimental (black squares) and computed GFN1-xTB (DFTB) band gaps for the orthorhombic CsBX$_3$ and tetragonal MABX$_3$ (B = Pb and Sn and X = I, Br, and Cl). The structures were previously optimized with GFN1-xTB (DFTB, blue circles) and PBEsol (DFT, red diamonds). Experimental values are taken from Tao et al.

![Figure 9](image_url)

Figure 9. Partial DOS for the orthorhombic CsPbI$_3$ and tetragonal MAPbI$_3$ and FAPbI$_3$ computed with PBEsol (DFT, top) and GFN1-xTB (DFTB, bottom).
more stable orthorhombic phases (Figure S7), in agreement with the data reported in previous works.51 In addition to the Cs-based perovskites, we also found a similar satisfactory performance for MA-based MHPs. Figure S8 shows the phonon dispersion for the cubic and orthorhombic MAPbI\(_3\), where once more than the expected suppression of the imaginary modes in the most stable phase is observed. Specifically, the phonon dispersion of the cubic MAPbI\(_3\) exhibits negative modes at M and R, while for the orthorhombic phase, the lowest phonon modes have zero frequency at the gamma point, in good agreement with the data reported by Walsh et al.19 These results suggest that GFN1-xTB is a valid tool for the efficient and accurate description of the vibrational properties of MHPs.

\section*{CONCLUSIONS}

This work provides a comprehensive overview of the performance of the semiempirical GFN1-xTB tight binding method for the study of MHPs. Our analysis suggests that this method is suitable for the description of a variety of properties of the most common MHPs with reasonable accuracy. Such properties are (1) energetic and geometrical properties such as equations of state, rotation energy barriers of organic cations, and geometrical relaxation; (2) electronic properties such as band structures, band gaps, and partial DOS; and (3) vibrational properties such as phonon dispersions. Despite its general effectiveness, GFN1-xTB has some shortcomings that do not yet allow for the accurate computation of specific material properties or particular chemical compositions. We identified two main limitations. The first one is the undesirable structural distortion of certain structures after a full geometry optimization. In this regard, orthorhombic phases can deviate up to 20–30\% from the reference data, in contrast to the cubic crystals that show a maximum deviation lower than 10–15\%. The second limitation is the inaccurate description of the charged molecules with double or triple bonds, such as FA\(^+\) cations, which extends to the description of their electronic behavior. The tunability of GFN1-xTB nevertheless will potentially allow us to overcome the mentioned deficiencies. The GFN1-xTB Hamiltonian contains various independent terms (electronic, repulsive, dispersion, and halogen-bonding terms) based on adjustable parameters that can be fitted to improve the quality of the results. Future works should focus on refining the repulsive potential parameters to avoid the observed deviation of interatomic distances and achieve the prediction of more accurate geometries. Modifying the electronic term parameters so that double and triple bonds in charged systems are properly accounted for is also necessary. With further work on this line, we believe that the GFN1-xTB method can become a powerful tool to simulate not only MHPs but also other systems in the area of materials science and beyond.

\section*{DATA AND SOFTWARE AVAILABILITY}

Data concerning the results presented here, as well as input and output files, and DFT and GFN1-xTB-optimized MHPs are available from the corresponding author upon reasonable request and without restriction. The AMS2019.3 software used for GFN1-xTB calculations can be purchased at the https://www.scm.com/support/downloads/ website, and VASP software version 5.4.1 to generate the reference DFT data can be purchased at the https://www.softwaresuggest.com/us/vasp website. An evaluation or demo license of both software packages is provided by the vendor upon request. All the figures were made with GNUPLLOT 5.2 which is freely available from the http://www.gnuplot.info/download.html website.

\section*{ASSOCIATED CONTENT}

\section*{Supporting Information}

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.1c00432.

Additional equation of states, organic cation energy barriers, DOS, and phonon dispersion band structure (PDF)

\section*{AUTHOR INFORMATION}

\section*{Corresponding Author}

Shuxia Tao – Materials Simulation and Modelling, Department of Applied Physics and Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; orcid.org/0000-0002-3658-8497; Email: s.x.tao@tue.nl

\section*{Authors}

José Manuel Vicent-Luna – Materials Simulation and Modelling, Department of Applied Physics and Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; orcid.org/0000-0001-8712-5591

Sofía Apergi – Materials Simulation and Modelling, Department of Applied Physics and Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, 5600 MB
Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jcim.1c00432

Notes
The authors declare no competing financial interest.

Acknowledgments

J.M.V.L. and S.A. acknowledge funding support from NWO (Netherlands Organization for Scientific Research) START-UP from the Netherlands. S.T. acknowledges funding by the Computational Sciences for Energy Research (CSER) tenure track program of Shell and NWO (project no. 15CST04-2) as well as NWO START-UP from the Netherlands. The authors also thank stimulating discussions within the SCALEUP consortium (SOLAR-ERA.NET Cofund 2, id: 32).

References

(35) Grimes, S.; Bannwarth, C.; Shushkov, P. A. Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large

