(k-1)-mean significance levels of nonparametric multiple comparisons procedures
Oude Voshaar, J.H.

Published: 01/01/1978

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Memorandum COSOR 78-13

(k-1)-mean significance levels of
nonparametric multiple comparisons procedures

by

J.H. Oude Voshaar

Eindhoven, May 1978

The Netherlands
Summary

(k-l)-mean significance levels of nonparametric multiple comparisons procedures

by J.H. Ou de Voshaar.

We consider the nonparametric pairwise comparisons procedures derived from the Kruskal-Wallis test and from Friedman's test. For large samples the (k-l)-mean significance level is determined, i.e. the probability of concluding incorrectly that some of the first k-l samples are unequal. We show that this probability may be larger than the simultaneous significance level α. Even when the k^{th} sample is a shift of the other k-l samples, it may exceed α, if the distributions are very skew. Here skewness is defined with Van Zwet's c-ordering of distribution functions.
(K-1)-MEAN SIGNIFICANCE LEVELS OF NONPARAMETRIC MULTIPLE COMPARISONS PROCEDURES.

by J.H. Oude Voshaar

Eindhoven University of Technology

Abreviated title: NONPARAMETRIC MULTIPLE COMPARISONS PROCEDURES.

1. Introduction.

Consider k samples of size n with continuous distribution functions F_1, \ldots, F_k. The projection argument, by which the Scheffé simultaneous confidence intervals are derived from the F statistic, can also be applied to the Kruskal-Wallis statistic (see Miller (1966), p. 165-172). This leads to the following pairwise comparisons procedure, proposed by Nemenyi (1963): conclude $F_i \neq F_j$ for large values of $|\bar{R}_i - \bar{R}_j|$, where \bar{R}_i is the mean of the ranks of the i^{th} sample. Throughout this paper we shall assume n to be large (except for section 8, where finite sample studies are treated) and under the nullhypothesis $H_0: F_1 = \ldots = F_k$. We have for $n \to \infty$:

$$\Pr[\max_{1 \leq i, j \leq k} |\bar{R}_i - \bar{R}_j| < q_k^\alpha \{k(kn+1)/12\}^{1/2}] = 1 - \alpha,$$

where q_k^α is the upper α point of the distribution of the range of k independent standard normal variables. So for large n the procedure prescribes:

$$\text{conclude } F_i \neq F_j \text{ if } |\bar{R}_i - \bar{R}_j| \geq q_k^\alpha \{k(kn+1)/12\}^{1/2}$$

and the simultaneous significance level (sometimes called: experimentwise error rate) is approximately equal to α.

We shall be concerned with the following problem: if H_0 is not valid, but $F_1 = \ldots = F_{k-1} = F$ and $F_k = G$, what will in that case be the value of

$$\alpha(F,G) := \lim_{n \to \infty} \Pr[\max_{1 \leq i, j \leq k-1} |\bar{R}_i - \bar{R}_j| \geq q_k^\alpha \{k(kn+1)/12\}^{1/2}],$$

Key words and phrases. Multiple comparisons, k-sample problem, block effects, (k-1)-mean significance level, shift alternatives, c-comparison of distribution functions, skewness, strongly unimodal.
i.e. what is (for \(n \to \infty \)) the probability of concluding incorrectly that some of \(F_1, \ldots, F_{k-1} \) are different? Usually \(\alpha(F,G) \) is called the \((k-1)\)-mean significance level. It is clear that it depends also on \(G \), as the distributions of \(\bar{R}_i \) and \(\bar{R}_j \) \((1 \leq i, j \leq k-1)\) depend on \(F_k \).

In sections 3 and 4 we shall see that there exist pairs \((F,G)\) such that \(\alpha(F,G) \) is larger than \(\alpha \), even when \(G \) is a shift of \(F \). In section 4 and later sections only shift alternatives are regarded and it turns out that \(\alpha(F) \), defined by \(\alpha(F) := \sup_{a \in \mathbb{R}} \alpha(F,F(.-a)) \), is larger than \(\alpha \) only if \(F \) is very skew. Here skewness will be defined with the \(c \)-comparison of distribution functions, introduced by Van Zwet (1964). If \(F \) is less skew than the exponential distribution, that is: \(\log F \) and \(\log(1-F) \) both concave, then \(\alpha(F) \leq \alpha \) (section 6).

If block effects are present, a similar multiple comparisons procedure can be derived from Friedman's test (see Miller (1966), p. 172-178). Here the situation is quite similar to the previous one: the \((k-1)\)-mean significance level may be larger than \(\alpha \), and more specifically: \(\alpha^*(F) \) is larger as \(F \) is skewer (section 7).

An auxiliary result which we shall prove is the following one (see section 5):

Let \(X \) have distribution function \(F \) and define

\[
(1.4) \quad v(F) := \sup_{a \in \mathbb{R}} \text{var} \ F(X-a) \quad \quad c(F) := \sup_{a \in \mathbb{R}} \text{cov} \ (F(X), F(X-a)),
\]

then we have:

If \(F_2 \) is skewer than \(F_1 \), than \(v(F_2) \geq v(F_1) \) and \(c(F_2) \geq c(F_1) \).
2. Another expression for $\alpha(F,G)$

Up to and including section 6 we shall consider the case where no blocks are present, so let $X_{i1}, \ldots, X_{in}; \ldots; X_{k1}, \ldots, X_{kn}$ be independent random variables $(k \geq 3)$, where X_{ij} has a continuous distribution function F_i. Let R_{ij} denote the rank of X_{ij} among all observations and define \bar{R}_i by:

$$\bar{R}_i := n^{-1} \sum_{j=1}^{n} R_{ij}$$

In order to determine $\alpha(F,G)$, we first must know the asymptotic distribution of the range of $\bar{R}_1, \ldots, \bar{R}_{k-1}$ for the case $F_1 = \ldots = F_{k-1} = F$ and $F_k = G$. Using theorem 2.1 of Hájek (1968) one can easily prove the asymptotic normality of the vector $(\bar{R}_1, \ldots, \bar{R}_{k-1})$ under this alternative (the proof is omitted here).

If we define p, q and r by:

\begin{align*}
p &:= \int G dF \\
q &:= \int G^2 dF \\
(2.1) \\
r &:= \int FG dF
\end{align*}

then, after a tedious computation, the following relationships can be found for $1 \leq i, j \leq k-1$:

\begin{align*}
(2.2) & \quad E \bar{R}_i = \frac{1}{4}(kn+1) + (p-1)n \\
(2.3) & \quad \text{var } \bar{R}_i = \frac{1}{12}k^2 n + (2r-p-1)kn + (4p^2-2p^2+q-6r+\frac{1}{6})n + \frac{1}{12}k - p^2 - q + 2r - \frac{1}{6} \\
(2.4) & \quad \text{cov}(\bar{R}_i, \bar{R}_j) = -\frac{1}{12}kn + (3p-p^2-4r+\frac{1}{12})n - \frac{1}{12}.
\end{align*}

So $n^{-\frac{1}{2}}(\bar{R}_1, \ldots, \bar{R}_{k-1})$ has an asymptotically normal distribution with covariance matrix:

$$\begin{bmatrix}
a_1 \\ a_2 \\ \vdots \\ a_1 \\ a_2 \\ \vdots \\ a_1
\end{bmatrix},$$

where $a_1 := k^2/12 + (2r - p - \frac{1}{4})k + 4p - 2p^2 + q - 6r + \frac{1}{6}$ and $a_2 := -k/12 + 3p - p^2 - 4r + \frac{1}{12}$.
If we define (see also Miller (1966), p. 46):
\[\gamma := 1 + \frac{(a_1-a_2)/(a_1+(k-2)a_2))^{1/2}}{2} \]
and
\[\overline{R} := (k-1)^{-1} \sum_{i=1}^{k-1} \overline{R}_i \]
then \(n^{-1/2}(\overline{R}_1 - \gamma \overline{R}, \ldots, \overline{R}_{k-1} - \gamma \overline{R}) \) has an asymptotically normal distribution with covariance matrix \((a_1-a_2)I_{k-1}\) (where \(I_{k-1}\) denotes the identity matrix of size \(k-1\)). If we set \(b := a_1-a_2 \), then we have thus found that the range of \((nb)^{-1/2}R_1, \ldots, (nb)^{-1/2}R_{k-1}\) has asymptotically the same distribution as the range of \(k-1\) independent standard normal random variables. Henceforth this last range will be denoted by \(Q_{k-1}\). Since \(b\) depends on \(F\) and \(G\), we shall write \(b(F,G)\) and we may conclude:

\[(2.5) \quad \alpha(F,G) = P[Q_{k-1} > q_k \{ k^2/12 b(F,G) \}^{1/2}] , \]

where

\[(2.6) \quad b(F,G) = k^2/12 + (2r - p - \frac{1}{6})(k - 1) + q - p^2 - \frac{1}{12} . \]

Remarks:

1. If \(X\) has distribution function \(F\), then:

\[2r - p = 2 \ \text{cov} (F(X),G(X)) \]

\[q - p^2 = \text{var} G(X) . \]

2. If \(F = G\), then \(b(F,G) = k^2/12\), so under \(H_0\) we (naturally) have \(\alpha(F,G) \leq \alpha\).
3. Maximum of $a(F,G)$.

Now we shall compute the maximum value of $a(F,G)$ and we want to know whether it is larger than a. Remark that this may depend on k and a. From (2.6) we see that $a(F,G)$ is maximal when $b(F,G)$ is maximal. Writing

\begin{equation}
2r - p = \int (2F - 1)GdF,
\end{equation}

we see that $2r - p$ is maximal if F and G satisfy the following two conditions:

\begin{align*}
\text{if } F(x) < \frac{1}{2} \text{ then } G(x) = 0, \\
\text{if } F(x) > \frac{1}{2} \text{ then } G(x) = 1,
\end{align*}

that is: $F = \frac{1}{2}$ on the support of G.

Now it happens that $q^2 - p^2$ is maximized by the same pairs (F,G), so from (2.6) and (2.5) it follows that $a(F,G)$ is maximal for the pairs (F,G) satisfying (3.2). As for these pairs $2r-p$ and $q^2 - p^2$ are both equal to $1/4$, we conclude that the maximum value of $a(F,G)$ is equal to:

\[P[Q_k > q_k^\alpha (k^2/(k^2 + k + 1))^{1/2}] \]

With the aid of a table of the c.d.f. of the range of independent standard normal variables, e.g. Harter (1969), we can find these values for several values of k and a. From table 3.1 we see that in general $\max a(F,G)$ is larger than a.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\multicolumn{2}{|c|}{} & \multicolumn{11}{c|}{Maximum values of $a(F,G)$ for $a = .01, .025, .05$ and .10} \\
\hline
\multicolumn{2}{|c|}{} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 & 15 & 20 \\
\hline
$a = .01$ & & .0153 & .0181 & .0182 & .0178 & .0172 & .0167 & .0162 & .0158 & .0151 & .0143 & .0134 \\
$a = .05$ & & .0512 & .0643 & .0682 & .0690 & .0688 & .0682 & .0674 & .0667 & .0652 & .0633 & .0612 \\
$a = .10$ & & .0877 & .1123 & .1208 & .1240 & .1250 & .1250 & .1245 & .1238 & .1224 & .1202 & .1172 \\
\hline
\end{tabular}
\end{table}

Remark:

If we keep in mind that $b(F,G) = \frac{1}{n} \lim \var n^{-\frac{1}{2}} (\bar{R}_i - \bar{R}_j) (1 \leq i, j \leq n)$, then it is also clear intuitively, that $b(F,G)$ is maximal if F and G satisfy (3.2), since in that case the k^{th} sample is expected to receive the midranks.
4. Shift alternatives

From this moment we shall consider only pairs \((F, G)\) for which there exists an \(a \in \mathbb{R}\) such that:

\[
G(x) = F(x-a) \quad \text{for all } x \in \mathbb{R}
\]

and again we ask ourselves whether \(\alpha(F, G)\) may be larger than \(\alpha\).

As now \(\alpha(F, G)\) and \(b(F, G)\) in fact depend on \(F\) and \(a\), we shall modify our notation:

\[
\alpha(F, a) \equiv \alpha(F, G)
\]

\[
b(F, a) \equiv b(F, G),
\]

where \(G\) is given by (4.1).

If \(X\) has distribution function \(F\), then we define:

\[
c(F, a) \equiv \text{cov}(F(X), F(X-a)) = \int (F(x) - \frac{1}{2})F(x-a)dF(x),
\]

\[
v(F, a) \equiv \text{var} F(X-a).
\]

Now we can rewrite (2.5) and (2.6):

\[
a(F, a) = P\{Q_{k-1} > q_k\frac{k^2}{12b(F, a)}\},
\]

where

\[
b(F, a) = \frac{1}{12} k^2 + \left(2c(F, a) - \frac{1}{6}\right) (k-1) + v(F, a) - \frac{1}{12}.
\]

Furthermore we define:

\[
\alpha(F) \equiv \sup_{a \in \mathbb{R}} \alpha(F, a)
\]

and \(b(F), c(F)\) and \(v(F)\) analogously (see also (1.4)).

First we try to maximize \(c(F, a)\) over \(F\) and \(a\). Suppose \(a > 0\), then \(F(x-a) \leq F(x)\) for all \(x \in \mathbb{R}\) and consequently:

\[
c(F, a) \leq \int_{\{F(x) > \frac{1}{2}\}} (F(x) - \frac{1}{2})F(x-a)dP(x) \leq \int_{\{F > \frac{1}{2}\}} (F^2 - \frac{1}{2}F)dF = \frac{5}{48}.
\]

If \(a < 0\), then also \(c(F, a) < \frac{5}{48}\) for all \(F\).

On the other hand \(\frac{5}{48}\) turns out to be the lowest upperbound, since for \(F_m\), defined below in (4.8), we have \(c(F_m, \frac{1}{2}) = \frac{5}{48} - O(m^{-1})\).

\[
F_m(x) := \begin{cases} x + \frac{1}{m} & \text{if } -\frac{1}{m} \leq x \leq 0, \\ \frac{x}{m} + \frac{1}{2} & \text{if } 0 \leq x \leq \frac{m}{2}. \end{cases}
\]
Furthermore we have that \(\lim_{m \to \infty} v(F, \frac{1}{m}) = \frac{29}{192} \) and hence by (4.5):

\[
(4.9) \quad \sup_{F,a} b(F,a) \geq \frac{1}{12} (k^2 + \frac{1}{2}k + \frac{5}{16}),
\]

which implies:

\[
(4.10) \quad \sup_{F} \alpha(F) \geq \mathbb{P}(Q_{k-1} > q_k^\alpha (k^2/(k^2 + \frac{1}{2}k + \frac{5}{16})^{\frac{1}{2}})).
\]

Table 4.1

Lower bounds for \(\sup_{F} \alpha(F) \).

<table>
<thead>
<tr>
<th>k=3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=.01</td>
<td>.0079</td>
<td>.0101</td>
<td>.0109</td>
<td>.0113</td>
<td>.0114</td>
<td>.0114</td>
<td>.0114</td>
<td>.0114</td>
<td>.0112</td>
<td>.0111</td>
</tr>
<tr>
<td>.25</td>
<td>.0175</td>
<td>.0230</td>
<td>.0253</td>
<td>.0263</td>
<td>.0268</td>
<td>.0271</td>
<td>.0273</td>
<td>.0273</td>
<td>.0272</td>
<td>.0270</td>
</tr>
<tr>
<td>.05</td>
<td>.0325</td>
<td>.0431</td>
<td>.0478</td>
<td>.0501</td>
<td>.0514</td>
<td>.0526</td>
<td>.0529</td>
<td>.0531</td>
<td>.0532</td>
<td>.0530</td>
</tr>
<tr>
<td>.10</td>
<td>.0612</td>
<td>.0816</td>
<td>.0909</td>
<td>.0958</td>
<td>.0987</td>
<td>.1005</td>
<td>.1019</td>
<td>.1025</td>
<td>.1034</td>
<td>.1039</td>
</tr>
</tbody>
</table>

From table 4.1 we see that \(\sup_{F} \alpha(F) \) is larger than \(\alpha \) for several values of \(\alpha \) and \(k \). However the exceedances, if any, are rather small, much smaller than in the general case, treated in section 3.

It should be noticed here that (see Statistica Neerlandica (1977), page 189-191, solution of problem nr. 45):

\[
(4.11) \quad \sup_{F,a} v(F,a) = (3 - \sqrt{5}) \frac{5}{24},
\]

which value is reached (for \(m \to \infty \)) by the same \(F_m \) of (4.8) but for \(a \neq \frac{1}{2} \). However, the value in (4.11) is only slightly exceeding 29/192 and moreover \(2(k-1) \cdot c(F,a) \) is the dominant term in (4.5), so (4.10) is almost an equality, especially for \(k \) not too small. Consequently the lower bounds in table 4.1 are practically equal to \(\sup_{F} \alpha(F) \).

The next question is: which conditions on \(F \) are sufficient to guarantee \(\alpha(F) \leq \alpha \)?

The first result stated here is due to professor R. Doornbos:
Theorem 4.1:
If \(F \) is symmetrical and unimodal, then \(c(F) \leq \frac{1}{12} \) and hence \(a(F) \leq a \) for the usual values of \(a \) and \(k \).

Short proof:
Combining \(c(F) \leq \frac{1}{12} \) (proof omitted here) with (4.11), one will see that in (4.4) \(b(F,a) \) is not large enough to compensate the difference between \(q_{k-1}^\alpha \) and \(q_k^\alpha \).

We would like to relax the conditions on \(F \) in theorem 4.1, especially the symmetry is often not fulfilled in practice. However, unimodality alone is not sufficient to ensure \(a(F) \leq a \), since \(F_m \) of (4.8) is also unimodal. Theorem 4.1, together with the extreme skewness of \(F_m \), may suggest that \(a(F) \) is larger when \(F \) is skewer. In the next sections we shall see that this guess puts us on the right track.

Here skewness will not be the normed third moment, but it is defined with the \(c \)-comparison, introduced by Van Zwet (1964).
5. Skewness and its relation to \(c(F) \) and \(v(F) \).

We shall confine ourselves to the class \(F \) of continuous distribution functions \(F \), for which there exists a finite or infinite interval \(I_F = (x_1, x_2) \) such that the following three conditions are satisfied:

\[
\begin{align*}
(5.1) & \quad F(x_2) - F(x_1) = 1, \\
(5.2) & \quad F \text{ is differentiable on } I_F, \\
(5.3) & \quad F' > 0 \text{ on } I_F.
\end{align*}
\]

On this class \(F \) a weak order relation is defined, which is called the \(c \)-comparison:

Definition 5.1

If \(F_1, F_2 \in F \), then \(F_1 \leq c F_2 \) if \(F_2 \) is skewer to the right than \(F_1 \).

Property (lemma 4.1.3, Van Zwet (1964)):

If \(f_1 \) and \(f_2 \) are the densities of \(F_1 \) and \(F_2 \) respectively, then:

\[
(5.4) \quad F_1 \leq c F_2 \iff \frac{F_2^{-1}}{(F_1^{-1})'} = f_1(F_1^{-1})'f_2(F_2^{-1}) \text{ is nondecreasing on } (0, 1).
\]

For \(F \in F \) we define \(\bar{F} \in F \) by:

\[
(5.5) \quad \bar{F}(x) := 1 - F(-x) \text{ for all } x \in \mathbb{R}.
\]

Then we can prove the following property:

Lemma 5.1

If \(F_1, F_2 \in F \), then \(F_1 \leq c F_2 \iff \bar{F}_2 \leq \bar{F}_1 \).

Proof:

\[
\Rightarrow: F_2^{-1}F_1(-x) \text{ convex in } x \text{ implies: } F_1^{-1}F_2(-x) \text{ concave in } x.
\]

Hence \((F_1^{-1})^{-1}F_2(x) = -F_1^{-1}F_2(-x) \) is convex.

\[
\Leftarrow: \text{ Note that } \bar{F} = F.
\]

Using the \(c \)-comparison, we now define skewness on \(F \):

Definition 5.2:

\(F_2 \) is skewer than \(F_1 \) if \(\bar{F}_2 \leq c \bar{F}_1 \leq F_2 \) or \(F_2 \leq c F_1 \leq \bar{F}_2 \).

Notice that, if we only have \(F_1 \leq c F_2 \), \(F_1 \) still may be very skew to the left.
Now we want to prove that $c(F)$ and $v(F)$ are increasing according as F is skewer. But first we have to state two lemmas:

Lemma 5.2

Let f and g be real functions on an interval $I \subset \mathbb{R}$ (g positive), such that f/g is nondecreasing on I. If furthermore $x_1, x_2, x_3, x_4 \in I$, such that $x_1 \leq x_3$ and $x_2 \leq x_4$, then:

$$
\int_{x_1}^{x_2} f \leq \int_{x_1}^{x_2} g \leq \int_{x_3}^{x_4} f \leq \int_{x_3}^{x_4} g.
$$

Proof: Elementary calculus. □

Lemma 5.3

Let f and g be real functions on $(0,1)$ such that:

(i) $\int_0^1 f = \int_0^1 g < \infty$

(ii) there exists $x_0 \in (0,1)$ such that $f \leq g$ on $(0,x_0)$ and $f \geq g$ on $(x_0,1)$.

Then:

$$
\int_0^1 x f(x) dx \geq \int_0^1 x g(x) dx.
$$

This lemma is a special case of a theorem due to J.F. Steffenson (see Mitrinović (1970), page 114, theorem 13).

Theorem 5.1

If F_2 is skewer than F_1 ($F_1, F_2 \in F$), then:

(a) $c(F_1) \leq c(F_2)$,

(b) $v(F_1) \leq v(F_2)$.

Proof:

First we shall prove (a). After integration by parts (4.2) gives:

$$
(5.6) \quad c(F,a) = \int_0^1 (u - \frac{1}{2}) F(F^{-1}(u) - a) du.
$$
Suppose:

(5.7) \(\overline{F}_2 \subset F_1 \subset F_2 \).

We shall start with showing:

(5.8) \(F_1 \subset F_2 \Rightarrow \)

\[
\sup_{a \in (0,\infty)} \int_0^1 (u - \frac{1}{2}) F_1(F_1^{-1}(u) - a)\,du \leq \sup_{a \in (0,\infty)} \int_0^1 (u - \frac{1}{2}) F_2(F_2^{-1}(u) - a)\,du
\]

which has been proved if for any \(a_1 > 0 \) there exists \(a_2 > 0 \) such that the following two relationships are satisfied:

(5.9) \(F_1(F_1^{-1}(u) - a_1) \geq F_2(F_2^{-1}(u) - a_2) \) for \(u \in (0,\frac{1}{2}) \),

(5.10) \(F_1(F_1^{-1}(u) - a_1) \leq F_2(F_2^{-1}(u) - a_2) \) for \(u \in (\frac{1}{2},1) \).

For this we take \(a_2 \) such that we have equalities for \(u = \frac{1}{2} \). So:

(5.11) \(a_2 := F_2^{-1}(\frac{1}{2}) - F_2^{-1}(F_1(F_1^{-1}(\frac{1}{2}) - a_1)) \).

To prove (5.10) we use lemma 5.2 with: \(f := (F_2^{-1})' \), \(g := (F_1^{-1})' \),

\(x_1 := F_1(F_1^{-1}(\frac{1}{2}) - a_1) \), \(x_2 := \frac{1}{2} \), \(x_3 := F_1(F_1^{-1}(u) - a_1) \), \(x_4 := u \). Then \(f/g \) is nondecreasing because of (5.4) and (5.7). To prove (5.9) we only need an interchange of \(x_1 \) and \(x_2 \) and of \(x_3 \) and \(x_4 \). Thus (5.8) has been proved.

For negative \(a \) we have to make use of \(\overline{F}_2 \subset F_1 \). By lemma 5.1 this is equivalent to \(\overline{F}_1 \subset F_2 \), so (5.8) gives:

(5.12) \(\sup_{a \in (0,\infty)} \int_0^1 (u - \frac{1}{2}) \overline{F}_1(\overline{F}_1^{-1}(u) - a)\,du \leq \sup_{a \in (0,\infty)} \int_0^1 (u - \frac{1}{2}) F_2(F_2^{-1}(u) - a)\,du \).

Using \(\overline{F}_1(\overline{F}_1(u) - a) = 1 - \overline{F}_1(\overline{F}_1^{-1}(u) + a) \), we have:

\[
\int_0^1 (u - \frac{1}{2}) \overline{F}_1(\overline{F}_1(u) - a)\,du = \int_0^1 (u - \frac{1}{2}) F_1(F_1(u) + a)\,du.
\]

Hence (5.12) gives:

(5.13) \(\overline{F}_2 \subset F_1 \Rightarrow \)

\[
\sup_{a \in (-\infty,0)} \int_0^1 (u - \frac{1}{2}) F_1(F_1^{-1}(u) - a)\,du \leq \sup_{a \in (0,\infty)} \int_0^1 (u - \frac{1}{2}) F_2(F_2^{-1}(u) - a)\,du
\]
Combining (5.8) and (5.13), we see that (5.7) implies: \(c(F_1) \leq c(F_2) \). This is also implied by \(F_2 \leq F_1 \leq F_2 \), as \(c(F_2) = c(F_2) \). So the proof of (a) has been completed.

To prove (b), we take random variables \(X_1 \) and \(X_2 \) with distribution functions \(F_1 \) and \(F_2 \). As \(F_1(X_1 - a) \) has distribution function \(H_1(u) := F_1(F_1^{-1}(u) + a) \), we have:

\[
\mathbb{E}F_1(X_1 - a) = 1 - \int_0^1 H_1(u)du = 1 - \int_0^1 F_1(F_1^{-1}(u) + a)du,
\]

and similarly for \(F_2(X_2 - a) \).

First we prove that \(F_1 \leq F_2 \) implies that for any \(a_1 > 0 \) there exists \(a_2 \geq 0 \) such that

\[
\text{(5.16)} \quad \text{var } F_1(X_1 - a_1) \leq \text{var } F_2(X_2 - a_2).
\]

For that purpose we take \(a_2 \) such that \(\mathbb{E}F_1(X_1 - a_1) = \mathbb{E}F_2(X_2 - a_2) \), that is

\[
\int_0^1 F_1(F_1^{-1}(u) + a_1)du = \int_0^1 F_2(F_2^{-1}(u) + a_2)du
\]

(\(a_2 \) exists, since \(F_1 \) and \(F_2 \) are continuous).

Then (5.16) is satisfied if:

\[
\text{(5.18)} \quad \int_0^1 u F_1(F_1^{-1}(u) + a_1)du \geq \int_0^1 u F_2(F_2^{-1}(u) + a_2)du.
\]

This follows from lemma 5.3 if we substitute:

\[
f(u) := F_1(F_1^{-1}(u) + a_1) \quad \text{and} \quad g(u) := F_2(F_2^{-1}(u) + a_2)
\]

Condition (i) is satisfied by (5.17) and condition (ii) is satisfied because:

1. According to (5.17) there exists \(u_0 \in (0,1) \) such that \(F_1(F_1^{-1}(u_0) + a_1) = F_2(F_2^{-1}(u_0) + a_2) \), as \(F_1 \) and \(F_2 \) and their inverses are continuous.

2. As \(F_1 \leq F_2 \), we can use lemma 5.2 in the same way as in the proof of part (a) with \(\frac{1}{2} \) replaced by \(u_0 \). This gives \(F_1(F_1^{-1}(u) + a_1) \leq F_2(F_2^{-1}(u) + a_2) \) for \(u \in (0,u_0) \) and the reverse inequality for \(u \in (u_0,1) \).
Hence we now have:

\[(5.19) \quad F_1 \leq F_2 \Rightarrow \sup_{a \in (0, \infty)} \text{var } F_1(X_1 - a) \leq \sup_{a \in (0, \infty)} \text{var } F_2(X_2 - a).\]

For negative \(a\) again we use \(F_2 \leq F_1\) (or \(F_1 \leq F_2\)). As \(-X_1\) has distribution function \(F_1\) and furthermore

\[
\text{var } F_1(-X_1 - a) = \text{var } F_1(X_1 + a),
\]

we find:

\[
\bar{F}_2 \leq F_1 \Rightarrow \sup_{a \in (-\infty, 0)} \text{var } F_1(X_1 - a) \leq \sup_{a \in (0, \infty)} \text{var } F_2(X_2 - a).
\]

Together with (5.19) this completes the proof. \(\square\)
6. Sufficient conditions on F such that $\alpha(F) < \alpha$.

Now an application of theorem 5.1 to our multiple comparisons problem is given. Therefore we let F_e be the negative exponential distribution (which is rather skew), so:

\[(6.1) \quad F_e(x) = 1 - e^{-x} \quad (x > 0)\]

Since $c(F_e) = 3/32$ and $v(F_e) = 1/9$, we have by (4.5):

\[(6.2) \quad b(F_e, a) \leq \frac{k^2}{12} + (2c(F_e) - 1/6)(k-1) + v(F_e) - 1/12 =\]

\[= \frac{(k^2 + k/4 + 1/12)}{12}\]

and substituted in (4.4), this gives the upperbounds for $\alpha(F_e)$ in table 6.1 (see below). In that table we see that $\alpha(F_e)$ is smaller than α for the usual values of α and k. As $F_e \in F$, we now have, by theorem 5.1, that $(k^2 + k/4 + 1/12)/12$ is also an upperbound for $b(F, a)$, for all $F \in F$ which are less skew than the exponential distribution.

Translation of "F less skew than F_e" gives:

Theorem 6.1

If $\log F$ and $\log (1 - F)$ are both concave, then $\alpha(F) \leq \alpha$ (for the usual values of α and k) and upperbounds are given in table 6.1.

Table 6.1

| Upper bounds for $\alpha(F)$ when $\log F$ and $\log(1 - F)$ both concave |
|-----------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 |
| α | .01 | .0053 | .0073 | .0083 | .0088 | .0092 | .0094 | .0095 | .0097 | .0099 | .0100 |
| | .025 | .0127 | .0176 | .0200 | .0214 | .0223 | .0229 | .0234 | .0237 | .0241 | .0245 | .0248 |
| | .05 | .0249 | .0345 | .0393 | .0422 | .0440 | .0453 | .0462 | .0468 | .0478 | .0486 | .0493 |
| | .10 | .0496 | .0682 | .0777 | .0834 | .0870 | .0895 | .0914 | .0928 | .0947 | .0965 | .0979 |

To show that this class of distribution functions is not too small, we remark that it contains all the strongly unimodal distributions:

Corollary:

If F is strongly unimodal, then $\log F$ and $\log (1 - F)$ both concave. So table 6.1 is also valid for strongly unimodal F.

Proof:

Prékopa (1967) proved that strong unimodality (that is: $\log f$ concave) implies the log-concavity of F. F is strongly unimodal if and only if \tilde{F} is strongly unimodal, hence $\log (1 - F)$ is also concave.
Remarks:

1. This corollary is the other version of theorem 4.1, we were looking for at the end of section 4. Symmetry is not required but unimodal is replaced by strongly unimodal. Nevertheless theorem 6.1 is more general.

2. Again the situation of section 4 occurs: \(c(F_e,a) \) and \(v(F_e,a) \) are not maximal for the same value of \(a \). However, since \(v(F_e,a) \) is almost maximal when \(c(F_e,a) \) is maximal (7/64 versus 1/9), we see that the values in table 6.1 are practically equal to \(\alpha(F_e) \).

7. Friedman-type simultaneous rank tests

Now we shall treat a multiple comparison procedure, also proposed by Nemenyi, but for another model, namely when blocks are present. Let \(X_{ij} \), \(i = 1, \ldots, k; j = 1, \ldots, n \) be independent random variables, with continuous distribution functions \(F_{ij} \), where we assume that there exist numbers \(\theta_1, \ldots, \theta_k, \beta_1, \ldots, \beta_n \) and a distribution function \(F \) such that

\[
F_{ij}(x) = F(x - \theta_i - \beta_j).
\]

The \(\beta \)'s are called block parameters and we want to know which \(\theta \)'s are different.

Let \(R_{ij} \) denote the rank of \(X_{ij} \) among the \(j^{th} \) block \((X_{1j}, \ldots, X_{kj}) \), then we define:

\[
\bar{R}_i := \frac{1}{n} \sum_{j=1}^{n} R_{ij}.
\]

Again \(n \) is assumed to be large and under the nullhypothesis \(H_0 : \theta_1 = \ldots = \theta_k \) we have for \(n \to \infty \):

\[
P[\max_{1 \leq i, j \leq k} |\bar{R}_i - \bar{R}_j| < q_{k}^{\alpha} \{k(k+1)/(12n)\}^{1/2}] = 1 - \alpha
\]

We are interested again in the \((k-1)\)-mean significance level: suppose \(\theta_1 = \ldots = \theta_{k-1} \) and \(\theta_k = \theta_1 + a (a \neq 0) \), what is that case the value of \(\alpha^*(F,a) \), defined by:

\[
\alpha^*(F,a) := \lim_{n \to \infty} P[\max_{1 \leq i, j \leq k-1} |\bar{R}_i - \bar{R}_j| > q_{k}^{\alpha} \{k(k+1)/(12n)\}^{1/2}]
\]

and is it larger than \(a \) for some \(\alpha, k, F \) and \(a \)?
To answer this question we shall compute the supremum of \(\alpha^*(F,a) \) over \(F \) and \(a \).

The vectors \((R_{ij},...,R_{kj})\) for \(j=1,...,n \) are i.i.d., so \((\bar{R}_1,...,\bar{R}_k)\) has an

asymptotically normal distribution for \(n \to \infty \). After computation of the

variances of \(\bar{R}_1,...,\bar{R}_{k-1} \) the same arguments used in section 2 lead to:

\[
\alpha^*(F,a) = P[Q_{k-1} > q_k^\alpha \{(k^2+k)/(k^2+(2c(F,a)-1/12)k/12)\}^{1/2}].
\]

Since \(5/48 \) is the supremum of \(c(F,a) \) over \(F \) and \(a \) (see section 4), we have:

\[
\sup_{f,a} \alpha^*(F,a) = P[Q_{k-1} > q_k^\alpha \{(k^2+k)/(k^2 + 3/2k)\}^{1/2}]
\]

which values are given in table 7.1.

| Table 7.1: sup \(\alpha(F,a) \) for several values of \(\alpha \) and \(k \). |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| \(k \) = 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20 |
\(\alpha = .01 \)	.0060	.0084	.0096	.0101	.0105	.0107	.0108	.0109	.0110	.0110	.0109
\(.025 \)	.0141	.0198	.0227	.0242	.0251	.0257	.0260	.0263	.0265	.0267	.0267
\(.05 \)	.0271	.0380	.0435	.0457	.0483	.0498	.0506	.0511	.0518	.0523	.0524
\(.10 \)	.0530	.0738	.0843	.0904	.0942	.0967	.0985	.0997	.1013	.1025	.1032

We see that \(\alpha^*(F,a) \) may be larger than \(\alpha \), but the exceedance is never large.

Once having this result, again the following question arises: if we define \(\alpha^*(F) \) by

\[
\alpha^*(F) := \sup_{a \in \mathbb{R}} \alpha^*(F,a),
\]

which conditions on \(F \) are sufficient to guarantee \(\alpha^*(F) \leq \alpha \)? From (7.3)

and theorem 5.1, one can conclude:

\textbf{Theorem 7.1}

If \(F_2 \) is skewer than \(F_1 \), then \(\alpha^*(F_2) \geq \alpha^*(F_1) \) \((F_1,F_2 \in F) \).

Remark that such a conclusion is not right for \(\alpha(F) \), since \(\alpha(F,a) \) depends

on both \(c(F,a) \) and \(v(F,a) \), which are not always maximized by the same value

of \(\alpha \) (although in practice they almost are!).

Again the comparison with the exponential distribution gives:

\textbf{Theorem 7.2}

If \(\log F \) and \(\log (1-F) \) both concave, then \(\alpha^*(F) \leq \alpha \) for the usual values

of \(\alpha \) and \(k \).

It turns out that \(\alpha^*(F_e) \) is slightly smaller than the values given in table 6.1.

In order to investigate in how far the asymptotic results are valid for finite n, Monte Carlo studies have been made for n = 5 and k = 3, ..., 10 in the situation where block parameters are absent. Here I am much indebted to Kees van der Hoeven, who wrote the computer programs.

Firstly the exact critical values have been estimated (from 40,000 simulations under H_0 for each k) in order to make the simultaneous significance level equal to α. It turned out that for n = 5 the critical value, used in (1.2) is an acceptable approximation. Its exact significance level was systematically somewhat smaller than α, so it seems to be safe to use the asymptotic approximation of (1.1), if exact critical values are not available. Another critical value, which is sometimes used, namely $\left(\frac{k}{6} \cdot \frac{k(k+1)}{6}\right)^{\alpha}$, where h_{k-1}^{α} is the upper α point of the distribution of the Kruskal-Wallis statistic, proved to be bad: the significance level is much smaller than the nominal one, especially for larger k.

Once having obtained the exact critical values (of course randomization was necessary), the (k-1)-mean significance levels have been estimated for the pair F,G given in (3.2) and also for a shift with an amount $\frac{1}{2}$ of F_m defined by (4.8), where $m \to \infty$. For both alternatives also 40,000 simulations were made for each k.

In both cases the (k-1)-mean significance levels for n = 5 are systematically a little bit larger than the values given in the tables 3.1 and 4.1, but the difference was so small that one may conclude that already for n = 5 these levels behave as if n were infinitely.
9. Some final remarks

As the \((k-l)\)-mean significance levels of both multiple comparison methods do not exceed \(\alpha \) very much, these results may not appear very alarming to a practical statistician, the more so as (for shift alternatives) \(\alpha(F) \) and \(\alpha^*(F) \) are smaller than \(\alpha \) for a large class of distribution functions (theorems 6.1 and 7.2).

However, a serious disadvantage of the methods (and in fact that property allows the \((k-l)\)-mean significance level to be larger than \(\alpha \)) is the fact that the distribution of \(\bar{R}_i - \bar{R}_j \) (on which the comparison of the two groups is based) depends also on the other \(F_i 's \) respectively \(\theta_i 's \).

The normal model procedures (e.g. the methods of Tukey and Scheffé) and also the nonparametric method proposed by Steel (1960) do not suffer from this anomaly.

Acknowledgement(s)

I wish to express my sincere thanks to Professor R. Doornbos for his guidance and encouragements.
REFERENCES

Onderafdeling der Wiskunde
Technische Hogeschool
Postbus 513