The disturbance decoupling problem with measurement feedback and stability for systems with direct feedthrough matrices
Stoorvogel, A.A.; Woude, van der, J.W.

Published: 01/01/1990

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
COSOR-Memorandum 90-46

The disturbance decoupling problem with measurement feedback and stability for systems with direct feedthrough matrices

by

A.A. Stoorvogel      J.W. van der Woude

November 1990
The disturbance decoupling problem with measurement feedback and stability for systems with direct feedthrough matrices

A.A. Stoorvogel* J.W. van der Woude§

November 30, 1990

Abstract

In this paper the known results on the disturbance decoupling problem with measurement feedback and internal stability (DDPMS) are extended to include non-zero direct feedthrough matrices. Necessary and sufficient for the solvability of the DDPMS are expressed in three subspace inclusions.

Keywords: disturbance decoupling, geometric approach, measurement feedback.

1 Introduction

The so-called disturbance decoupling problems have been investigated extensively in the last two decades. It was the starting point for the development of a geometric approach to systems theory. The problem is to find a compensator such that the closed loop transfer matrix from disturbance to output is equal to 0. Using the concept of \((A, B)\)-invariance, the disturbance decoupling problem with state feedback (DDP) was solved in \([2, 3, 18]\). The problem of disturbance decoupling with state feedback and the extra requirement of internal stability (DDPS), was solved in \([6, 18]\). An excellent reference for the above mentioned problems is also \([19]\). Approximately 10 years later, the above mentioned problems were solved for the case of measurement feedback. The disturbance decoupling problem with measurement feedback (DDPM) was solved in \([1, 7]\). Finally, the disturbance decoupling problem with measurement feedback and internal stability was solved in \([5, 15]\).

All the above problems have also been extended to the so-called almost disturbance decoupling problems where one investigates under which conditions we can make the closed loop transfer matrix arbitrarily small in a suitable norm. Excellent references for these extensions are \([12, 16, 17]\).

In all of the above references the direct feedthrough matrices of the system are assumed to be equal to zero. In the state space approach to \(H_\infty\) and LQG control however disturbance decoupling problems for systems with direct feedthrough matrices do play a role (see \([10, 11]\)). Therefore, this paper will extend the results on the disturbance decoupling problems mentioned above to include direct feedthrough matrices. We will solve the problem of disturbance...
decoupling with measurement feedback and internal stability (DDPMS) with respect to some arbitrary stability set. A result for the DDPM follows as a special case from our main theorem. Note that an extension of the results on almost disturbance decoupling to incorporate direct feedthrough matrices has already been done in [20].

We will use a geometric approach in this paper similar to the techniques used in the above mentioned references. We find that solvability of the DDPMS is equivalent to the requirement that three subspace inclusions hold. We will derive our results for continuous time systems but the related results for discrete time systems are identical.

In this paper we will present our main result in section 2. In section 3 we will prove our main result. In section 4 we will discuss some extensions. Finally we conclude with section 5 which contains some concluding remarks.

2 Problem formulation and results

Consider the finite-dimensional linear time-invariant system $\Sigma$ given by:

$$
\dot{x} = Ax + Bu + Ed,
\begin{align*}
y &= C_1x + D_1d, \\
z &= C_2x + D_2u,
\end{align*}
$$

where $x \in \mathbb{R}^n$ is the state of the system, $u \in \mathbb{R}^m$ the control input, $d \in \mathbb{R}^q$ the disturbance input, $y \in \mathbb{R}^p$ the measurement output and $z \in \mathbb{R}^r$ the output of $\Sigma$ to be controlled. $A, B, C_1, C_2, D_1$ and $D_2$ are real matrices of the appropriate dimensions.

Assume that system (2.1) is controlled by means of a measurement feedback compensator $\Sigma_F$ described by:

$$
\Sigma_F : \begin{cases} 
\dot{p} = Kp + Ly, \\
u = Mp + Ny,
\end{cases}
$$

with $p \in \mathbb{R}^k$ the state of the compensator and $K, L, M$ and $N$ real matrices of appropriate dimensions. Interconnection of $\Sigma$ and $\Sigma_F$ results in a closed loop system $\Sigma_{cl} = \Sigma \times \Sigma_F$ described by

$$
\Sigma_{cl} : \begin{cases} 
\dot{x}_e = A_e x_e + B_e d, \\
z = C_e x_e + D_e d,
\end{cases}
$$

where we have denoted:

$$
\begin{align*}
x_e &= \begin{pmatrix} x \\ p \end{pmatrix}, \\
A_e &= \begin{pmatrix} A + BNC_1 & BM \\ LC_1 & K \end{pmatrix}, \\
B_e &= \begin{pmatrix} E + BND_1 \\ LD_1 \end{pmatrix}, \\
C_e &= \begin{pmatrix} C_2 + D_2NC_1 & D_2M \end{pmatrix}, \\
D_e &= D_2ND_1.
\end{align*}
$$

Let $\mathcal{C}_g$ be a subset of the complex plane $\mathbb{C}$ which is symmetric ($\lambda \in \mathcal{C}_g \iff \bar{\lambda} \in \mathcal{C}_g$) and with at least one point on the real axis ($\mathcal{C}_g \cap \mathbb{R} \neq \emptyset$). The interconnection of a system $\Sigma$ and $\Sigma_F$ as given in (2.3) is called $\mathcal{C}_g$-stable if and only if the matrix $A_e$ is $\mathcal{C}_g$-stable, i.e. all eigenvalues of $A_e$ are contained in $\mathcal{C}_g$.

We can now consider the following problem:
**Problem:** Given $\Sigma$ determine $\Sigma_F$ such that the interconnection $\Sigma \times \Sigma_F$ is $C_2$-stable and such that the closed loop transfer matrix is equal to zero.

This problem is often called the disturbance decoupling problem with measurement feedback and internal stability (DDPMS). The problem has been completely solved in case the direct feedthrough matrices $D_1$ and $D_2$ are equal to 0 (see [4, 8, 15]). This paper extends these results to include direct feedthrough matrices.

For the formulation of our main result we need a number of definitions:

**Definition 2.1:** We define the detectable strongly controllable subspace $T_{\delta}(A, B, C, D)$ as the smallest subspace $T$ of $\mathbb{R}^n$ for which there exists a linear mapping $G$ such that the following subspace inclusions are satisfied:

\begin{align*}
(A + GC)T & \subseteq T, \quad (2.4) \\
\text{Im } (B + GD) & \subseteq T, \quad (2.5)
\end{align*}

and such that $A + GC \mid \mathbb{R}^n/T$ is $C_2$-stable. We also define the stabilizable weakly unobservable subspace $V_{\delta}(A, B, C, D)$ as the largest subspace $V$ for which there exists a mapping $F$ such that the following subspace inclusions are satisfied:

\begin{align*}
(A + BF)V & \subseteq V, \quad (2.6) \\
(C + DF)V & = \{0\}, \quad (2.7)
\end{align*}

and such that $A + BF \mid V$ is $C_2$-stable.

The subspaces $V_\delta(A, B, C, D)$ and $T_\delta(A, B, C, D)$ can be computed by means of well-known algorithms (see e.g. [9]). We also note that if $(A, B)$ is $C_2$-stabilizable then for $V_\delta(A, B, C, D)$ there exists an $F$ such that (2.6) and (2.7) are satisfied and moreover $A + BF$ is $C_2$-stable.

A similar comment can be made for $T_\delta(A, B, C, D)$ in case $(C, A)$ is $C_2$-detectable.

We can now formulate the main result of this paper:

**Theorem 2.2:** Let $\Sigma$ be given of the form (2.1). The following two conditions are equivalent:

(i) There exists a compensator of the form (2.2) such that the closed loop system is $C_2$-stable and such that the closed loop transfer matrix is equal to 0.

(ii) $(A, B)$ is $C_2$-stabilizable, $(C_1, A)$ is $C_2$-detectable and

\begin{align*}
(a) & \quad \text{Im } E \subseteq V_\delta(\Sigma_{ci}) + B \ker D_2, \\
(b) & \quad \ker C_2 \supseteq T_\delta(\Sigma_{di}) \cap C_{\text{out}}^{-1} \text{Im } D_1, \\
(c) & \quad T_\delta(\Sigma_{di}) \subseteq V_\delta(\Sigma_{ci}),
\end{align*}

where $\Sigma_{ci} = (A, B, C_2, D_2)$ and $\Sigma_{di} = (A, E, C_1, D_1)$.

**Remarks:**
Note that we have still all freedom in our choice of $C_g$. For the disturbance decoupling problem with measurement feedback (DDPM) we choose $C_g = \mathcal{C}$. On the other hand if we are interested in disturbance decoupling with internal (asymptotic) stability, then we choose $C_g$ equal to the open left half complex plane.

Since we mainly investigate properties of transfer matrices, the results for discrete time systems are immediate from theorem 2.2. For a discrete time system with the same parameters as $\Sigma$ conditions (i) and (ii) are still equivalent. Only this time, for internal (asymptotic) stability, we have to choose $C_g$ equal to the open unit disc.

It can be easily checked that condition (c) implies conditions (a) and (b) in case the direct feedthrough matrices $D_1$ and $D_2$ are equal to 0. The following lemma gives the possibility of actually calculating a suitable compensator if it exists:

**Corollary 2.3**: Let $\Sigma$ of the form (2.1) be given. Conditions (a)-(c) of theorem 2.2 are equivalent to the following conditions: $T_g(\Sigma_{di}) \subseteq V_g(\Sigma_{ci})$ and there is a matrix $N$ such that

$$
\begin{bmatrix}
A & E \\
C_2 & 0
\end{bmatrix}
+ 
\begin{bmatrix}
B \\
D_2
\end{bmatrix}
N
\begin{bmatrix}
C_1 & D_1
\end{bmatrix}
(T_g(\Sigma_{di}) \oplus \mathcal{R}^n)
\subseteq
(V_g(\Sigma_{ci}) \oplus \{0\}).
$$

(2.8)

In addition to such an $N$, let $F$ and $G$ be the matrices satisfying the conditions of definition 2.1 for $V_g(\Sigma_{ci})$ and $T_g(\Sigma_{di})$ respectively and such that $A + BF$ and $A + GC_1$ are both $C_g$-stable. Then a compensator $\Sigma_F$ making the closed loop system $C_g$-stable and the closed loop transfer matrix equal to 0 is given by:

$$
\Sigma_F : \begin{cases}
\dot{p} = Ap + Bu + G(C_1p - y), \\
u = Fp - N(C_1p - y).
\end{cases}
$$

(2.9)

**Remark**: In case $C_g = \mathcal{R}^n$, i.e. if we consider disturbance decoupling without stability requirements, and if the conditions (b) of theorem 2.2 are satisfied then it can be shown that there exists a compensator achieving disturbance decoupling of dynamic order

$$
\dim V_g(\Sigma_{ci}) - \dim T_g(\Sigma_{di}).
$$

This result was already known (see [8]) in case the direct feedthrough matrices are equal to 0 and can be extended to the more general system (2.1) investigated in this paper. We have not been able to derive a similar result in case of stability requirements ($C_g \neq \mathcal{R}^n$).

Note that we can easily rewrite (2.9) in the form (2.2). However in (2.9) the structure of the controller is more visible. We can also investigate when there exists a strictly proper compensator which solves the DDPMS:

**Corollary 2.4**: Let $\Sigma$ be given of the form (2.1). The following two conditions are equivalent:
There exists a compensator of the form (2.2) with \( N = 0 \) such that the closed loop system is \( C_g \)-stable and such that the closed loop transfer matrix is equal to 0.

(ii) \((A,B)\) is \( C_g \)-stabilizable, \((C_1,A)\) is \( C_g \)-detectable and

(a) \( \text{Im} E \subseteq \mathcal{V}_g(\Sigma_{ci}) \),

(b) \( \text{Ker} C_2 \supseteq \mathcal{T}_g(\Sigma_{di}) \),

(c) \( A\mathcal{T}_g(\Sigma_{di}) \subseteq \mathcal{V}_g(\Sigma_{ci}) \),

where \( \Sigma_{ci} = (A, B, C_2, D_2) \) and \( \Sigma_{di} = (A, E, C_1, D_1) \).

In case part (ii) is satisfied a compensator satisfying (i) is given by (2.9) with \( N = 0 \) and \( F, G \) as described in corollary 2.3.

In the next section the above results will be proven.

3 Proofs of the results obtained

The following characterization (see e.g. [4]) of the subspace \( \mathcal{V}_g(\Sigma) \) turns out to be very useful:

**Lemma 3.1** : Define by \( \mathcal{R}_{sp}(s) \) the set of strictly proper \( C_g \)-stable real rational vectors, i.e. vectors whose elements are strictly proper rational functions with all poles in \( C_g \). The subspace \( \mathcal{V}_g(A, B, C, D) \) is equal to the set of all \( x_0 \in \mathbb{R}^n \) for which there exist \( \xi, \omega \in \mathcal{R}_{sp}(s) \) such that:

\[
\begin{align*}
    x_0 &= (sI - A)\xi(s) - B\omega(s), \\
    0 &= C\xi(s) + D\omega(s).
\end{align*}
\]

We will also need the following lemma which is in essence well-known:

**Lemma 3.2** : Let \( U \) and \( W \) be linear subspaces, and let \( P, Q \) and \( R \) be matrices such that:

\[
PU \subseteq W + \text{Im} Q, \\
(P(U \cap \text{Ker} R)) \subseteq W.
\]

Then there is a matrix \( X \) such that

\[
(P + QXR)U \subseteq W.
\]

**Proof** : Let \( U = \text{Im} U \) and \( W = \text{Ker} W \). The two conditions of our lemma imply the existence of matrices \( X_1 \) and \( X_2 \) such that:

\[
\begin{align*}
    WP &= WQX_1 = 0, \\
    WP &= WQX_2 = 0.
\end{align*}
\]

The solvability of the above two equations implies that there exists a matrix \( X \) satisfying:
This $X$ satisfies the conditions of our lemma.

**Proof of theorem 2.2** (ii) $\Rightarrow$ (i). Because $(A, B)$ and $(C_1, A)$ are $C_g$-stabilizable and $C_g$-detectable respectively it follows from the definitions of $V_g(S_{ci})$ and $T_g(S_{di})$ that there are matrices $F$ and $G$ satisfying the conditions of definition 2.1 and such that $A + BF$ and $A + GC_1$ are both $C_g$-stable.

Now observe that $V_g(S_{ci})$ and $T_g(S_{di})$ are such that:

$$
\begin{bmatrix}
A \\
C_2
\end{bmatrix} V_g(S_{ci}) \subseteq (V_g(S_{ci}) \oplus \{0\}) + \text{Im} \begin{bmatrix} B \\ D_2 \end{bmatrix},
$$

(3.1)

$$
\begin{bmatrix} A & E \\ C_2 & 0 \end{bmatrix} \left( (T_g(S_{di}) \oplus \mathbb{R}^q) \cap \text{Ker} \begin{bmatrix} C_1 \\ D_1 \end{bmatrix} \right) \subseteq T_g(S_{di}) .
$$

(3.2)

Furthermore, it can be easily shown that condition (a) is equivalent to:

$$
\text{Im} \begin{bmatrix} E \\ 0 \end{bmatrix} \subseteq (V_g(S_{ci}) \oplus \{0\}) + \text{Im} \begin{bmatrix} B \\ D_2 \end{bmatrix},
$$

(3.3)

and that condition (b) is equivalent to:

$$
(T_g(S_{di}) \oplus \mathbb{R}^q) \cap \text{Ker} \begin{bmatrix} C_1 \\ D_1 \end{bmatrix} \subseteq \text{Ker} \begin{bmatrix} C_2 & 0 \end{bmatrix} .
$$

(3.4)

Now using condition (c), the combination of (3.1) and (3.3) implies that

$$
\begin{bmatrix} A & E \\ C_2 & 0 \end{bmatrix} \left( (T_g(S_{di}) \oplus \mathbb{R}^q) \cap \text{Ker} \begin{bmatrix} C_1 \\ D_1 \end{bmatrix} \right) \subseteq (V_g(S_{ci}) \oplus \{0\}) + \text{Im} \begin{bmatrix} B \\ D_2 \end{bmatrix},
$$

while the combination of (3.2) and (3.4) with condition (c) implies that:

$$
\begin{bmatrix} A & E \\ C_2 & 0 \end{bmatrix} \left( (T_g(S_{di}) \oplus \mathbb{R}^q) \cap \text{Ker} \begin{bmatrix} C_1 \\ D_1 \end{bmatrix} \right) \subseteq (V_g(S_{ci}) \oplus \{0\}) .
$$

The above two equations imply by lemma 3.2 the existence of a matrix $N$ satisfying (2.8), or equivalently such that:

$$
(A + BNC_1) T_g(S_{di}) \subseteq V_g(S_{ci}), \quad \text{Im} (E + BN D_1) \subseteq V_g(S_{ci}),
$$

(3.5)

$$(C_2 + D_2 NC_1) T_g(S_{di}) = \{0\}, \quad D_2 ND_1 = 0 .$$

Let such $N$ be the feedthrough matrix of the compensator (2.2), and define the other compensator matrices as follows:

$$
K := A + BF + GC_1 - BNC_1, \quad L := BN - G, \quad M := F - NC_1 .
$$

It is easy to see that the closed loop system now obtained can equivalently be described as follows:

$$
\Sigma_{cl}: \left\{ \begin{array}{l}
\begin{bmatrix} \dot{x} \\ \dot{z} - p \end{bmatrix} = \begin{bmatrix} A + BF & BNC_1 - BF \\ 0 & A + GC_1 \end{bmatrix} \begin{bmatrix} x \\ x - p \end{bmatrix} + \begin{bmatrix} E + BN D_1 \\ E + GD_1 \end{bmatrix} d , \\
\begin{bmatrix} x \\ x - p \end{bmatrix} = \begin{bmatrix} C_2 + D_2 F & D_2 NC_1 - D_2 F \end{bmatrix} \begin{bmatrix} x \\ x - p \end{bmatrix} + D_2 ND_1 d .
\end{array} \right.
$$

(3.6)
An easy calculation shows that the closed loop transfer matrix is given by:

\[
(C_2 + D_2 F)(sI - A - BF)^{-1}(E + BND_1)
\]

\[
-(C_2 + D_2 F)(sI - A - BF)^{-1}(sI - A - BNC_1)(sI - A - GC_1)^{-1}(E + GD_1)
\]

\[
+(C_2 + D_2 NC_1)(sI - A - GC_1)^{-1}(E + GD_1) + D_2 ND_1.
\]

From (3.6) it is clear that the closed loop system is \(C_g\) stable, since \(A + BF\) and \(A + GC_1\) are \(C_g\)-stable. Moreover observe that \(F\) and \(G\) are such that for all \(s \in \mathcal{C}\):

\[
\ker (C_2 + D_2 F)(sI - A - BF)^{-1} \supseteq \mathcal{V}_g(\Sigma_{cl}),
\]

\[
\text{Im } (sI - A - GC_1)^{-1}(E + GD_1) \subseteq T_g(\Sigma_{cl}).
\]

Using (3.5), (3.7) and (3.8) together with condition (c) of theorem 2.2 it is straightforward to show that the closed loop transfer matrix is equal to 0.

(i) \(\Rightarrow\) (ii). Let a compensator \(\Sigma_F\) be given, satisfying the conditions of our lemma. Let the closed loop system \(\Sigma_{cl}\) be described by (2.3). We know that all eigenvalues of \(A_e\) are in \(C_g\) and

\[
C_e(sI - A_e)^{-1}B_e + D_e = 0.
\]

By the fact that \(A_e\) is \(C_g\)-stable, it is immediate that \((A, B)\) must be \(C_g\)-stabilizable and \((C_1, A)\) \(C_g\)-detectable. Because the closed loop transfer matrix is zero, it follows that \(D_e = 0\). We define \(\mathcal{V}_e := < A_e\) \(\text{Im } B_e >\), i.e. \(\mathcal{V}_e\) is the smallest \(A_e\)-invariant subspace containing \(\text{Im } B_e\). Since \(C_e(sI - A_e)^{-1}B_e = 0\), the definition of \(\mathcal{V}_e\) implies that \(\mathcal{V}_e \subseteq \ker C_e\). Define:

\[
T := \left\{ x \in \mathbb{R}^n \mid \begin{pmatrix} x \\ 0 \end{pmatrix} \in \mathcal{V}_e \right\},
\]

\[
\mathcal{V} := \left\{ x \in \mathbb{R}^n \mid \exists p \in \mathbb{R}^k : \begin{pmatrix} x \\ p \end{pmatrix} \in \mathcal{V}_e \right\}.
\]

Clearly \(T \subseteq \mathcal{V}\). Moreover, it follows that:

\[
(A + BNC_1)T \subseteq \mathcal{V}, \quad \text{Im } (E + BND_1) \subseteq \mathcal{V},
\]

\[
(C_2 + D_2 NC_1)T = \{0\}, \quad D_2 ND_1 = 0.
\]

Take any \(x \in \mathcal{V}\). By definition of \(\mathcal{V}\) there exists \(p \in \mathbb{R}^k\) such that \((x^T \ p^T)^T \in \mathcal{V}_e\). Define

\[
\begin{pmatrix} \xi(s) \\ \omega(s) \end{pmatrix} := (sI - A_e)^{-1} \begin{pmatrix} x \\ p \end{pmatrix}.
\]

Because \(A_e\) is \(C_g\)-stable we know that \(\xi, \omega \in \mathcal{R}_{spa}(s)\) and hence \(\xi_1(NC_1 \xi + M \omega) \in \mathcal{R}_{spa}(s)\). Moreover, because \(\mathcal{V}_e\) is \(A_e\)-invariant it follows that for all \(s\):

\[
\begin{pmatrix} \xi(s) \\ \omega(s) \end{pmatrix} \in \mathcal{V}_e \subseteq \ker C_e.
\]
Combining the above, we find that:

\[
x = (sI - A)\xi(s) - B(NC_1\xi(s) + M\omega(s)),
\]
\[
0 = C_2\xi(s) + D_2(NC_1\xi(s) + M\omega(s)).
\]

This implies by lemma 3.1 that \( x \in \mathcal{V}_g(\Sigma_{ci}) \). Hence \( \mathcal{V} \subseteq \mathcal{V}_g(\Sigma_{ci}) \). By dual reasoning it can be derived that \( T_g(\Sigma_di) \subseteq T \). From the above it is clear that condition (c) of (ii) is satisfied. From (3.11) it is clear that:

\[
\text{Im}(E + GND_1) \subseteq \mathcal{V}_g(\Sigma_{ci}),
\]
\[
\text{Ker}(C_2 + D_2NC_1) \supseteq T_g(\Sigma_{di}),
\]
\[
D_2ND_1 = 0.
\]

Now (3.12) and (3.14) together imply condition (a) of (ii). Indeed take any \( x \in \mathcal{R}^s \) and denote \( u = N D_1 x \). Then \( u \in \text{Ker} D_2 \) and there is a \( v \in \mathcal{V}_g(\Sigma_{ci}) \) such that \( E x = v - B_2 u \). Dually it can be shown that (3.13), (3.14) together imply condition (b) of (ii). 

Corollaries 2.3 and 2.4 immediately follow from the proof of theorem 2.2.

4 A more general case

In section 2 we discussed a system \( \Sigma \) of the form (2.1). However, in the most general linear, time-invariant case, there are two more direct feedthrough matrices unequal to 0 in the system. In this section we discuss this more general case and we assume that our system is of the form:

\[
\tilde{\Sigma} : \begin{cases}
\dot{z} = A x + B u + E d, \\
y = C_1 x + D_3 u + D_1 d, \\
z = C_2 x + D_2 u + D_4 d.
\end{cases}
\]

For this more general case we have to discuss the admissibility of controllers of the form (2.2) in more detail (see e.g. [13]). Consider the following interconnection where \( \tilde{\Sigma} \) and \( \Sigma_F \) are described by (4.1) and (2.2) respectively:

\[
\begin{array}{c}
\text{w} \\
\text{v}_1 \\
v_2
\end{array} \rightarrow \begin{array}{c}
\tilde{\Sigma} \\
\Sigma_F
\end{array} \rightarrow \begin{array}{c}
\text{z} \\
y \\
\text{u}
\end{array}
\]

The closed loop system is well-defined and "internally proper" if the closed loop transfer matrices from \( w, v_1, v_2 \) to \( z, u, y \) are well-defined and proper. In that case we call the interconnection well-posed. It can be shown that this is equivalent to the requirement that \( I - N D_3 \) is invertible or, equivalently, that \( I - D_3 N \) is invertible. Therefore we require that our controller \( \Sigma_F \) is such that \( I - N D_3 \) is invertible. Moreover, if \( I - N D_3 \) is invertible, the closed loop system \( \Sigma \times \Sigma_F \) can be written in the form (2.3) where
\[ A_e := \begin{pmatrix} A + BN(I - D_3N)^{-1}C_1 & B(I - ND_3)^{-1}M \\ L(I - D_3N)^{-1}C_1 & K + L(I - D_3N)^{-1}D_3M \end{pmatrix}. \]

We require that the interconnection is \(\mathcal{C}_g\)-stable, i.e. the matrix \(A_e\) has all eigenvalues in \(\mathcal{C}_g\). If the realizations for \(\Sigma\) and \(\Sigma_F\) are both \(\mathcal{C}_g\)-detectable and \(\mathcal{C}_g\)-stabilizable, then this is equivalent to the requirement that in the interconnection (4.2) the closed loop transfer matrices from \(w, v_1, v_2\) to \(u, y, z\) are all \(\mathcal{C}_g\)-stable, i.e. the rational matrices have all poles in \(\mathcal{C}_g\).

We can derive the following theorem:

**Theorem 4.1**: Let \(\Sigma\) be given of the form (4.1). There exists a compensator of the form (2.2) such that the closed loop system is well-posed and \(\mathcal{C}_g\)-stable and such that the closed loop transfer matrix is equal to 0 if and only if the following conditions are satisfied:

(i) \((A, B)\) is \(\mathcal{C}_g\)-stabilizable, \((C_1, A)\) is \(\mathcal{C}_g\)-detectable,

(ii) \(\mathcal{T}_g(\Sigma_{di}) \subseteq \mathcal{V}_g(\Sigma_{ci})\),

(iii) there exists a matrix \(\tilde{N}\) such that:

\[
\begin{pmatrix} A & E \\ C_2 & D_4 \end{pmatrix} + \begin{pmatrix} B \\ D_2 \end{pmatrix} \tilde{N} \begin{pmatrix} C_1 & D_1 \end{pmatrix}(\mathcal{T}_g(\Sigma_{di}) \oplus \mathcal{R}^p) \subseteq (\mathcal{V}_g(\Sigma_{ci}) \oplus \{0\}) \tag{4.3}
\]

and such that \(I + \tilde{N}D_3\) is invertible.

A controller solving the DDPMS is then described by:

\[
\Sigma_F: \begin{cases} \dot{p} = Ap + Bu + G(C_1p + D_3u - y), \\ u = Fp - \tilde{N}(C_1p + D_3u - y). \end{cases} \tag{4.4}
\]

**Remark**: Note that (4.4) describes a compensator of the form (2.2) because \(I + \tilde{N}D_3\) is invertible. The reason for defining the compensator in this implicit way is to show the relationship with the compensator we found in (2.9).

We can again express solvability of (4.3) in terms of subspace inclusions. However the well-posedness constraint \((I + \tilde{N}D_3\) is invertible) we can not express in subspace inclusions. We will only give a sketch of our proof. We will treat these extra feedthrough matrices in two steps. In the next subsection we show how we can reduce the disturbance decoupling problem with measurement and stability (DDPMS) for (4.1) to the same problem for a different system which has a direct feedthrough matrix from disturbance to output which is equal to zero. In the second subsection we show how we can reduce the DDPMS for a system (4.1) to the same problem but again for another system which this time has the form (2.1). On the latter system we may apply theorem 2.2.
4.1 A direct feedthrough matrix from disturbance to output

We first solve DDPMS "at infinity". It is easily checked that there must exist a matrix $S$ such that $I - SD_3$ is invertible and

$$D_4 + D_2 (I - SD_3)^{-1} SD_1 = 0.$$  

(4.5)

This fact is expressed in theorem 4.1 by the condition that, in addition to $I + \tilde{N} D_3$ being invertible, the matrix $\tilde{N}$ has to be such that amongst others $D_4 + D_2 \tilde{N} D_1 = 0$. Clearly for such $\tilde{N}$ (4.5) can be satisfied by $S := (I + \tilde{N} D_3)^{-1} \tilde{N}$.

Then we apply the preliminary feedback $u = Sy + v$ to our system. The system we thus obtain will have a direct feedthrough matrix from $d$ to $z$ which will be equal to 0. Clearly solvability of the disturbance decoupling problem for the original system is equivalent to solvability of the disturbance decoupling problem for the system we obtain after this preliminary feedback. Therefore we can reduce the disturbance decoupling problems for (4.1) to the same problems for a new system which has a direct feedthrough matrix from $d$ to $z$ which is equal to 0.

4.2 A direct feedthrough matrix from input to measurement

By the previous subsection we may assume that we have system of the form (4.1) with $D_4 = 0$. Assume that a compensator $\Sigma_F$ of the form (2.2) is given such that the interconnection $\hat{\Sigma} \times \Sigma_F$ is well-posed, $C_2$-stable and has a closed loop transfer matrix which is equal to 0. We define:

$$\hat{K} := K + L (I - D_3 N)^{-1} D_3 M, \quad \hat{L} := L (I - D_3 N)^{-1}, \quad \hat{M} := (I - ND_3)^{-1},$$

$$\hat{N} := (I + N D_3)^{-1}.$$  

(4.6) (4.7) (4.8) (4.9)

Then it is easily checked that the following compensator satisfies condition (i) of theorem 2.2 for the system $\Sigma$ given by (2.1).

$$\hat{\Sigma}_F : \begin{cases} \dot{\hat{p}} = \hat{K} \hat{p} + \hat{L} y, \\ \hat{y} = \hat{M} \hat{p} + \hat{N} \hat{y}. \end{cases}$$  

(4.10)

On the other hand assume that we have a compensator of the form (4.10) such that $I + D_3 \hat{N}$ is invertible and such that condition (i) of theorem 2.2 is satisfied for $\Sigma$. In that case, the following compensator makes the interconnection $\hat{\Sigma} \times \hat{\Sigma}_F$ well-posed, $C_2$-stable and yields a closed loop transfer matrix which is 0.

$$K := \hat{K} - \hat{L} (I + D_3 \hat{N})^{-1} D_3 \hat{M}, \quad L := \hat{L} (I + D_3 \hat{N})^{-1}, \quad M := (I + \hat{N} D_3)^{-1} \hat{M},$$

$$N := (I + \hat{N} D_3)^{-1} \hat{N}.$$  

We can now apply theorem 2.2 to $\Sigma$ described by (2.1) to obtain necessary and sufficient conditions for the solvability of DDPMS for $\Sigma$. We only have to do some work to incorporate the well posedness constraint $(I + D_3 \hat{N}$ invertible). The results of this subsection can be used to obtain necessary and sufficient conditions for the solvability of DDPMS of $\hat{\Sigma}$ described by (4.1) with $D_4 = 0$. The results of the previous subsection can then be used to obtain necessary and sufficient conditions for the solvability of DDPMS for the general system $\hat{\Sigma}$ of the form (4.1) without any restrictions. These conditions are given in theorem 4.1.
5 Conclusion

In this paper we have treated the most general disturbance decoupling problem: the disturbance decoupling problem with measurement feedback and stability for some arbitrary stability set $C_g$. We have shown how the known results can be extended to incorporate direct feedthrough matrices in the system. In our opinion this paper completes the results already available.

References


List of COSOR-memoranda - 1990

<table>
<thead>
<tr>
<th>Number</th>
<th>Month</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 90-01</td>
<td>January</td>
<td>I.J.B.F. Adan, J. Wessels, W.H.M. Zijm</td>
<td>Analysis of the asymmetric shortest queue problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Part 1: Theoretical analysis</td>
</tr>
<tr>
<td>M 90-02</td>
<td>January</td>
<td>D.A. Overdijk</td>
<td>Meetkundige aspecten van de productie van kroonwielen</td>
</tr>
<tr>
<td>M 90-03</td>
<td>February</td>
<td>I.J.B.F. Adan, J. Wessels, W.H.M. Zijm</td>
<td>Analysis of the asymmetric shortest queue problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Part II: Numerical analysis</td>
</tr>
<tr>
<td>M 90-04</td>
<td>March</td>
<td>P. van der Laan, L.R. Verdooren</td>
<td>Statistical selection procedures for selecting the best variety</td>
</tr>
<tr>
<td>M 90-05</td>
<td>March</td>
<td>W.H.M. Zijm, E.H.L.B. Nelissen</td>
<td>Scheduling a flexible machining centre</td>
</tr>
<tr>
<td>M 90-06</td>
<td>March</td>
<td>G. Schuller, W.H.M. Zijm</td>
<td>The design of mechanizations: reliability, efficiency and flexibility</td>
</tr>
<tr>
<td>M 90-07</td>
<td>March</td>
<td>W.H.M. Zijm</td>
<td>Capacity analysis of automatic transport systems in an assembly factory</td>
</tr>
<tr>
<td>Number</td>
<td>Month</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>M 90-08</td>
<td>March</td>
<td>G.J. v. Houtum</td>
<td>Computational procedures for stochastic multi-echelon production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W.H.M. Zijm</td>
<td>systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Revised version)</td>
</tr>
<tr>
<td>M 90-09</td>
<td>March</td>
<td>P.J.M. van Laarhoven</td>
<td>Production preparation and numerical control in PCB assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W.H.M. Zijm</td>
<td></td>
</tr>
<tr>
<td>M 90-10</td>
<td>March</td>
<td>F.A.W. Wester</td>
<td>A hierarchical planning system versus a schedule oriented planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Wijngaard</td>
<td>system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W.H.M. Zijm</td>
<td></td>
</tr>
<tr>
<td>M 90-11</td>
<td>April</td>
<td>A. Dekkers</td>
<td>Local Area Networks</td>
</tr>
<tr>
<td>M 90-12</td>
<td>April</td>
<td>P. v.d. Laan</td>
<td>On subset selection from Logistic populations</td>
</tr>
<tr>
<td>M 90-13</td>
<td>April</td>
<td>P. v.d. Laan</td>
<td>De Van Dantzig Prijs</td>
</tr>
<tr>
<td>M 90-14</td>
<td>June</td>
<td>P. v.d. Laan</td>
<td>Beslissen met statistische selectiemethoden</td>
</tr>
<tr>
<td>M 90-15</td>
<td>June</td>
<td>F.W. Steutel</td>
<td>Some recent characterizations of the exponential and geometric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>distributions</td>
</tr>
<tr>
<td>M 90-16</td>
<td>June</td>
<td>J. van Geldrop</td>
<td>Existence of general equilibria in infinite horizon economies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Withagen</td>
<td>exhaustible resources. (the continuous time case)</td>
</tr>
<tr>
<td>M 90-17</td>
<td>June</td>
<td>P.C. Schuur</td>
<td>Simulated annealing as a tool to obtain new results in plane geometry</td>
</tr>
<tr>
<td>M 90-18</td>
<td>July</td>
<td>F.W. Steutel</td>
<td>Applications of probability in analysis</td>
</tr>
<tr>
<td>M 90-19</td>
<td>July</td>
<td>I.J.B.F. Adan</td>
<td>Analysis of the symmetric shortest queue problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Wessels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W.H.M. Zijm</td>
<td></td>
</tr>
<tr>
<td>M 90-20</td>
<td>July</td>
<td>I.J.B.F. Adan</td>
<td>Analysis of the asymmetric shortest queue problem with threshold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Wessels</td>
<td>jockeying</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W.H.M. Zijm</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Month</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>M 90-21</td>
<td>July</td>
<td>K. van Ham F.W. Steutel</td>
<td>On a characterization of the exponential distribution</td>
</tr>
<tr>
<td>M 90-22</td>
<td>July</td>
<td>A. Dekkers J. van der Wal</td>
<td>Performance analysis of a volume shadowing model</td>
</tr>
<tr>
<td>M 90-23</td>
<td>July</td>
<td>A. Dekkers J. van der Wal</td>
<td>Mean value analysis of priority stations without preemption</td>
</tr>
<tr>
<td>M 90-24</td>
<td>July</td>
<td>D.A. Overdijk</td>
<td>Benadering van de kroonwielflank met behulp van regeloppervlakken in kroonwieloverbrengingen met grote overbrengverhouding</td>
</tr>
<tr>
<td>M 90-25</td>
<td>July</td>
<td>J. van Oorschot A. Dekkers</td>
<td>Cake, a concurrent Make CASE tool</td>
</tr>
<tr>
<td>M 90-26</td>
<td>July</td>
<td>J. van Oorschot A. Dekkers</td>
<td>Measuring and Simulating an 802.3 CSMA/CD LAN</td>
</tr>
<tr>
<td>M 90-27</td>
<td>August</td>
<td>D.A. Overdijk</td>
<td>Skew-symmetric matrices and the Euler equations of rotational motion for rigid systems</td>
</tr>
<tr>
<td>M 90-28</td>
<td>August</td>
<td>A.W.J. Kolen J.K. Lenstra</td>
<td>Combinatorics in Operations Research</td>
</tr>
<tr>
<td>M 90-29</td>
<td>August</td>
<td>R. Doornbos</td>
<td>Verdeling en onafhankelijkheid van kwadratsommen in de variantie-analyse</td>
</tr>
<tr>
<td>M 90-30</td>
<td>August</td>
<td>M.W.I. van Kraaij W.Z. Venema J. Wessels</td>
<td>Support for problem solving in manpower planning problems</td>
</tr>
<tr>
<td>M 90-31</td>
<td>August</td>
<td>I. Adan A. Dekkers</td>
<td>Mean value approximation for closed queueing networks with multi server stations</td>
</tr>
<tr>
<td>M 90-32</td>
<td>August</td>
<td>F.P.A. Coolen P.R. Mertens M.J. Newby</td>
<td>A Bayes-Competing Risk Model for the Use of Expert Judgment in Reliability Estimation</td>
</tr>
<tr>
<td>Number</td>
<td>Month</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>M 90-33</td>
<td>September</td>
<td>B. Veliman, B.J. Lageweg, J.K. Lenstra</td>
<td>Multiprocessor Scheduling with Communication Delays</td>
</tr>
<tr>
<td>M 90-34</td>
<td>September</td>
<td>L.J.B. F. Adan, J. Wessels, W.H.M. Zijm</td>
<td>Flexible assembly and shortest queue problems</td>
</tr>
<tr>
<td>M 90-35</td>
<td>September</td>
<td>F.P.A. Coolen, M.J. Newby</td>
<td>A note on the use of the product of spacings in Bayesian inference</td>
</tr>
<tr>
<td>M 90-36</td>
<td>September</td>
<td>A.A. Stoorvogel</td>
<td>Robust stabilization of systems with multiplicative perturbations</td>
</tr>
<tr>
<td>M 90-37</td>
<td>October</td>
<td>A.A. Stoorvogel</td>
<td>The singular minimum entropy $H_\infty$ control problem</td>
</tr>
<tr>
<td>M 90-38</td>
<td>October</td>
<td>Jan H. van Geldrop, Cees A.A.M. Wijnagen</td>
<td>General equilibrium and international trade with natural exhaustible resources</td>
</tr>
<tr>
<td>M 90-39</td>
<td>October</td>
<td>L.J.B.F. Adan, J. Wessels, W.H.M. Zijm</td>
<td>Analysis of the shortest queue problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Revised version)</td>
</tr>
<tr>
<td>M 90-40</td>
<td>October</td>
<td>M.W.P. Savelsbergh, M. Goetschalckx</td>
<td>An Algorithm for the Vehicle Routing Problem with Stochastic Demands</td>
</tr>
<tr>
<td>M 90-41</td>
<td>November</td>
<td>Gerard Kindervater, Jan Karel Lenstra, Martin Savelsbergh</td>
<td>Sequential and parallel local search for the time-constrained traveling salesman problem</td>
</tr>
<tr>
<td>M 90-42</td>
<td>November</td>
<td>F.W. Steutel</td>
<td>The set of geometrically infinitely divisible distributions</td>
</tr>
<tr>
<td>M 90-43</td>
<td>November</td>
<td>A.A. Stoorvogel</td>
<td>The singular linear quadratic Gaussian control problem</td>
</tr>
<tr>
<td>M 90-44</td>
<td>November</td>
<td>H.L. Trentelman, J.C. Willems</td>
<td>The dissipation inequality and the algebraic Riccati equation</td>
</tr>
<tr>
<td>M 90-45</td>
<td>November</td>
<td>A.C.M. Ran, H.L. Trentelman</td>
<td>Linear quadratic problems with indefinite cost for discrete time systems</td>
</tr>
<tr>
<td>M 90-46</td>
<td>November</td>
<td>A.A. Stoorvogel, J.W. van der Woude</td>
<td>The disturbance decoupling problem with measurement feedback and stability for systems with direct feed-through matrices</td>
</tr>
</tbody>
</table>