Centrifugal etching

Citation for published version (APA):

DOI:
10.1149/1.1573199

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Nov. 2019
Centrifugal Etching

An Experimental Study

R. P. Tijburg,* J. G. M. Ligthart,† H. K. Kuiken,‡ and J. J. Kelly*§,∥,¶

*Debye Institute, Utrecht University, 3508 TA Utrecht, The Netherlands
†Faculty of Applied Mathematics, Twente University of Technology, 7500 AE Enschede, The Netherlands

A cell consisting of a rotatable double-walled cylinder is described for the study of etching under conditions of enhanced gravity. Rotation rates of 6000 revolutions per minute giving g values of up to 600 were possible with the set-up. The cell was tested by etching masked patterns in a copper plate with an aqueous FeCl3 solution. The dependence of the etch rate on the system parameters (g value, ferric ion concentration, solution viscosity) is shown to be in agreement with trends predicted by a boundary-layer model. The results show that “centrifugal etching” involving artificial gravity gives a markedly increased etch rate and a reduced undercutting of the mask edge. It is shown that, in principle, the cell can be scaled up to dimensions interesting for industrial applications.

© 2003 The Electrochemical Society.

for the etchant between the inner and outer cylinders (see also Fig. 2). The sample holder and spacer are locked by two pins 4 which fit into holes in each piece. The sample holder has two flattened sides with grooves (see Fig. 3a) into which the copper plate samples could be easily mounted. The normal distance from the center of the cell to the exposed copper surface is 15 mm. The cell is sealed at the top with an O-ring 6 and a lid 7 which is screwed into the outer cylinder. A hole in the lid allows excess etchant to escape from the cell during loading.

The cell was mounted on bearings and rotated about its axis with a belt fitted to the lower part of cylinder 1 and a motor with a control unit and a feedback system. Rotation rates up to 6000 rpm were used. Rotation rates up to 6000 rpm were used. Within the accuracy of the measurements the etch rate was essentially constant in this range. Some experiments were performed at an etching time of 20 min; the total etch rate in this case was somewhat lower than that for the shorter term experiments. From Fig. 4a, which shows results for a 100 and 200 µm hole etched with a 2.5 mol/L FeCl₃ solution, it is clear that the etch rate increases markedly with increasing g value. At 600 g the etch rate is a factor of 15 higher than that measured without rotation (2 µm/min). Figure 4b gives the etch factor as a function of g value for the experiment of Fig. 4a. Ratios of above four were found, confirming that centrifugal etching can indeed reduce the effect of undercutting of the mask. The surface of the copper after etching was smooth and showed Benard-cell formation, similar to that reported previously for bronze.

The basis for the design of the centrifugal etching cell. See text for details.

Results

The etch rate, defined as the depth etched per unit time, was studied as a function of the solution composition and the rotation rate of the cell at room temperature (20 ± 1°C). In all the experiments reported here two etching times were used, 5 and 10 min. Within the accuracy of the measurements the etch rate was essentially constant in this range. Some experiments were performed at an etching time of 20 min; the total etch rate in this case was somewhat lower than that for the shorter term experiments. From Fig. 4a, which shows results for a 100 and 200 µm hole etched with a 2.5 mol/L FeCl₃ solution, it is clear that the etch rate increases markedly with increasing g value. At 600 g the etch rate is a factor of 15 higher than that measured without rotation (2 µm/min). Figure 4b gives the etch factor as a function of g value for the experiment of Fig. 4a. Ratios of above four were found, confirming that centrifugal etching can indeed reduce the effect of undercutting of the mask. The surface of the copper after etching was smooth and showed Benard-cell formation, similar to that reported previously for bronze.

The plot of etch rate vs. FeCl₃ concentration (Fig. 5) exhibits a maximum at around 2 mol/L. This result is typical for all the etching combinations (hole diameter and g values) that we have investigated. The influence of the dimensions of the hole on the enhancement of the etch rate is shown in Fig. 6 for a 2.5 mol/L FeCl₃ solution. The etch rate is plotted as a function of hole diameter (on a logarithmic scale) for various g values. While a marked increase in the etch rate is observed during cell rotation for holes with a diameter of 100 and 200 µm (see also Fig. 4), we observe a slight decrease in etch rate for larger holes. On the other hand, the effect of enhanced gravity on small holes (diameter ≤50 µm) is much less pronounced; this holds for g values up to 600.

Discussion

Before considering our results, we briefly review the analytical model that has been developed to describe etching of an axisym-
metric cavity under the influence of an artificial acceleration field. The etching process is governed by a thin convective-diffusive boundary layer along the curved cavity wall. The boundary-layer model can be solved explicitly to give an exact representation of mass transport at the wall. The solution is substituted in the moving-boundary condition; this results in an expression for the wall position as a function of time. This equation can be used to obtain a one-parameter family of similarity curves, i.e., cavity shapes, such as those shown in Fig. 7a. The shape of the cavity, which is time independent, is determined by a free parameter α, which can be fixed only on the basis of the initial geometry of the etching system.

The lowest value with physical significance ($\alpha = 0.7566$) gives a bulging profile with an almost flat bottom (case a, Fig. 7a). A profile for $\alpha = 1$ (case b, Fig. 7a) is quite similar to the long-time profile calculated by Shin and Economou. When α is further increased (up to 3 in Fig. 7a) the profile becomes pear-shaped and elongated.

Figure 7b shows a typical cross section through an etched hole in a copper plate. The agreement between this characteristic profile and that predicted by theory [see Fig. 7a] supports the validity of the model; the measured profile corresponds to an α value of about 1.5.

Equation 65 of Ref. 11 gives an expression for the centrifugal etch rate v_a as a function of the system parameters for a family of similarity shapes. If we restrict ourselves to the center of the etched pit, then the right side of that equation will reduce to some numerical constant and we have

$$v_a = \gamma t^{-1/5}$$

[1]

where t is the time and γ is given by (see Eq. 1, 36, and 40 of Ref. 11)

$$\gamma = (\sigma_s c_m)^{4/5} \frac{\alpha B c_m}{\nu D}$$

[2]

Here we have disregarded some numerical constants. The notation has been modified slightly from that used in Ref. 11. In Eq. 2 a is the centrifugal acceleration (m/s^2), c_m is the maximum concentration of the active etching component (kmol/m^3), ν is the kinematic viscosity of the etchant (m^2/s), D is the diffusion coefficient of the active etching component (m^2/s), and B is a parameter (m^3/kmol) indicating how the density ρ varies with the concentration c. The latter is defined by

$$\rho = \rho_0 (1 + Bc)$$

[3]

where ρ_0 is the density at $c_m = 0$. The “etching parameter” σ_s is defined by Eq. 9 of Ref. 13 and 14 in terms of some basic physical parameters

$$\sigma_s = \frac{DM_s}{\rho_s m}$$

[4]

where M_s is the molecular weight of the solid (kg/kmol), ρ_s is its density (kg/m3), and m represents the number of moles of active etching component required to dissolve 1 m of the solid.
Apart from a constant proportionality factor, the etch rate v_n can now be expressed explicitly in terms of the system parameters $v_n, S_m, D^{4/5} c_m D^{3/5} n^{2/5} a B^{1/5} t^{1/5}$.

\[[5] \]

The model predicts a slow decrease in etch rate with time (a $t^{-1/5}$ dependence). The time domain of most of our measurements is too limited to allow us to check this dependence. We do, however, see a drop in etch rate at longer etching times. From Eq. 5 it is clear that the etch rate should be mainly determined by four parameters: the acceleration field, the concentration of oxidizing agent, the viscosity, and the diffusion coefficient. The latter two parameters depend on the FeCl$_3$ concentration. Log-log plots of the etch rate vs. accelera-

Figure 4. (a) The dependence of etch rate on the g value for the etching of (○) 100 and (x) 200 μm holes using a 2.5 mol/L FeCl$_3$ solution; (---) shows a $g^{1/5}$ dependence. (b) Dependence of etch factor on the g value for 100 μm holes.

Figure 5. A plot of the etch rate v_n vs. FeCl$_3$ concentration for a 100 μm hole at two different g values: (a) 600 and (b) 36.

Figure 6. The dependence of etch rate on the hole diameter l for a 2.5 mol/L FeCl$_3$ etchant at two different g values: (a) 600 and (b) 150.

Figure 7. (a) Selection of similarity curves calculated from the model. The horizontal and vertical coordinates have been scaled by the same factor. The free parameter a has values (a) 0.7566, (b) 1, (c) $(8/3)^{1/5} = 1.21673$, (d) 1.5, (e) 2, and (f) 3. (b) Cross section through an etched hole.
tion field give straight lines with slopes varying between 0.2 and 0.25, close to the exponent predicted by theory (Eq. 5). The $a^{1/5}$ dependence, shown as a solid line in Fig. 4a, fits the results quite well, except at low rotation rates.

The rather unusual concentration dependence of the etch rate (Fig. 5) can be understood by realizing that as the FeCl$_3$ concentration increases, the viscosity increases, and consequently, the diffusion coefficient decreases. An accurate analysis of our results in terms of Eq. 5 is not possible. For concentrated solutions, such as those used in the present work, activity should be used instead of concentration. We do not have data for the activity coefficients and diffusion coefficients of the Fe$^{3+}$ ion in our system. However, the general trend in etch rate as a function of concentration can be demonstrated. Eastal et al. measured the viscosity and diffusion coefficient of FeCl$_3$ solutions, acidified with HCl at 25°C. From their results we find the diffusion coefficient to be inversely proportional to the kinematic viscosity

$$vD = \nu_m D_0$$ \[6\]

where ν_m is the viscosity for $c_m = 0$ and $D \rightarrow D_0$, as $c_m \rightarrow 0$. Inserting Eq. 6 into Eq. 5 for the etch rate we obtain

$$\nu_m = A cm^{1/5}$$ \[7\]

where A includes the variables a and l. If we assume that a relation similar to Eq. 7 also holds for our system at 20°C and to higher concentrations, then we can use the available values of ν (curve a of Fig. 8) to calculate $c_m^{1/5}$ as a function of c_m. The corresponding plot, given as curve b in Fig. 8, shows a maximum similar to that of the measured etch rate as a function of c_m (Fig. 5).

The acceleration field obviously has a much weaker influence on the etching of smaller holes (diameter < 50 μm). According to the model, a significant enhancement of the etch rate is expected only if the Rayleigh number Ra is much larger than unity

$$Ra = \frac{abl^3}{vD} \gg 1$$ \[8\]

The parameters a, b, v, and D have already been introduced in relation to Eq. 2; k is the relative density increase where k is the maximum concentration difference. Further, l is a length parameter characteristic of the size of the cavity, e.g., the dimensions of the mask opening, which in the present case corresponds to the hole diameter. For small holes the requirement of Eq. 8 is not met. This equation indicates that etch-rate enhancement for small dimensions can be achieved either by increasing the centrifugal acceleration and the relative density increase or by decreasing viscosity and diffusion coefficient; the latter depends on the etchant choice.

The most significant increase in etch rate and the improvement in aspect ratio are observed at lower g values (see Fig. 4a and b). This means that the cell can be operated effectively at moderate rotation rates and consequently, can be scaled up to give an industrial etching machine. In addition, since the centrifugal force is proportional to g^2, where g is the radial velocity and r the effective radius, the rotation rate required to maintain a given g value decreases as the radius of the cylinder increases. If the effective radius of the cell is increased by a factor of 10 (from 1.5 to 15 cm), then the rotation rate needed to achieve a g value of 150 is 950 rpm. This should be easy to realize, as experience with commercial washing machines shows. For larger etching machines a horizontally rotating cylinder may be more practical than the setup with vertical rotation used for laboratory experiments in the present study. Centrifugal etching machines would be particularly interesting for etching foils; in this case the foil can be rolled onto the outer surface of the inner cylinder.

The cell described here can be easily adapted for experiments with the acceleration field vector pointing in the opposite direction. In this case the substrate should be mounted on the inner surface of a demountable outer cylinder.

Recently, Atobe et al. used an adapted centrifuge to investigate the electro-oxidative polymerization of aniline. Lin and Navarro used a similar setup to study metal electrodeposition. The cell described in the present work would also be suitable for studying the influence of centrifugal force in such electrochemical systems. A reference and a counter electrode could be mounted together with the substrate (the working electrode) in the solution compartment of the present cell. With electrical leads passing from the electrodes through the wall of the inner cylinder to brush contacts on the inner surface, electrochemical parameters could be measured as a function of the g value.

Acknowledgments

We thank Ing. Johan van der Linden for designing and building the control unit and Dr. Marcel de Bruyn for providing the photolithographic facilities and for his help with the project. This work was made possible by funding from the Netherlands Foundation for Technical Research (STW, project no. TW44-3286).

Utrecht University assisted in meeting the publication costs of this article.

References