

Straight-path queries in trajectory data

Citation for published version (APA):
Berg, de, M. T., & Mehrabi, A. D. (2016). Straight-path queries in trajectory data. Journal of Discrete Algorithms,
36(Walcom 2015), 27-38. https://doi.org/10.1016/j.jda.2015.08.002

Document license:
TAVERNE

DOI:
10.1016/j.jda.2015.08.002

Document status and date:
Published: 01/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 02. Jun. 2023

https://doi.org/10.1016/j.jda.2015.08.002
https://doi.org/10.1016/j.jda.2015.08.002
https://research.tue.nl/en/publications/0a07f655-db45-4075-8f66-d01700c79300

Journal of Discrete Algorithms 36 (2016) 27–38
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Straight-path queries in trajectory data ✩

Mark de Berg 1, Ali D. Mehrabi ∗,1

Department of Computer Science, TU Eindhoven, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 3 September 2015

Keywords:
Trajectory data
Data structures
Path simplification problem

Inspired by sports analysis, we study data structures for storing a trajectory representing
the movement of a player during a game, such that the following queries can be answered:
Given two positions s and t, report all sub-trajectories in which the player moved in a
more or less straight line from s to t. We consider two measures of straightness, namely
dilation and direction deviation, we present efficient construction algorithms for our data
structures, and we analyze their performance. We also present an O (n1.5+ε) algorithm
for the following simplification problem: given a trajectory P and a threshold τ , find
a simplification of P with a minimum number of vertices such that each edge in the
simplification replaces a sub-trajectory whose length is at most τ times the length of the
edge. This significantly improves the fastest known algorithm for the problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Background. Video analysis is nowadays an important tool for sports coaches. Traditionally, video analysis is done manually:
someone watches a video of a match and annotates the video with various types of events—goals or points being scored,
changes of ball possession, and so on. However, manual analysis is labor intensive and annotating all league matches of an
entire season would be very time-consuming and expensive. Therefore there has been considerable interest in automating
parts of the process. A basic step in an automated analysis is to extract the movements of the players and the ball from the
video. Nowadays this can be done quite accurately, giving us for each player a trajectory: a sequence of the player’s location
at regular time steps. The sampling rate of these trajectories is high: the data set of soccer trajectories made available by
Petterson et al. [9], for instance, reports the positions at a frequency of 20 Hz. The availability of high-quality trajectories
enables the use of geometric algorithms and data structures. In this paper we study two problems in this area.

The first problem is an indexing problem, related to the following query a coach may wish to ask: show me all video
fragments in which player X runs in a more or less straight line from a certain position s on the field to another posi-
tion t . We thus need a data structure storing a collection of trajectories (corresponding to the movements of player X in all
matches) such that we can efficiently answer straight-path queries: given a directed query segment st , report all subtrajecto-
ries starting near s and going in a more or less straight line to a point near t . (We will define the problem more formally
below.)

The second problem we study is a simplification problem: given a trajectory P , compute a simplification P ′ with a
minimum number of vertices under the condition that P ′ is sufficiently similar to P . Here we require (as is usually done)

✩ A preliminary version appeared in the 9th Workshop on Algorithms and Computation (WALCOM) 2015.

* Corresponding author.
E-mail address: amehrabi@win.tue.nl (A.D. Mehrabi).

1 M. de Berg and A.D. Mehrabi were supported by the Netherlands Organization for Scientific Research (NWO) under grants 024.002.003 and 612.001.118,
respectively.
http://dx.doi.org/10.1016/j.jda.2015.08.002
1570-8667/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jda.2015.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:amehrabi@win.tue.nl
http://dx.doi.org/10.1016/j.jda.2015.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jda.2015.08.002&domain=pdf

28 M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38
that the vertices of P ′ form a subset of the vertices of P —it is not allowed to introduce vertices at new locations. Computing
such a simplification is useful to reduce storage requirements, and also to smooth out irregularities in the data due to small
errors in the reported locations.

Straight-path queries: related work. The focus of our work is on data structures that come with proven guarantees on the query
time but also on the quality of the reported results. For the latter we need to define when a subtrajectory is sufficiently
similar to the query segment st . We are aware of only one such result, obtained by De Berg et al. [3]. They show how to
store a trajectory P of n vertices such that, given a query segment st and a threshold �, one can find all subtrajectories of
P whose so-called Fréchet distance to st is at most �. However, their work has several drawbacks. First of all, in addition
to all the correct subtrajectories their data structure may report additional subtrajectories whose Fréchet distance to st can
be up to a factor 2 + 3

√
2 times larger than �. Second, their data structure is a complicated multi-level structure which

is difficult to implement and unlikely to be efficient in practice. Finally, they only show how to (approximately) count
the subtrajectories—it is unclear how to actually report them in an efficient manner. Gudmundsson and Smid [7] recently
studied a more general version of the problem, where the data structure stores a geometric tree instead of a path and the
query is a path, but their solution works for c-packed paths and only reports a single subpath (and is rather involved).

There are also several non-algorithmic papers about automating the analysis of sports videos; see e.g. the survey by
Yu and Farin [13]. The paper by Shim et al. [11] is the one most closely related to our work. Given a video database and
a query trajectory, Shim et al. study the problem of finding all video fragments whose trajectory is similar to the query
trajectory. They first use spatio-temporal representation schemes to model the trajectories and then apply a k-warping
distance algorithm to measure the similarity between the query trajectory and the trajectories of the moving objects. In
contrast to what we study in this paper, they do not focus on the running time of their algorithm nor the amount of
storage it needs.

Straight-path queries: our approach and results. We take the following practical approach. We partition the soccer field into a
grid of square cells (the cell size can be set by the user). To specify a query the coach indicates a starting cell Cs and a
target cell Ct , and the data structure should report all subtrajectories where the player moved in a more or less straight
line from Cs to Ct . We still have to define what it means when “a player moves from Cs to Ct in a more or less straight
line”. Let s be the point where the player’s trajectory P exits Cs and let t be the point where it enters Ct . Then we want the
subtrajectory from s to t—we denote this subtrajectory by P [s, t]—to be similar to the segment st . We study two different
definitions for this similarity.

• The first option is to use the so-called dilation of P [s, t], which is defined as |P [s, t]|/|st|, where | · | denotes the
Euclidean length of a path or segment. We say that the player moves in a more or less straight line from Cs to Ct when
the dilation of P [s, t] is at most some (predetermined) threshold τ � 1. In other words, P [s, t] can be at most a factor τ
longer than the segment st .

• The second option is to require that the player always moves in more or less the same direction along P [s, t]. We define
the direction deviation of a trajectory to be the maximum angle between any two (directed) segments on the trajectory.
We then say that the player moves in a more or less straight line from Cs to Ct when the direction deviation of P [s, t]
is at most some (predetermined) threshold α < π/2. We call such a subtrajectory α-straight.

Our first data structure for straight-path queries is a look-up table that stores, for all pairs of cells Cs , Ct in the grid, the
set S(Cs, Ct) of straight Cs-to-Ct subtrajectories (according the chosen definition of straightness). This means that a query
can be answered in O (1 + A) time by a look-up table, where A is the number of reported subtrajectories. Our contributions
for this simple data structure are (i) efficient algorithms to compute all sets S(Cs, Ct), (ii) a theoretical analysis of the
worst-case size of the data structures, and (iii) an experimental evaluation of the size of the data structures in practice.

Because the worst-case size of our first data structure is large, we also present a data structure that uses much less
storage. This data structure can be used when the straightness measure is the direction deviation. A drawback is that,
in addition to the correct subtrajectories, the data structure may also report some additional α-straight subtrajectories that
start near Cs . We analyze the maximum possible error—that is, how far from Cs the reported subtrajectories may start—both
theoretically and experimentally.

The minimum-vertex path-simplification problem. In path-simplification problems the goal is to compute, for a given trajec-
tory P , a trajectory Q with fewer vertices than P that is sufficiently similar to P . The Douglas–Peuker algorithm [5,10]
is probably the best known and most widely used simplification algorithm. There are many different variants of the path-
simplification problem, which differ in the similarity measure used, in what is being optimized (one can either minimize
the number of vertices of P ′ under the condition that its similarity to P stays within a given bound, or one can optimize
the similarity under the condition that the number of vertices does not exceed a given number), and whether or not the
simplification can only use vertices from P . We study a variant called the minimum-vertex path-simplification (MVPS) prob-
lem, introduced by Gudmundsson et al. [6]. In the MVPS problem we want to find a minimum-size subset Q of vertices
of P such that for any two consecutive vertices pi and p j in Q we have |P [pi, p j]| � τ |pi p j|. (In other words, we are
only allowed to use a shortcut pi p j when the dilation of P [pi, p j] is at most τ .) Gudmundsson et al. [6] reduce the MVPS
problem to finding a shortest path from p1 to pn in an associated graph Gτ . Their algorithm has quadratic running time

M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38 29
Fig. 1. A subtrajectory and the points on S1 corresponding to its edges. The smallest circular interval containing the points is shown in grey.

as Gτ can have �(n2) size. They also present an approximation algorithm that runs in O (n log n + n/δ) time and com-
putes a simplification whose size is within a factor of (1 + δ) of the size of optimal solution, for any given δ > 0. We
present a dynamic-programming algorithm that computes an optimal solution in O (n1.5+ε) expected time, for any ε > 0,
thus significantly improving their quadratic algorithm.

2. The data structures

For simplicity of presentation we assume we are given a single trajectory P with n vertices, denoted by v0, . . . , vn−1;
it is trivial to extend the results to multiple trajectories. We further assume that the grid G we use to partition the soccer
field is a square grid with m × m cells. Recall that P [p, p′] denotes the subtrajectory from p to p′ . We say that P [p, p′] is a
C-to-C ′ subtrajectory if p lies on the boundary of cell C and p′ lies on the boundary of cell C ′ and P [p, p′] does not intersect
C and C ′ except at p and p′ . For two points p, p′ ∈ P we write p ≺ p′ when p comes before p′ in the order along P .

2.1. A look-up table for straight-path queries

As explained in the introduction, our first data structure is a look-up table that stores for every pair of grid cells C , C ′
the set S(C, C ′) of all C-to-C ′ subtrajectories that are considered straight with respect to the given measure of straightness
(dilation or direction deviation) and parameter (τ or α). More precisely, for each such subtrajectory P [p, p′] we store its
starting point p and endpoint p′ . The main questions are then: (i) how do we construct the sets S(C, C ′) efficiently, and
(ii) what is the maximum size of the data structure, that is, how large can

∑
C,C ′ |S(C, C ′)| be.2 Next we answer these

questions for the two straightness measures that we use.
In the sequel we call a point where P crosses from one cell into the next a transition point. (To deal correctly with

degenerate situations we define each cell to be closed on the bottom and to the left, and open on the top and to the right.
Thus vertical edges belong to the cell lying to their right and horizontal edges belong to the cell above; vertices belong to
the cell to their top-right.) A transition point is an exit point for the cell being exited, and an entry point for the cell being
entered. We denote the sequence of transition points by p0, p1, . . ., where the transition points are ordered along P . We
denote the cell from which P exits at pi by Cexit(pi), and the cell being entered by Centry(pi).

2.1.1. Direction deviation
We first study direction deviation as straightness measure.

Computing all α-straight subtrajectories. We first describe how to compute the sets S(C, C ′) when direction deviation is used
as straightness measure. Let α be the given straightness parameter, where we assume 0 � α < π/2. Note that α-straightness
is a monotone criterion: if a subtrajectory P [p, q] is α-straight, then any subtrajectory P [p′, q′] with p ≺ p′ ≺ q′ ≺ q is also
α-straight. Thus we can follow the following strategy: we walk along P from start to finish, and at each transition point p j
we walk back along P to report all α-straight subtrajectories of the form P [pi, p j], where pi is a transition point with i < j.
Because α-straightness is a monotone criterion, we can stop the backwards walk as soon as we encounter a transition point
pi for which P [pi, p j] is not α-straight. A problem with this approach is that if P has many consecutive vertices inside the
same cell then we spend a lot of time walking back through that cell, which can cause a high running time. We thus have
to proceed more carefully.

We model directions as points on the unit circle S1. A subtrajectory P [pi, p j] is α-straight if and only if the small-
est circular interval of S1 that contains all points corresponding to the directions of the edges of the subtrajectory has
length α—see Fig. 1. Our algorithm now works as follows. As we walk along P we compute for each consecutive pair of
transition points p j , p j+1 the smallest circular interval I(p j, p j+1) containing all directions of the subtrajectory P [p j, p j+1],
if this interval has length at most α; if the interval has length greater than α then I(p j, p j+1) is defined to be nil. (The
smallest interval is uniquely defined when it has length at most α, since α < π .) Note that if P [p j, p j+1] is a single seg-
ment then I(p j, p j+1) degenerates to a point on S1. At each transition point pi we walk backwards from transition point to
transition point (thus skipping over vertices of P) as long as the subtrajectories are α-straight. To check this we maintain
the smallest circular interval I∗ that contains all intervals I(p j, p j+1) that we encountered in the backwards walk.

2 By hashing techniques we can make sure we only store information for pairs C , C ′ such that S(C, C ′) �= ∅, so the amount of storage is indeed
O (

∑
C,C ′ |S(C, C ′)|).

30 M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38
Algorithm 1 FindStraightSubtrajectories(P , α).
1. Set j := 0 and create an empty list L for storing transition points.
2. Walk along P from v0 to vn−1, tracing the trajectory through the grid. Whenever P crosses from one cell into another, do the following:

(i) Create a transition point p j at the crossing point. If j = 0 then skip to Step (v), otherwise continue with Step (ii).
(ii) Set I(p j−1, p j) := SmallestInterval(P [p j−1, p j])

(iii) I∗ := I(p j−1, p j); let ptr point to the end of L.
while I∗ �= nil and ptr �= nil

do Let pi be the transition point ptr points to.
if Cexit(pi) = Centry(p j)

then ptr := nil

else Report P [pi , p j] as an α-straight Cexit(pi)-to-Centry(p j) subtrajectory. If I(pi) = nil then I∗ := nil, else I∗ := Merge(I∗, I(pi)).
Move ptr backwards (to its predecessor).

(iv) If there is a transition point pi in L with Cexit(pi) = Cexit(p j)—we can test this in O (1) time by maintaining some extra information—then we
remove pi from L and we set I(pi′) := Merge(I(pi), I(pi′)), where pi′ is the successor of pi in L.

(v) Append p j to L with I(p j) := I(p j−1, p j), and set j := j + 1.

We ignored one aspect so far: the fact that P [pi , p j] is α-straight is not sufficient for the subtrajectory to be reported.
We also need P [pi, p j] to be a valid Cexit(pi)-to-Centry(p j) subtrajectory. This is violated if P [pi, p j] intersects Cexit(pi) or
Centry(p j) at some point other than pi or p j . To make sure our algorithm is output sensitive, we have to avoid reporting
P [pi, p j] in this case. This can be done by removing a transition point pi from our list of transition points as soon as we
encounter another transition point pi′ with Cexit(pi′) = Cexit(pi). This ensures that when we report P [pi, p j], then P [pi, p j]
does not intersect Cexit(pi) except at pi . When we remove pi , we have to “merge” the intervals I(pi−1, pi) and I(pi, pi+1)

into a new interval I(pi−1, pi+1). To facilitate this we maintain an ordered list L of all encountered transition points that
have not been deleted yet, and with each transition point pi in L we store an interval I(pi) which is the smallest circular
interval containing all directions of the subtrajectory P [pi′ , pi] (or nil if this interval has length more than α), where pi′
is the predecessor of pi in L. To avoid reporting a subtrajectory P [pi, p j] that intersects Centry(p j) at some point other
than p j , we can simply stop our backwards walk when we encounter a transition point pi with Cexit(pi) = Centry(p j).

Algorithm 1 describes our algorithm in more detail. Subroutine SmallestInterval(P [pi, p j]) outputs the smallest circular
interval containing all edge directions of P [p j−1, p j] or, when this interval has length more than α, it outputs nil. Similarly,
for two circular intervals I1, I2 the subroutine Merge(I1, I2) outputs the smallest circular interval containing I1 and I2 or,
when this interval has length more than α, it outputs nil.

Since walking back from a transition point p j takes time O (1 + k j), where k j is the total number of reported subtrajec-
tories, we get the following theorem.

Theorem 1. Let P be a trajectory with n vertices in a domain that is an m × m grid, and let α be a constant with 0 � α < π/2. Then
we can compute all sets S(C, C ′) of α-straight subtrajectories of P in O (n + k) time, where k is the total size of all sets.

Analysis of the number of α-straight trajectories. Next we prove bounds on
∑

C,C ′ |S(C, C ′)|, the total number of α-straight
trajectories. To simplify the bounds we make the assumption that the average length of the segments vi vi+1 of P is at
most the edge length of the grid cells. With our grid cells having size of 1 m × 1 m, for instance, and a sampling rate of
20 Hz this is clearly a realistic assumption. From now on we assume without loss of generality that the cells in the grid G
have unit size, and that the average length of the segments vi vi+1 in P is at most 1. We call such a trajectory a short-edge
trajectory. The following theorem states the main result for this case. Observe that in practice α would be chosen fairly
small, in which case cos(α/2) will be close to 1. The bound in the next theorem then becomes O (nm).

Theorem 2. Let P be a short-edge trajectory with n vertices within an m × m unit grid, and let 0 � α < π/2. For a pair C , C ′ of grid
cells, let S(C, C ′) be the collection of all C-to-C ′ α-straight subtrajectories. Then

∑
C,C ′ |S(C, C ′)| = O (min{n2, nm2, nm/ cos(α/2)}),

and this bound is tight in the worst case.

To prove Theorem 2 we first bound the length of any α-straight subtrajectory.

Lemma 3. The length of any α-straight trajectory P ′ in an m × m unit grid is at most
√

2m/ cos(α/2).

Proof. Since the directions of all edges in P ′ differ by at most α, there is a direction 	d such that any edge in P ′ makes an
angle at most α/2 with 	d. Let 	 be a line with direction 	d, and project all edges of P ′ orthogonally onto 	. Note that if the
projection of some edge si of P ′ onto 	 has length xi , then |si| � xi/ cos(α/2). Furthermore, since α < π/2, the projections
of these segments have disjoint interiors. Hence, |P ′| = ∑

i |si| � ∑
i xi/ cos(α/2) = |pp′|/ cos(α/2), where p and p′ are the

projections of the start and endpoint of P ′ onto 	. Because P ′ lies inside an m × m grid, we have |pp′| � √
2m. �

The following lemma provides us with an upper bound on the number of distinct cells visited by a trajectory of length L.

Lemma 4. A trajectory of length L on a unit grid visits O (L + 1) cells.

M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38 31
Fig. 2. A lower-bound witness for Lemma 5. Trajectory P is a sequence of segments si . In order to have a short-edge trajectory we assume that each
segment si consists of several unit-length edges. The figure shows one round of P .

Proof. Consider the buffer region around the trajectory that consists of all points at distance at most
√

2 from the trajectory.
Since the side length of the grid cells is 1, all cells visited by P lie in this buffer region. Hence, the area of the buffer, which
is at most 2

√
2L + 2π = O (L + 1), gives an upper bound on the number of cells visited by P . �

Using Lemma 3, we can now prove the upper bound from Theorem 2. Indeed, since the average length of the segments
is at most 1, the total length of P is at most n. By Lemma 4 this implies that the total number of transition points of P
is O (n), which gives an O (n2) upper bound on the total number of subtrajectories between transition points (irrespective
of whether they are α-straight or not). It also implies an upper bound of O (nm2), since there are only m2 distinct cells C
to start a C-to-Centry(p j) subtrajectory for a fixed transition point p j . On the other hand, for each transition point p j , the
length of the longest α-straight subtrajectory ending at p j is at most

√
2m/ cos(α/2) by Lemma 3. Using Lemma 4 we can

therefore bound the number of α-straight subtrajectory ending at p j by O (m/ cos(α/2)), which gives an O (nm/ cos(α/2))

on the total number of α-straight subtrajectories. Combining this with the O (n2) and O (nm2) bounds, we obtain the claimed
upper bound.

Lemma 5 gives a lower bound on the maximum number of α-straight subtrajectories that matches the upper bound just
proved, thus completing the proof of Theorem 2.

Lemma 5. For any constant 0 � α < π/2 and any positive integers n and m, there exists a short-edge α-straight trajectory with n
vertices within an m × m unit grid such that

∑
C,C ′ |S(C, C ′)| =
(min{n2, nm2, nm/ cos(α/2)}).

Proof. For given n and m, Fig. 2 shows a trajectory with the claimed properties. It starts at the lower left corner of the
field, then moves diagonally upwards at an angle α/2 with the x-axis, then moves down when a grid line is hit, and so on.
The zigzagging continues until the right boundary of the field is reached, at which point the path goes back in a similar
fashion. Depending on how small or large the number of vertices in P is, P goes back and forth between the vertical
boundary edges of the grid for several times. Imagine splitting P into subtrajectories at the points where it hits the vertical
boundary edges of the grid; we call the resulting subtrajectories rounds. To prove the claimed lower bound we consider
the following two cases. For n < m/ cos(α/2) the trajectory P consists of at most one round and it visits
(n) cells. Since
in this case the subtrajectory between any pair of visited cells is α-straight, we get a lower bound of
(n2) on the total
number of α-straight subtrajectories. On the other hand, if n � m/ cos(α/2) then P consists of n/(m/ cos(α/2)) rounds and
each complete round visits

(
∑

|si |) =
(m/ cos(α/2))

cells. Hence, a complete round consists of
(m2/ cos2(α/2)) α-straight subtrajectories and therefore the trajectory P con-
sists of
(nm/ cos(α/2)) α-straight subtrajectories. Note that this construction is only valid for m � 1/ cos(α/2), otherwise
the trajectory would leave the field through the top edge. For m < 1/ cos(α/2) we therefore get a bound of �(m2n). �
Remark. If the trajectory is not restricted to be short-edge then the upper bound of Theorem 2 becomes O (min{n2s2, nm2s,
nms/ cos(α/2)}), where s denotes the average length of the segments in the trajectory, and this bound is tight in the worst
case. To see this, a similar argument as in the proof of Theorem 2 applies here. Indeed, the total number of transition
points of P is O (sn), the trivial upper bound on the total number of subtrajectories caused by P becomes O (n2s2). In
addition, since P can generate at most O (sn) transition points, we can bound the total number of α-straight subtrajectories
as O (min(nm2s, nms/ cos(α/2))) using Lemmas 4 and 3. To see that the upper bound is tight in the worst case, we can
re-use the trajectory P in Fig. 2, the only difference is that we do not need to split each segment si into unit-length edges,
which means we can have more rounds.

2.1.2. Dilation
We now turn our attention to dilation as a measure of straightness. We denote the dilation of P [p, p′] by dil(P [p, p′]).

Computing all subtrajectories with dilation at most τ . Compared to direction deviation as straightness measure, dilation is
more difficult to handle, because it is not a monotone criterion: if dil(P [p, p′]) � τ then a subtrajectory P [p′, q′] with

32 M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38
Algorithm 2 FindSmallDilationSubtrajectories(P , τ).
1. Set j := 0 and initialize an empty data structure D.
2. Walk along P from v0 to vn−1, tracing the trajectory through the grid. Whenever P crosses from one cell into another, do the following:

(i) Create a transition point p j at the crossing point.
(ii) If j > 0 then query the data structure D to find all transition points pi such that ψi ∈ �τ (p j) and i > j′ , where p j′ is the most recent transition

point with Centry(p j′) = Centry(p j). (If there is no such transition point, then j′ = −1.) For each such transition point pi , report P [pi , p j] as a
Cexit(pi)-to-Centry(p j) subtrajectory with dilation at most τ .

(iii) Insert ψ j := (x j , y j , d j) into D. If D already stored a transition point pi with Cexit(pi) = Cexit(p j) then we delete the corresponding point ψi

from D.
(iv) Set j := j + 1.

p ≺ p′ ≺ q′ ≺ q may still have dilation larger than τ . Hence, when we want to find all subtrajectories P [pi , p j] of dilation
at most τ and ending at a given transition point p j , and we walk back from p j , then we cannot stop when we encounter a
transition point pi such that dil(P [pi, p j]) > τ . A simple solution would be to always walk back all the way until the length
of the subtrajectory is more than τ · √

2m—since the distance between any two points on P is at most
√

2m we do not
have to walk back further—and at each transition point pi check whether dil(P [pi, p j]) � τ . This gives a quadratic solution
for computing all subtrajectories with dilation at most τ . Next we improve upon this by presenting an output-sensitive
algorithm.

The idea of our solution is that, as we walk along P , we store the transition points in a suitable data structure D. This
data structure allows us to perform a query with the current transition point p j to find all transition points pi such that
P [pi, p j] is a Cexit(pi)-to-Centry(p j) subtrajectory of dilation at most τ . To this end we associate to each transition point pi

a point ψi := (xi, yi, di) in R3, where di = |P [v0, pi]| and xi and yi are the x- and y-coordinate of pi , respectively. Note that
the values di can be computed in constant time as we walk on P , if we maintain the total length of the traversed part of P .
Now when we arrive at transition point p j , we are looking for all transition points pi such that dil(P [pi, p j]) � τ , that is,

such that (d j − di)/

√
(x j − xi)

2 + (y j − yi)
2 � τ . Thus if we define the range �τ (p j) in R3 for p j as

�τ (p j) := {(x, y,d) : τ (x j − x)2 + τ (y j − y)2 − (d j − d)2 � 0}
then we are looking for all points pi such that ψi ∈ �τ (p j).

As before, there is one other aspect to be taken into account: we are only allowed to report a subtrajectory P [pi, p j]
when it does not intersect Cexit(pi) except at pi and it does not intersect Centry(p j) except at p j . The former is guaranteed
by deleting a transition point pi from D when we encounter a transition point pi′ with i′ > i such that Cexit(pi′) = Cexit(pi).
The latter is guaranteed by refining our query: when we arrive at transition point p j we find the most recent transition
point p j′ with Centry(p j′) = Centry(p j)—we can find this point (if it exists) in O (1) time if we maintain a pointer from each
grid cell to its most recent entry point—and then we only search for exit points pi with i > j′ . Algorithm 2 describes this
in more detail.

It remains to describe the data structure D, which should answer the following type of queries:

Given a query point p j and an index j′ , report the points pi such that

ψi ∈ �τ (p j) (in other words, with dil(P [pi, p j]) � τ) and i > j′. (∗)

First we focus on the condition ψi ∈ �τ (p j). The range �τ (p j) is a semi-algebraic set in R3. Hence, we can use the range-
searching data structure of Agarwal et al. [1], which uses O (n1+ε) storage and expected preprocessing (for any fixed ε > 0)
and has query time O (n2/3 +k), where k is the number of reported points. We can improve the query time if we allow more
preprocessing, using standard techniques. For instance, we can obtain logarithmic query time using O (n3) preprocessing. To
this end we map every point pi to an algebraic surface
τ (pi) in R3, defined as

τ (pi) := {(x, y,d) : τ (x − xi)
2 + τ (y − yi)

2 − (d − di)
2 = 0}.

Now, whether or not dil(P [pi, p j]) � τ is determined by on which side of
τ (pi) the point p j lies. Thus we can find all
points pi such that dil(P [pi, p j]) � τ by performing point location with p j in the arrangement defined by the surfaces
{
τ (pi) : i < j}. The latter can be solved in O (log n) time after O (n3+ε) preprocessing [4]. Unfortunately, we cannot afford
cubic preprocessing. However, we can combine our first data structure with the cubic-storage solution in a standard man-
ner [2, Exercise 16.16] to obtain a trade-off between storage and query time. In particular, for any s with n � s � n3 we can
construct a data structure using O (s1+ε) expected preprocessing so that a query can be answered in time O (n1+ε/s1/3).

Recall that we need to extend the data structure such that when we do a query for entry point p j we only report
subtrajectory P [pi, p j] when i > j′ , where j′ is defined as in Algorithm 2. This can be done by adding a so-called range
restriction to the data structure [12]. We also need our data structure to be dynamic, that is, we need to be able to do
insertions and deletions. This can be done by applying the logarithmic method [8] in combination with weak deletions. By
applying these techniques we can obtain, for any fixed ε > 0, a data structure in which queries take O (n1+ε/s1/3) time
and updates take s1+ε/n expected time. We now choose s = n

√
n to balance the query time and insertion time. Putting

everything together, we obtain the following result.

M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38 33
Theorem 6. Let P be a trajectory with n vertices in a domain that is an m × m grid, and let τ � 1 be a constant. Then, for any fixed
ε > 0, we can compute all sets S(C, C ′) of subtrajectories of P with dilation at most τ in expected time O (n1.5+ε + k), where k is the
total size of all sets.

Remark. The data structure described above is rather complicated and not very practical. In practice it is better to use a
different data structure such as an octree to do the range searching.

Analysis of the number of subtrajectories with dilation at most τ . As before we assume the grid consists of unit-size cells, and we
make the realistic assumption that we are dealing with short-edge trajectories. The following theorem states the number of
subtrajectories with dilation at most τ in such trajectories.

Theorem 7. Let P be a short-edge trajectory with n vertices within an m × m unit grid, and let τ � 1. For a pair C , C ′ of grid cells,
let S(C, C ′) be the collection of all C-to-C ′ subtrajectories of dilation at most τ . Then

∑
C,C ′ |S(C, C ′)| = O (min{n2, nm2, τnm}), and

this bound is tight in the worst case.

Proof. The proof is very similar to the proof for α-straight trajectories: For the upper bound we observe that the total
number of transition points for a short-edge trajectory is O (n). For each entry point p j , the number of exit points pi such
that P [pi, p j] is a Cexit(pi)-to-Centry(p j) subtrajectory is O (min(n, m2)), since on the one hand there are only O (n) exit
points and on the other hand each cell C can generate at most one C-to-Centry(p j) subtrajectory for fixed p j . Furthermore,
the maximum length of any subtrajectory of dilation τ inside the grid is τ · √2m. Such a trajectory intersects O (τm) cells,
which gives an O (τm) upper bound on the total number of Cexit(pi)-to-Centry(p j) subtrajectories for fixed p j . For the lower
bound we can use a similar construction as in Fig. 2. This time we choose the slope of the segments si such that the dilation
of one zigzag is exactly τ (assuming τ � m), which means we pick α such that cos(α/2) = 1/τ . �
Remark. If the trajectory is not restricted to be short-edge then the upper bound of Theorem 7 becomes O (min{n2s2, nm2s,
τnms}), where s denotes the average length of the segments in the trajectory, and this bound is tight in the worst case. To
see this, a similar argument as in the proof of Theorem 7 applies here. First, observe that the total number of transition
points for the trajectory is O (ns) this time. Second, for each entry point p j the number of exit points pi such that P [pi, p j]
is a Cexit(pi)-to-Centry(p j) subtrajectory is O (min(ns, m2)). Third, similar to the argument used in the proof of Theorem 7,
since any trajectory of dilation at most τ inside the grid intersects O (τm) cells the total number of Cexit(pi)-to-Centry(p j)

subtrajectory is O (τm) for each fixed entry transition point p j . To see that the upper bound is tight in the worst case, we
can re-use the trajectory P in Fig. 2, the only differences are that we do not need to split each segment si into unit-length
edges, and we need to pick α such that cos(α/2) = 1/τ .

2.2. A more space-efficient alternative

Explicitly storing all sets S(C, C ′) of straight subtrajectories leads to fast and accurate queries, but it is costly in terms
of storage. Below we present a much more space-efficient alternative. This comes at the cost of slightly slower query times
and the fact we may also report some subtrajectories that pass near to the starting cell Cs of the query (rather than starting
exactly at Cs). The alternative solution works for direction deviation as straightness measure.

Let P be the given n-vertex trajectory inside an m × m grid G , and let α be a given straightness threshold with 0 �
α < π/2. Recall that direction deviation is a monotone criterion, so for any entry point p j there is a point p ≺ p j such
that P [p′, p j] is α-straight for all p
 p′ ≺ p j and P [p′, p j] is not α-straight for any p′ ≺ p. We call P [p, p j] the longest
α-straight subtrajectory for p j . For a cell C ∈ G , let L(C) denote the set of all longest α-straight subtrajectories of P ending at
some entry point on the boundary of C . For each cell C , we store the set L(C) in a priority search tree3 PST[C], as explained
next.

Consider a cell C , an entry point p j of C and the longest α-straight subtrajectory P [p, p j] ∈ L(C). We associate a
2-dimensional point χ(p j) with this subtrajectory, as follows. Let φ(pp j) be the counterclockwise angle that the directed
segment pp j makes with the positive x-axis. Then the point χ(p j) is defined as χ(p j) := (φ(pp j), |pp j|). This gives us a
set X(C) := {χ(p j) : P [p, p j] ∈ L(C)} of points in R2, which we store in PST[C]. Recall that a short-edge trajectory induces
O (n) transition points. Since for each transition point p j we only store the longest subtrajectory P [p, p j] ending at p j , we
have the following lemma.

Lemma 8. Let P be a short-edge trajectory with n vertices. Then the total amount of storage needed for all priority search trees PST[C]
is O (n).

3 A priority search tree [2, Section 10.2] stores a planar point set such that all points in a semi-infinite range [x1 : x2] ×[y : ∞) can be reported efficiently.

34 M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38
Fig. 3. Definition of seg(Cs, Ct), δmin and δmax.

Fig. 4. Illustration for the proof of Lemma 9.

We now explain how we answer a straight-path query with starting cell Cs and target cell Ct . To simplify the presenta-
tion, we assume that Ct lies to north-east of Cs; the other cases can be handled in a symmetrical manner.

Let seg(Cs, Ct) denote a shortest directed line segment connecting Cs to Ct . Let 	min denote the common tangent of Cs
and Ct with minimum slope, and 	max denote the common tangent of Cs and Ct with maximum slope. Finally, let δmin and
δmax denote the angles that 	min and 	max make with the positive x-axis; see Fig. 3. We then perform a semi-infinite range
query on the priority search tree PST[Ct] with the semi-infinite range R(Cs, Ct) defined as

R(Cs, Ct) := [δmin − α : δmax + α] × [|s(Cs, Ct)| : ∞).

Thus, intuitively, we report a longest subtrajectory P [p, p j] if the direction of pp j is similar to the direction of seg(Cs, Ct)

and pp j is at least as long as the minimum distance between Cs and Ct . The following lemma states that the subtrajectories
we report include all subtrajectories from Cs to Ct , and that any subtrajectory we report passes near Cs .

Lemma 9. (i) Let P [pi, p j] be an α-straight Cs-to-Ct subtrajectory. Then χ(p j), the point stored for P [pi, p j] in PST[Ct], lies in the
range R(Cs, Ct). (ii) Let P [p, p j] be a subtrajectory in L(Ct) such that χ(p j) ∈ R(Cs, Ct). Then the distance from P [p, p j] to Cs is at
most O (1 + sin(2α) · |seg(Cs, Ct)|).

Proof. (i) Let P [p, p j] be the longest α-straight subtrajectory ending at p j . Since p
 pi and α < π/2, we have |pp j| �
|pi p j |. Since |P [pi, p j]| � |seg(Cs, Ct)| by definition of seg(Cs, Ct), this implies |pp j| ∈ [|seg(Cs, Ct)| : ∞).

To prove that φ(pp j) ∈ [δmin − α : δmax + α], we observe that P [pi, p j] must contain an edge whose angle with the
positive x-axis is at most δmax, since otherwise P [pi, p j] would pass below Cs . Similarly, P [pi, p j] must contain an edge
whose angle with the positive x-axis is at least δmin, otherwise P [pi, p j] would pass above Cs . Because P [p, p j] is α-straight,
this implies that all edges of P [p, p j] have angles in the range [δmin −α : δmax +α]. Hence, the angle of pp j must be in the
range as well.

(ii) We prove the bound for the case where P [p, p j] passes above Cs; the proof when it passes below Ct is similar.
We first analyze where the point p can lie. Let 	1 be the line parallel to 	min and passing through p j , and let 	2 be the

line through p j making an angle α with 	1; see Fig. 4. Observe that p must lie on or below 	2, otherwise φ(pp j) < δmin −α.
Now let 	3 be the line making an angle α with 	2. Then P [p, p j] cannot go above 	3, otherwise P [p, p j] would not be
α-straight. Draw the circle D centered at p j and of radius |seg(Cs, Ct)|. Since |pp j | � |seg(Cs, Ct)|, the point p must lie
outside D . The worst case is now that P [p, p j] intersects D at the point q where D intersects 	3, as illustrated in Fig. 4. An
elementary computation now shows that the distance from q to Cs is O (1 + sin(2α) · |seg(Cs, Ct)|). �

Notice that the error in (ii)—that is, the distance from P [p, p j] to Cs—is a constant number of cells plus a fraction of
|seg(Cs, Ct)| that tends to zero as α tends to zero. Thus the error does not depend on |pp j |, which is desirable since |pp j |
can be large compared to |seg(Cs, Ct)|. It should be noted that the subtrajectory we report is guaranteed to pass near Cs ,
but does not necessarily start near Cs .

3. Distance-preserving path simplification

In this section we study a path-simplification problem and improve the fastest known algorithm for the problem, us-
ing the data structure presented in Section 2.1.2. Let P = (p1, p2, . . . , pn) be a path with n vertices and τ � 1 be a real

M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38 35
number. A path Q = (pi1 , pi2 , . . . , pik), with 1 = i1 < i2 < · · · < ik = n, is called a τ -distance-preserving approximation of P
if dil(P [pit , pit+1]) � τ for all 1 � t < k. Gudmundsson et al. [6] introduced the Minimum Vertex Path Simplification (MVPS)
problem: given a path P and a threshold τ � 1, compute a τ -distance-preserving approximation of P having the minimum
number of vertices. Their algorithm for the problem runs in O (n2) time. Our approach to improve this time bound uses
dynamic programming. For any 1 � j � n, let M[j] denote the minimum number of vertices on any τ -distance-preserving
approximation of P [p j, pn]. Define S(j) :=

{
pi : i > j and dil(P [pi, p j]) � τ

}
. Then M[j] satisfies

M[j] =
{

1 if j = n

1 + min
{

M[i] : pi ∈ S(j)
}

if j < n

Explicitly checking each point pi ∈ S(j) when computing M[j] will lead to a quadratic algorithm. To speed up the algorithm
we will augment the data structure from Section 2.1 so that, given a query index i, we can compute min{M[i] : pi ∈ S(j)}
quickly.

The data structure. Observe that the condition pi ∈ S(j) is essentially the same as the condition (∗) on page 32. Hence, we
can report all points in S(j) using the data structure described on page 32. However, we only want to report the point pi
with the minimum M[i] value. To this end we have to augment the data structure with extra information.

The data structure is a two-level tree4 whose first level is a binary search tree T storing all the vertices on the path based
on their indices. This level enables us to restrict the attention to points pi with i > j. With each node v of the first-level
tree T , we have an associated tree T ′

v that allows us to select all points pi with dil(P [pi, p j]) � τ . This selection comes in
the form of a number of nodes w whose canonical subsets together form a disjoint partition of S(j). Thus we augment the
data structure as follows: with each node w in any of the associated trees, we store the value Mw := min{M[i] : pi ∈ S w},
where S w is the canonical subset associated to w . (When M[i] is not known yet, it is defined as +∞.) When we now
perform a query with a point p j , we search our data structure to select a set of nodes w whose canonical subsets form
S(j), and we take the report of the smallest Mw -value among the selected nodes.

The algorithm. Now the algorithm simply works as follows. We construct the data structure described above, where each
Mw -value is initialized to +∞, and we initialize M[n] := 1. We then compute each value M[j], for j = n − 1, . . . , 1, by
performing a query with p j as described above. After having computed M[j] we set Mw := min(Mw , M[j]) for each node
w whose canonical subset contains p j .

We have seen before that the data structure can be constructed in O (n1.5+ε) time and that each query takes O (n0.5+ε)

time. Since any point p j is stored in O (n0.5+ε) canonical subsets, updating the Mw -values at each step can be done in
O (n0.5+ε) as well. Hence, we obtain the following result.

Theorem 10. The MVPS problem can be solved in O (n1.5+ε) expected time.

Note that M[0] is the minimum number of vertices for the MVPS problem. In order to be able to report the set of
vertices associated with the value of M[0]—that is, the desired minimum-size simplification—we store at each M[j] the
vertex pi ∈ S(j) giving the minimum M-value. We then only need to follow the sequence of vertices stored in array M and
starting at M[0].

4. Experimental results

In the previous sections we analyzed the worst-case storage of our look-up table and the worst-case error of our priority-
search-tree. In this section we perform an initial experimental evaluation of our structures. Our focus is on the two aspects
mentioned above (storage and error), and not on the preprocessing times. Hence, we implemented simplified versions of
the algorithms described in the previous section and did not optimize the algorithms. We have implemented the algorithms
in C++ using GNU g++, version 4.8.1. Our test machine has an Intel i7-3770 processor with 16 GB main memory and running
the Windows 7 Enterprise 2009 operating system.

Data sets. We have taken our test trajectories from the publicly available soccer data set by Petterson et al. [9]. This data set
describes the movement of the home players in three professional soccer games captured in 2013 at the Alfheim Stadium
in Tromsø, Norway. The data sets are obtained using body sensors and the ZXY Sport Tracking System, which reports the
players’ position (as well as some other measurements) at 20 Hz with an approximate error of one meter; see the paper by
Petterson et al. [9] for details.

To obtain our trajectory we arbitrarily selected one player (player #9) from the game Tromsø IL-Strømsgodset,
and we focused on the movement of this player in the first half of the game. The grid we used in most experiments has
cells of size 1 m × 1 m. As mentioned, the players’ positions are reported at 20 Hz. We also generated trajectories at 10 Hz,

4 For the current application we do not need insertions and deletions, so we do not need to apply the logarithmic method.

36 M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38
Table 1
Average length of the trajectory segments for different sampling rates.

20 Hz 10 Hz 5 Hz 2 Hz 1 Hz

segments 53 059 26 546 13 295 5330 2679
Average length 0.10835 0.21647 0.43155 1.06740 2.07262

Fig. 5. The sizes of the data structures after running Algorithm 1 (left figure), and Algorithm 2 (right figure), on trajectories P1, P2, P5, P10, and P20.

Fig. 6. The number of subtrajectories inside different ranges of distance between cells. The y-axis indicates the number of subtrajectories.

5 Hz, 2 Hz, and 1 Hz by sub-sampling the original trajectory. The reason was to smooth out noise in the reported locations
although, as we will see, the different sampling rates give very similar results in the experiments. Table 1 shows the average
length of the segments of the trajectories, which shows that the short-edge assumption is realistic. To ease in reference, we
let Pk denote the trajectory obtained at k Hz sampling rate.

Size of the look-up table. We first investigate the size of our look-up table. More precisely, we compute
∑

C,C ′ |S(C, C ′)|, the
number of almost straight C-to-C ′ subtrajectories over all pairs of cells C , C ′ . We do this for dilation with parameter τ
in the range [1, 3] with step size 0.1, and for direction deviation with parameter α in the range [0, 180] with step size
5 degrees. Fig. 5 shows the results of the experiment.

As Fig. 5 shows our approach is quite feasible since the number of almost straight C-to-C ′ subtrajectories is much less
than what our theoretical bounds state. Of course, the total number of almost straight C-to-C ′ subtrajectories increases
with increasing τ and with increasing α. Interestingly, the numbers are almost independent of the sampling rate. This is
surprising for direction deviation as straightness measure, since especially for low values of α we expected that the paths
sampled at 1 Hz would have much longer straight subtrajectories than for 20 Hz. On the other hand, the 20 Hz path visits
more cells, and this apparently almost cancels out the other effect. For dilation the fact that more cells are visited even
slightly dominates that paths become straighter, since for large τ the total number of paths is (very slightly) larger with
increasing sampling rate.

In addition to analyzing the total size of our data structures, we have also computed a breakdown of the number of
trajectories according to the distance between C and C ′ . In particular, we have partitioned the set of distances into buckets
of form [2i−1, 2i), and counted how many subtrajectories fall into each of the buckets. Fig. 6 illustrates the results of the
experiment.

First, Fig. 6(left) indicates that the distribution of the number of subtrajectories with dilation at most τ = 1.2 is indepen-
dent of sampling rate. Being independent of sampling rate is as expected since increasing the sampling rate only smoothes
out the subtrajectory P [p, p′], for any p and p′ , by replacing each segment of P [p, p′] by a set of shorter segments and
therefore this should not affect the length of P [p, p′] much. On the other hand, Fig. 6(right) reveals an interesting fact for
α-straight subtrajectories: since decreasing the sampling rate increases the length of the segments of the trajectory, the

M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38 37
Table 2
Results of the space-efficient alternative described in Section 2.2 for different queries on trajectory P10. Error is
the maximum distance, in meters, over all distances of the reported subtrajectories to cell Cs .

α 15 15 30 30 60 60
answers 1 2 2 2 3 0
reported subtrajectories 1 3 4 2 5 1
dist(Cs, Ct) 4.12 3.61 5.83 6.40 15.62 8.54
Error 0 0.44 1.74 0 2.09 1.98

Fig. 7. The number of subtrajectories for different values of side length for grid cells. The number of grid cells is m1 × m2, which is m1 × �1.544m1
 cells.
Left figure shows the number of subtrajectories in P10 with dilation at most τ = 1.2. Right figure shows the number of α-straight subtrajectories in P10

with α = 15.

length of α-straight subtrajectories increases. Hence, decreasing the sampling rate creates more α-straight subtrajectories
for higher ranges of distances between cells.

Accuracy of the priority search tree. In order to test the efficiency of our space-efficient alternative described in Section 2.2,
we performed several queries on trajectory P10 (results for other sampling rates were similar). For each query pair (Cs, Ct),
we measured the accuracy of reported answers by computing the maximum over all distances of reported subtrajectories
to cell Cs . Table 2 summarizes the experiment. For the queries shown in the table (and, in fact, for all queries we did) the
number of answers is a small constant, even for α = 60, and the number of reported subtrajectories is not much larger. The
maximum error is just a few cells.

Dependency on the side length of grid cells. Finally we investigate the dependency of sizes of our data structures on m. We
consider P10 and different values for m and then measured the sizes of corresponding data structures. Consult Fig. 7 for re-
sults of the experiment. The number of subtrajectories seems to grow superlinearly with m1. We expected a linear behavior,
since α is a constant in the experiment (α = 15) and m1 < n, so the worst-case growth rate according to Theorems 2 and 4
is linear. Note, however, that the upper bounds in Theorems 2 and 4 are for short-edge trajectories, and changing the cell
size (which is what we did to vary m1) also changes the ratio of the edge lengths and the cell size. The lower-bound for
trajectories that are not short-edge is a factor m higher (see the remark on page 31), and shows a quadratic dependence on
m, which seems more in line with the experiments.

5. Concluding remarks

In this paper we studied a practical problem arising when developing a support system for the analysis of soccer
matches: we want to store a given trajectory in a data structure such that, for a query start position s and target posi-
tion t , we can quickly retrieve all subtrajectories of the given trajectory that are similar to the line segment st . In order to
obtain a practical solution we partitioned the playing field into a regular grid, and map the points s and t to the centers of
the containing grid cells.

We studied the resulting data-structuring problem for two similarity measures, dilation and direction deviation. We
presented two simple data structures for this problem, gave efficient algorithms to construct them, and analyzed their
worst-case performance theoretically. We also investigated their practical performance on trajectories from a publicly avail-
able data set with trajectories of soccer players. Our experimental study shows that our structures perform very well in
practice.

It would be interesting to extend our approach to more complicated queries, for example to the case where the query is
a polyline consisting of two or three (rather than one) segment.

Acknowledgements

We thank the anonymous WALCOM reviewers for their useful feedback and suggestions on preliminary version of the
paper. The second author also wishes to warmly thank Dirk Gerrits for his help in initial steps of our implementation work
and several useful discussions afterward.

38 M. de Berg, A.D. Mehrabi / Journal of Discrete Algorithms 36 (2016) 27–38
References

[1] P.K. Agarwal, J. Matošek, M. Sharir, On range searching with semialgebraic sets II, SIAM J. Comput. 42 (2013) 2039–2062.
[2] M. de Berg, O. Cheong, M. v. Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, 3rd edition, Springer-Verlag, 2008.
[3] M. de Berg, A.F. Cook, J. Gudmundsson, Fast Fréchet queries, Comput. Geom. Theory Appl. 46 (6) (2013) 747–755.
[4] B. Chazelle, H. Edelsbrunner, L.J. Guibas, M. Sharir, A singly exponential stratification scheme for real semi-algebraic varieties and its applications,

Theor. Comput. Sci. 84 (1) (1991) 77–105.
[5] D.H. Douglas, T.K. Peuker, Algorithms for the reduction of the number of points required to represent a line or its caricature, Can. Cartogr. 10 (2) (1973)

112–122.
[6] J. Gudmundsson, G. Narasimhan, M. Smid, Distance-preserving approximations of polygonal paths, Comput. Geom. Theory Appl. 36 (3) (2007) 183–196.
[7] J. Gudmundsson, M.H.M. Smid, Fréchet queries in geometric trees, in: Proc. Europ. Symp. Alg., 2013, pp. 565–576.
[8] M.H. Overmars, The Design of Dynamic Data Structures, LNCS, vol. 156, Springer, 1983.
[9] S.A. Pettersen, D. Johansen, H. Johansen, V. Berg-Johansen, V.R. Gaddam, A. Mortensen, R. Langseth, C. Griwodz, H.K. Stensland, P. Halvorsen, Soccer

video and player position dataset, in: Proc. 5th Int. Conf. Multi. Syst., 2014, pp. 18–23.
[10] U. Ramer, An iterative procedure for the polygonal approximation of plane curves, Vis. Graph. Image Process. 1 (1972) 244–256.
[11] C. Shim, J. Chang, Y. Kim, Trajectory-based video retrieval for multimedia information systems, in: Proc. 3rd Int. Conf. on Advances in Info. Syst.,

vol. 3261, 2005, pp. 372–382.
[12] D.E. Willard, G.S. Luecker, Adding range restriction capability to dynamic data structures, J. ACM 32 (1985) 597–617.
[13] X. Yu, D. Farin, Current and emerging topics in sports video processing, in: Proc. Intl. Conf. Mult. & Expo., 2005, pp. 526–529.

http://refhub.elsevier.com/S1570-8667(15)00098-2/bib702D6B2D6167617277616Cs1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib64652D626572672D626F6F6Bs1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib64652D426572672D66726563686574s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib6368617A656C6C652D746373s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib6368617A656C6C652D746373s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib646F75676C6173s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib646F75676C6173s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib706174682D73696D706C696669636174696F6Es1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib67656F6D65747269632D7472656573s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib6F2D646464732D3833s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib646174617365745061706572s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib646174617365745061706572s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib72616D6572s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib7368696D2D746276722D3035s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib7368696D2D746276722D3035s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib776C2D617272632D3835s1
http://refhub.elsevier.com/S1570-8667(15)00098-2/bib79752D7376702D3035s1

	Straight-path queries in trajectory data
	1 Introduction
	2 The data structures
	2.1 A look-up table for straight-path queries
	2.1.1 Direction deviation
	2.1.2 Dilation

	2.2 A more space-efﬁcient alternative

	3 Distance-preserving path simpliﬁcation
	4 Experimental results
	5 Concluding remarks
	Acknowledgements
	References

