Memorandum COSOR 93-22

Infinite divisible and stable distributions modulo 1

R.J.G. Wilms

Eindhoven, July 1993

The Netherlands
1. Introduction.

Infinite divisibility and stability in the customary sense is extensively discussed in the literature (see e.g. Lukacs (1970), Feller (1971), Petrov (1975)). Schatte (1983) studies infinite divisibility modulo 2π (mod 2π). He gives a representation theorem for infinite divisible (infdiv) (mod 2π) Fourier-Stieltjes Sequences (FSS’s) and a limit theorem for sequences of infdiv (mod 2π) FSS’s. Furthermore, under an infinite smallness (mod 2π) condition he considers convergence of sums to infdiv (mod 2π) distributions.

In this paper we consider distributions modulo 1 (mod 1). In Section 2 we give some notations, definitions, and properties of FSS’s, and in Section 3 we reformulate Schatte’s results for infdiv (mod 1) distributions. From Schatte’s representation we deduce in Section 4 two other representations: one similar to the Levy-Khinchine canonical form, and the other to the Kolmogorov canonical form. In addition, we give a new characterization of infdiv (mod 1) distributions. In Section 5 we define stable (mod 1) distributions and characterize these distributions in two theorems. Finally, in Section 6, we generalize a limit theorem proved by Schatte.

2. Notation; definitions; properties of Fourier-Stieltjes Sequences.

We start by giving some notations and definitions. Throughout this paper, for $x \in \mathbb{R}$, $\xi \mathbb{Z}$ denotes the set (ξ for $j \in \mathbb{Z}$). Let X be a random variable (rv), and let $(X) \in [0,1)$ denote X modulo 1. The left continuous distribution function (df) of a rv X on \mathbb{R} is denoted by F_X. Furthermore, $\mathcal{X}[0,1)$ will denote the set of rv’s X with $P(0 \leq X < 1) = 1$. We recall the definition of the FSS of such rv’s.
Definition 2.1. Let $X \in \mathcal{Z}[0,1)$. The FSS $c_x : \mathbb{Z} \rightarrow \mathbb{C}$ of X is defined by

$$c_x(k) = \int_{[0,1)} e^{2\pi ikx} dF_x(x) \quad (k \in \mathbb{Z}).$$

Clearly $c_x(0) = 1$, $|c_x(k)| \leq 1$, and $c_x(-k) = \overline{c_x(k)} \quad (k \in \mathbb{Z})$. Sometimes c_x is written as c_{F_x}.

Since $e^{2\pi ikx} = e^{2\pi ikx} (x \in \mathbb{R})$, we have for any rv X the trivial but useful identity

$$\varphi_x(2\pi k) = \mathbb{E}e^{2\pi ikX} = \mathbb{E} \varphi_x(2\pi k) (k \in \mathbb{Z}),$$

where φ_x denotes the characteristic function (chf) of X.

Next, we state the uniqueness, continuity and convolution theorems for FSS’s. For the proofs we refer to Grenander (1963) or Schatte (1983); for other properties of FSS’s we refer to Wilms (1991).

Proposition 2.2. Let $X,Y \in \mathcal{Z}[0,1)$. Then

$$F_x = F_y \iff c_x = c_y.$$

Proposition 2.3. Let (c_n) be a sequence of FSS’s and (F_n) the corresponding sequence of df’s. The sequence (F_n) converges weakly to a df F iff $c_n(k) \to c(k) (k \in \mathbb{Z}, n \to \infty)$. The sequence c is then the FSS of F.

Proposition 2.4. Let $X, X_1, X_2 \in \mathcal{Z}[0,1)$ with X_1 and X_2 independent. Further let c, c_1, and c_2 be the corresponding FSS’s. Then

$$X \overset{d}{=} (X_1 + X_2) \iff c(k) = c_1(k) \cdot c_2(k) (k \in \mathbb{Z}).$$

We say that a sequence (G_n) of bounded nondecreasing functions with $G_n(-\infty) = 0$ converges weakly to G (notation: $G_n \overset{w}{\to} G$) with $G(-\infty) = 0$, if for any two points x,y of continuity of G

$$G_n(x) - G_n(y) \to G(x) - G(y) \quad (n \to \infty).$$

Furthermore, d denotes equality in distribution.

Further we use the following notation: U denotes the rv with (continuous) uniform distribution on $[0,1)$. For $r \in \mathbb{N}$, U_r denotes the rv with discrete uniform distribution on $[0,1)$, i.e.
Lemma 2.5. (i) \(c_U(k) = 0 \) for all \(k \neq 0 \).

(ii) Let \(r \in \mathbb{N} \). Then

\[
c_U(k) = \begin{cases}
1 & \text{if } k \in \mathbb{Z} \\
0 & \text{otherwise.}
\end{cases}
\]

We now give a definition, due to Schatte (1983).

Definition 2.6. The replication number of a rv \(X \) (or \((X) \) or \(c_X \)) is defined by

\[
\text{Rep}(X) = \sup\{r \in \mathbb{N} : \{X\} \overset{d}{=} \{X+1/r\} \}.
\]

We note that every \(X \) has a replication number at least 1, and that \(\text{Rep}(U) = 0 \). Next, we characterize distributions with finite replication number.

Lemma 2.7. Let \(r \in \mathbb{N} \), and let \(X \) be independent of \(U \). Then the following statements are equivalent:

(i) \(r \) is a divisor of \(\text{Rep}(X) \).

(ii) \(\{X^{1/r}\} \overset{d}{=} \{X\} \).

(iii) \(\{X+U\} \overset{d}{=} \{X\} \).

(iv) \(c_X(k) = 0 \) if \(k \in \mathbb{Z} \).

(v) \(\{X\} \overset{d}{=} U + \frac{1}{r}(Z) \) for some \(Z \) independent of \(U \).

Proof: The equivalence of (iii), (iv) and (v) is proved by Wilms and Thiemann (1993). The equivalence of part (ii) and (iii) follows immediately from

\[
c_X(k) = c_X(k)e^{2\pi i k/r} \quad (k \in \mathbb{Z})
\]

Proof of (i) \(\Rightarrow \) (ii): \(\text{Rep}(X) = mr \) for some \(m \in \mathbb{N} \); hence we have \(c_X(k) = 0 \) if \(k \in m\mathbb{Z} \); so \(c_X(k) = 0 \) if \(k \in \mathbb{Z} \). Then \(c_{X+1/r}(k) = c_X(k)e^{2\pi i k/r} = c_X(k) \). Hence \(\{X\} \overset{d}{=} \{X+1/r\} \).

Proof of (ii) \(\Rightarrow \) (i): It is sufficient to show the following assertion. Let \(r_1, r_2 \in \mathbb{N} \). If \(\{X^{1/r_1}\} \overset{d}{=} \{X\} \) and \(\{X^{1/r_2}\} \overset{d}{=} \{X\} \), then \(\{X^{1/q}\} \overset{d}{=} \{X\} \) with
q=lcm(r_1, r_2), where lcm(x,y) denotes the least common multiple of x and y (x,y∈N).

On account of part (iv) it suffices to prove c_{(x)}(k)=0 if k∈Z. Let k∈Z. Then k∈Z or k∈Z. Hence, by part (iv), c_{(x)}(k)=0.

Remarks 2.8. (i) In fact, in the proof of (ii)→(i) we show that

\[\text{Rep}(X)=\text{lcm}(r∈\mathbb{N}: (X) \overset{d}{=} (X+1/r)). \]

(ii) In Wilms and Thiemann (1993) distributions X satisfying part (iii) are called U-shift-invariant.

(iii) If Rep(X)=∞, then for arbitrary large r we have c_{(x)}(k)=0 if k∉Z;

therefore c_{(x)}(k)=0 if k∈Z, i.e. (X) \overset{d}{=} U. In conclusion, we find

\[(X) \overset{d}{=} U \iff \text{Rep}(X)=∞. \]

3. Review of Schatte's results.

3.1. Infinitely divisible (mod 1) distributions.

Here we review the results on infinite divisibility in modulo 1 sense proved by Schatte (1983); we give a representation theorem and a limit theorem for infdiv (mod 1) FSS's. We first define infinite divisibility (mod 1).

Definition 3.1. Let X∈[0,1). Then c:=c_{x, X} or F_{X, X} are said to be infinitely divisible (mod 1) if for each n∈N there exists a n-tuple (X_{n,m})_{m=1}^{n} (X_{n,m}∈[0,1)) of independent and identically distributed (iid) rv's such that

\[X \overset{d}{=} (X_{n,1}+\ldots+X_{n,n}), \]

or equivalently, if for each n∈N there exist a FSS c_{n} with

\[c(k)=(c_{n}(k))^{n} \quad (k∈\mathbb{Z}). \]

Clearly, U is infdiv (mod 1) with Rep(U)=∞.

Schatte proves the following results.
Proposition 3.2. (Schatte thm 4.1) Let c_1 and c_2 be infdiv (mod 1) FSS's. Then $c_1(k) \cdot c_2(k)$ is infdiv (mod 1) FSS. \qed

Proposition 3.3. (Schatte thm 4.2) Let (c_n) be a sequence of infdiv (mod 1) FSS's. Let $c \to c \ (n \to \infty)$. Then c is an FSS and is infdiv (mod 1). \qed

We now give the representation theorem.

Proposition 3.4. (Schatte thm 4.3) Let X be a rv with $\text{Rep}(X)=r$. Then X is infdiv (mod 1) iff its FSS c can be written in the form

\[(3.1) \quad c(kr) = \exp\left(ik\alpha + \int_{[0,1)} \frac{e^{2\pi ikx} - 1 - iksin2\pi x}{1 - \cos 2\pi x} d\theta(x)\right) \quad (k \in \mathbb{Z}).\]

Here α is a real constant with $\alpha \in [0,2\pi)$ and θ is a nondecreasing left continuous bounded function on $[0,1)$ with $\theta(0)=0$. This representation is unique. \qed

We now formulate a limit theorem for infdiv (mod 1) df's.

Proposition 3.5. (Schatte thm 4.4) Let F be a df, and let $(F_n)_{n=1}^{\infty}$ be a sequence of infdiv (mod 1) df's such that $F \to F \ (n \to \infty)$. Let $(c_n)_{n=1}^{\infty}$ be the corresponding sequence of FSS's all with replication number 1 and represented by

\[(3.1) \quad c_n(k) = \exp\left(ik\alpha_n + \int_{[0,1)} \frac{e^{2\pi ikx} - 1 - iksin2\pi x}{1 - \cos 2\pi x} d\theta_n(x)\right) \quad (k \in \mathbb{Z}).\]

Then the following assertions are true.

(i) $F(x) = x \ (x \in [0,1))$ iff

\[(3.2) \quad \int_{[0,1)} \frac{(1 - \cos 2\pi x)}{1 - \cos 2\pi x} d\theta_n(x) \to \infty \quad (n \to \infty, \ k \neq 0). \]

(ii) c_F is represented by (3.1) with $\text{Rep}(c_F)=r$ iff (3.2) holds for $k=1, \ldots, r-1$, and

\[K_n \to \theta, \quad \beta_n \to \alpha \quad (n \to \infty),\]

where
\[K_n(x) = \sum_{s=0}^{r-1} \int_0^x \frac{1 - \cos 2\pi t}{1 - \cos(2\pi(t+s)/r)} \, d\theta_n \left(\frac{t+s}{r} \right) \quad (x \in [0,1]), \]

\[\beta_n = r\alpha + \int_0^1 \frac{\sin 2\pi x}{1 - \cos 2\pi x} \, d(K_n(x) - r\theta_n(x)). \]

We remark that if in part (ii) \(r = 1 \), then the conditions take the simple form \(\theta_n(x) \xrightarrow{w} \theta(x), \alpha \xrightarrow{n} (n \rightarrow \infty) \).

3.2. Convergence to infinitely divisible (mod 1) distributions.

Schatte considers a sequence \((Y_{n,m})_{n,m=1}^{k_n} \) \((Y_n \in \mathbb{X}[0,1])\) of rv's in a triangular array, and looks for all limit distributions of

\[Y_n = \{Y_{n,1} + \ldots + Y_{n,k_n}\} \]

as \(n \rightarrow \infty \), and assuming \(k_n \rightarrow \infty \) as \(n \rightarrow \infty \). He shows that under certain conditions, such as the condition of infinite smallness (mod 1) (i.e. for every \(c > 0 \))

\[\max_{1 \leq m \leq k_n} P(c \leq Y_{n,m} \leq 1 - c) \rightarrow 0 \quad (n \rightarrow \infty), \]

the limit of a sequence of rv's in \(\mathbb{X}[0,1] \) is infdiv (mod 1), even if the elements of this sequence are not infdiv (mod 1) (cf. Section 5 Schatte (1983)).

4. Characterizations of infinite divisible (mod 1) distributions.

It is obvious that if \(X \) is infdiv in the customary sense, i.e. for each \(n \in \mathbb{N} \) there exists a n-tuple \((X_{n,m})_{m=1}^n\) of iid rv's such that

\[X \overset{d}{=} X_{n,1} + \ldots + X_{n,n}, \]

then \((X)\) is infdiv (mod 1), since
Furthermore, we prove

Lemma 4.1. Let \(X \) be infdiv in the customary sense. Then \(\{X\} \) is infdiv \((\mod 1)\) with \(\text{Rep}(X)=l \).

Proof: From (4.1) we know that \(\{X\} \) is inf div \((\mod 1)\). Now suppose that \(\{X\} \) has \(\text{Rep}(X)=r>l \). Then \(\{X\} \overset{d}{=} \{X+1/r\} \) and hence \(\varphi_x(2\pi)=c_x(1)=0 \). This contradicts the fact that an inf div chf has no real zeros (see Lukacs (1970)). So \(\text{Rep}(X)=l \).

To characterize infdiv \((\mod 1)\) distributions, we need some auxiliary results. We first prove another representation theorem for infdiv \((\mod 1)\) FSS's.

Lemma 4.2. Let \(X \) be a rv with \(\text{Rep}(X)=r \). Then \(X \) is infdiv \((\mod 1)\) iff its FSS \(c \) can be written in the form

\[
(4.2) \quad c(kr)=\exp\left(ik\alpha + \int_{\left[\frac{-1}{2}, \frac{1}{2}\right]} \frac{e^{2\pi ikx} - 1 - iksin2\pi x}{1 - \cos2\pi x} \, dT(x)\right) \quad (k \in \mathbb{Z}).
\]

Here \(\alpha \) is a real constant with \(\alpha \in [0, 2\pi) \) and \(T \) is a nondecreasing left continuous bounded function on \(\left[\frac{-1}{2}, \frac{1}{2}\right] \) with \(T(-\frac{1}{2})=0 \). This representation is unique.

Proof: Let

\[
f(x):=\frac{e^{2\pi ikx} - 1 - iksin2\pi x}{1 - \cos2\pi x} \quad (x \in \mathbb{R}).
\]

\((\ast)\) By Proposition 3.4 \(c \) can be represented by (3.1). Using that \(f(x) \) is periodic on \(\left[\frac{1}{2}, 1\right] \) we obtain for \(k \in \mathbb{Z} \)

\[
\log c(kr)=ik\alpha + \int_{[0,1]} f(x) \, d\theta(x) \quad = ik\alpha - k^2(\theta(0+) - \theta(0)) + \int_{[-\frac{1}{2}, 0]} f(x) \, d\theta(x+1) + \int_{(0, \frac{1}{2})} f(x) \, d\theta(x)
\]
\[
= i k \alpha + \int_{[-\frac{1}{2}, 1]} f(x) dT(x),
\]
where
\[
T(x) = \begin{cases}
\Theta(\frac{1}{2}, 1) - \Theta(x+1, 1) & \text{if } \frac{1}{2} \leq x < 0 \\
\Theta(\frac{1}{2}, 1) & \text{if } x = 0 \\
\Theta(\frac{1}{2}, 1) + \Theta(0, x) & \text{if } 0 < x < \frac{1}{2}
\end{cases}
\]
with
\[
\Theta(u, v) = \int_{[u, v)} d\Theta(y) \quad (u, v \in [0, 1), \ u < v).
\]
Obviously, the function \(T \) is bounded and nondecreasing, and \(T(-\frac{1}{2}) = 0 \).

(\(*\) Since \(f(x) \) is periodic on \([\frac{1}{2}, 0)\) we find
\[
\log c(kr) = ik \alpha - k^2 (T(0^+) - T(0^0)) + \int_{[0, \frac{1}{2}]} f(x) dT(x) + \int_{[\frac{1}{2}, 0)} f(x) dT(x-1)
\]
\[
= ik \alpha + \int_{[0, 1]} f(x) d\Theta(x),
\]
where
\[
\Theta(x) = \begin{cases}
0 & \text{if } x = 0 \\
T(0, x) & \text{if } 0 < x < \frac{1}{2} \\
T(-\frac{1}{2}, \frac{1}{2}) - T(x-1, 0) & \text{if } \frac{1}{2} \leq x < 1
\end{cases}
\]
with
\[
T(u, v) = \int_{[u, v)} d(T(y)) \quad (u, v \in [-\frac{1}{2}, \frac{1}{2}), \ u < v).
\]
Obviously, the function \(\Theta \) is bounded and nondecreasing, and \(\Theta(0) = 0 \).

Remark 4.3. Schatte (1983, p. 253) claims that the function
\[
f(2\pi t) = \exp \left(it \alpha + \int_{[0, 1]} e^{\frac{2\pi itx - 1 - itsin2\pi x}{1 - cos2\pi x}} d\Theta(x) \right) \quad (t \in \mathbb{R})
\]
is an infdiv chf. This is not true, because the integrand
\[
e^{\frac{2\pi itx - 1 - itsin2\pi x}{1 - cos2\pi x}}
\]
tends to infinity if \(x \uparrow 1 \) and \(t \in k\mathbb{Z} \).

As shown in Lemma 4.2, by transforming the function \(\Theta \) to the interval
We have that the integrand is bounded on \([-\frac{1}{2}, \frac{1}{2}]\) for all \(t \in \mathbb{R}\). This means that the function
\[
g(2\pi t) = \exp \left(\frac{\int_{\frac{1}{2}}^{1/2} \frac{e^{2\pi i tx} - 1 - i\sin(2\pi x)}{1 - \cos(2\pi x)} d\theta(x)}{[-\frac{1}{2}, \frac{1}{2}]} \right) \quad (t \in \mathbb{R})
\]
is an infdiv chf; this shall be used in the proof of Theorem 4.6.

Next, we prove two representations similar to the Levy-Khinchine canonical form and the Kolmogorov canonical form, respectively (see Lukacs (1970)).

Lemma 4.4. Let \(X\) be a rv with \(\text{Rep}(X) = r\). Then \(X\) is infdiv (mod 1) iff its FSS \(c\) can be written in the form
\[
c(kr) = \exp \left(\int_{\frac{1}{2}}^{1/2} (e^{2\pi ikx} - \frac{1}{1+x} - \frac{1}{2}) \frac{dH(x)}{x} \right) \quad (k \in \mathbb{Z}).
\]
Here \(\beta\) is a real constant with \(\beta \in [0, 2\pi)\) and \(H\) is a nondecreasing left continuous bounded function on \([-\frac{1}{2}, \frac{1}{2}]\) with \(H(-\frac{1}{2}) = 0\). The representation is unique.

Proof: \((\Rightarrow)\) By Lemma 4.2 \(c\) can be represented by (4.2); hence for \(k \in \mathbb{Z}\)
\[
\log c(kr) = i\beta + \int_{\frac{1}{2}}^{1/2} (e^{2\pi ikx} - \frac{1}{1+x} - \frac{1}{2}) \frac{dH(x)}{x},
\]
where
\[
\beta = \beta' \pmod{2\pi}, \quad \beta' = \alpha + \int_{\frac{1}{2}}^{1/2} \frac{2\pi x}{1+x} \frac{\sin(2\pi x)}{1 - \cos(2\pi x)} dT(x)
\]
with
\[
T(-\frac{1}{2}, 0) = \frac{1}{2} \quad T(x, 0) = \frac{1}{2}
\]
and
\[
H(x) = \begin{cases}
T(-\frac{1}{2}, 0) - T(x, 0) & \text{if } \frac{1}{2} \leq x < 0 \\
T(-\frac{1}{2}, 0) & \text{if } x = 0 \\
T(-\frac{1}{2}, 0) + T(0, x) & \text{if } 0 < x < \frac{1}{2}
\end{cases}
\]
\[
T(u,v) = \int_{[u,v]} \frac{y^2}{2} \frac{1}{1-\cos2\pi y} \, dT(y) \quad (u,v \in [-\frac{1}{2}, \frac{1}{2}), \ u<v).
\]

Obviously, the function \(H\) is bounded and nondecreasing, and \(H(-\frac{1}{2}) = 0\).

(\ast) From (4.3) we find for \(k \in \mathbb{Z}\)
\[
\log c(kr) = ik\beta + \int_{[-\frac{1}{2}, \frac{1}{2})} \left(e^{2\pi ikx} - 1 - \frac{2\pi ikx}{1+x^2} \right) \frac{1+x^2}{x^2} \, dH(x)
\]
\[
= ik\alpha + \int_{[-\frac{1}{2}, \frac{1}{2})} \frac{e^{2\pi ikx} - 1 - ik\sin2\pi x}{1-\cos2\pi x} \, dT(x)
\]

where
\[
\alpha = \alpha' \pmod{2\pi}, \quad \alpha' = \beta + \int_{[-\frac{1}{2}, \frac{1}{2})} \left(\frac{2\pi kx}{1+x^2} - \sin2\pi x \right) \frac{1+x^2}{x^2} \, dH(x),
\]

\[
T(x) = \begin{cases}
H(-\frac{1}{2},0) + H(x,0) & \text{if } -\frac{1}{2} < x < 0 \\
H(-\frac{1}{2},0) & \text{if } x = 0 \\
H(-\frac{1}{2},0) + H(0,x) & \text{if } 0 < x < \frac{1}{2}
\end{cases}
\]

with
\[
H(u,v) = \int_{[u,v]} (1-\cos2\pi y) \frac{1+y^2}{y^2} \, dH(y) \quad (u,v \in [-\frac{1}{2}, \frac{1}{2}), \ u<v).
\]

Obviously, the function \(T\) is bounded and nondecreasing, and \(T(-\frac{1}{2}) = 0\).

Similarly, we can prove

Lemma 4.5. Let \(X\) be a rv with \(\text{Rep}(X) = r\).

Then \(X\) is infdiv \(\pmod{1}\) iff its FSS \(c\) can be written in the form
\[
(4.4) \quad c(kr) = \exp \left(ik\gamma + \int_{[-\frac{1}{2}, \frac{1}{2})} e^{2\pi ikx} - 1 - 2\pi ikx \frac{1+x^2}{x^2} \, dK(x) \right) \quad (k \in \mathbb{Z}).
\]

Here \(\gamma\) is a real constant with \(\gamma \in [0,2\pi)\) and \(K\) is a nondecreasing left continuous bounded function on \([\frac{1}{2}, \frac{1}{2})\) with \(K(-\frac{1}{2}) = 0\). The representation is unique.
We now give the main theorem of this paper, which characterizes infdiv (mod 1) distributions.

Theorem 4.6. Let X be a rv with $\text{Rep}(X) = r$. Then X is infdiv (mod 1) iff

$$X \overset{d}{=} \frac{U_r}{r} + \frac{1}{r}Y$$

for some infdiv Y independent of U_r.

Proof: (\Rightarrow) By Lemma 4.4 we have that c_X can be represented by (4.3); so

$$c_X(kr) = \exp\left(ik\beta + \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]} (e^{2\pi ikx} - 1 - \frac{2\pi ix}{2} \frac{1+x^2}{x^2} \text{d}H(x)) \right) \quad (k \in \mathbb{Z}).$$

We define a rv Y, independent of U_r, by its chf (see Remark 4.3)

$$\varphi_Y(2\pi it) = \exp\left(it\beta + \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]} (e^{2\pi itx} - 1 - \frac{2\pi itx}{2} \frac{1+x^2}{x^2} \text{d}H(x)) \right) \quad (t \in \mathbb{R});$$

the Levy-Khinchine canonical representation yields then that Y is infdiv in the customary sense (see Lukacs (1970)). Furthermore, we find

$$c_X(kr) = \varphi_Y(2\pi kr) = c_Y(k) \quad (k \in \mathbb{Z}).$$

Since $c(k) = 0$ if $k \in \mathbb{Z}$ we have from Lemma 2.7

$$X \overset{d}{=} \frac{U_r}{r} + \frac{1}{r}Z$$

for some Z independent of U_r, and thus

$$c_X(kr) = c_Y(k) = c_Y(k) = c_Z(k) = c_Z(kr) = c_Z(kr) = c_Z(kr) = c_Z(k) \quad (k \in \mathbb{Z}).$$

Combining (4.6), (4.7) and Proposition 2.2 we find $Y \overset{d}{=} Z$. Hence (4.5) holds.

(\Leftarrow) From Lemma 2.7 we find $c_X(k) = 0$ if $k \in \mathbb{Z}$, and using Lemma 2.5(ii) it follows $c_X(kr) = c_Y(k) \quad (k \in \mathbb{Z})$. Lemma 4.1 implies then that c_Y can be represented by (3.1) with $\text{Rep}(Y) = 1$. So X is infdiv (mod 1) with $\text{Rep}(X) = r$.

\Box

Remarks 4.7. (1) Analogous to the proof of Theorem 4.6, and now applying Lemma 4.5 and using the Kolmogorov canonical representation, we can prove that X is infdiv (mod 1) with $\text{Rep}(X) = r$ iff

$$X \overset{d}{=} \frac{U_r}{r} + \frac{1}{r}Y$$

for some infdiv Y independent of U_r with $\mathbb{E}Y^2 < \infty$.

(11) We claim that $U \overset{d}{=} Y$ for any infdiv rv Y. Suppose that there is a
rv Y such that $U \overset{d}{=} (Y)$. Then $\varphi_Y(2\pi k) = 0 \ (k \in \mathbb{Z})$, and this contradicts the fact that an infdiv chf has no real zeros (see Lukacs (1970)).

(iii) From (4.5) it follows that $(rX) \overset{d}{=} (Y)$.

(iv) We give here another proof of (i): Since Y is infdiv, there exists a n-tuple $(Y, n_i)_{i=1}^n$ of iid rv's such that $Y \overset{d}{=} Y_{n,1} + \ldots + Y_{n,n}$. Let $(U(i))_{i=1}^n$ be a n-tuple of iid rv's distributed as U, and independent of (Y, n_i). Take $X \overset{d}{=} U_{r,1} + \frac{1}{n} (Y, n_i)$; then $X \overset{d}{=} X_{n,1} + \ldots + X_{n,n}$.

The following corollary is a consequence of Theorem 4.6 and Remark 4.7(i).

Corollary 4.8. Let Y be infdiv with $EY^2 = \omega$. Then there is an infdiv rv X such that $EX^2 < \omega$ and $(X) \overset{d}{=} (Y)$.

Conversely, let X be infdiv with $EX^2 < \omega$. Then there is an infdiv rv Y such that $EY^2 = \omega$ and $(Y) \overset{d}{=} (X)$.

Proof: By Lemma 4.1 we have (Y) is infdiv (mod 1) with $\text{Rep}(Y) = 1$. Then from (4.8) we find $(Y) \overset{d}{=} (X)$ for some infdiv X with $EX^2 < \omega$.

If X is infdiv (mod 1), then from Lemma 4.1 we know (X) is infdiv (mod 1) with $\text{Rep}(X) = 1$. Theorem 4.6 yields that $(X) \overset{d}{=} (Y)$ for some infdiv Y with $EY^2 = \omega$.

In the following theorems we give some properties of inf div (mod 1) distributions. We first prove an auxiliary result. Here the greatest common divisor of x and y is denoted by $\text{gcd}(x,y)$, and the least common multiple of x and y by $\text{lcm}(x,y) \ (x, y \in \mathbb{N})$.

Lemma 4.9. Let $p,q,r,s \in \mathbb{N}$, $a = \text{lcm}(p,q)$ and $\text{gcd}(p,s) = 1$. Then

(i) $(U + U) \overset{d}{=} U$,

(ii) $(p\overline{U}) \overset{d}{=} p\overline{U}$.

(iii) $(s\overline{U}) \overset{d}{=} s\overline{U}$.

Proof: (i) If $k \in \mathbb{Z}$, then $k = am + mb_1 = mb_2 + p$ for some $m, b_1, b_2 \in \mathbb{N}$; so $c_U(k) = c_U(k) = 1$. If $k \in \mathbb{Z}$, then $c_U(k) = 0$ or $c_U(k) = 0$ since $pq = aw$. Hence $c_U(k) = c_U(k) = c_U(k) \ (k \in \mathbb{Z})$.

12
(ii) It suffices to show that $c_{qr}(pkr) = c_{qr}(pk) \ (ke\mathbb{Z})$.

If $pk \in \mathbb{Z}$, then $c_{qr}(pkr) = 1$. If $pk \not\in \mathbb{Z}$, then $kr \not\equiv qr \ (i.e. \ c_{qr}(pkr) = 0)$. Hence $c_{qr}(pkr) = c_{qr}(pk) \ (ke\mathbb{Z})$.

(iii) Clearly, we have $c_{sk}(k) = c_{pk}(k) \ (ke\mathbb{Z})$.

If $ke \in \mathbb{Z}$, then $c_{p}(sk) = 1$. If $ke \not\in \mathbb{Z}$, then $sk \not\in \mathbb{Z}$ since $gcd(p, s) = 1$, so $c_{sk}(sk) = 0$. Hence $c_{sk}(sk) = c_{sk}(k) \ (ke\mathbb{Z})$.

It is well known that if Y_1 and Y_2 are independent and infdiv in the customary sense, then this is also true for $Y := aY_1 + bY_2$ for any $a, b \in \mathbb{R}$. Furthermore, let $r \in \mathbb{N}$; if Y_1 and Y_2 are independent of U with $EY_m < \infty \ (m=1,2)$, then this is also true for Y. These properties will be used in the proof of the following two theorems.

Theorem 4.10. Let X_1 be infdiv (mod 1) with $Rep(X_1) = r_1$.

(i) Let X_2 be infdiv (mod 1) with $Rep(X_2) = r_2$ and independent of X_1. Then $(X_1 + X_2)$ is infdiv (mod 1) with $Rep(X_1 + X_2) = lcm(r_1, r_2)$.

(ii) Let $s \in \mathbb{R}$. Then $(X_1 + s)$ is infdiv (mod 1) with $Rep(X_1 + s) = r_1$.

Proof: (i) Let $q := lcm(r_1, r_2)$ and $p := gcd(r_1, r_2)$. Let further c_m be the FSS of $X_m \ (m=1,2)$. From (4.8) we have

$$c_{1}(k)c_{2}(k) = c_{r_1}(k)c_{r_2}(k) E_{m}(r_1/r_1, r_2/r_2)$$

for some infdiv Y_m independent of U and U with $EY_m < \infty \ (m=1,2)$. From Lemma 4.9(i) we find $c_{r_1}(k)c_{r_2}(k) = c_{r_1}(k)$. Hence

$$(X_1 + X_2) = U + \frac{1}{q}((r_1 Y_1 + r_2 Y_2)/p).$$

(ii) This is a consequence of part (i). Take $P(X_2 = (s)) = 1$. Then X_2 is infdiv (mod 1) with $Rep(X_2) = 1$.

We remark that if $max(r_1, r_2) = \infty$, then $(X_1 + X_2)$ is infdiv (mod 1) with $Rep(X_1 + X_2) = \infty$ since $(X + U) \overset{d}{=} U$ for any rv X independent of U.
Theorem 4.11. Let \(q \in \mathbb{N} \), and let \(X \) be infdiv \((\text{mod } 1)\) with \(\text{Rep}(X) = r \). If \(\gcd(q,r) = p \), then \(\{qX\} \) is infdiv \((\text{mod } 1)\) with \(\text{Rep}(qX) = r/p \).

Proof: From (4.8) we obtain
\[
X \overset{d}{=} U_r + \frac{1}{r} \{Y\}
\]
for some infdiv \(Y \) independent of \(U_r \) with \(EY^2 < \infty \). Hence we obtain
\[
(4.9) \quad c_{\{qX\}}(k) = c_{U_r}(qk) E e^{2\pi i k Y / r}.
\]

We distinguish three cases: 1. \(p=r \); 2. \(p=1 \); 3. \(1<p<r \).

1. If \(\gcd(q,r) = r \), then \(q = ar \) for some \(a \in \mathbb{N} \). Hence from (4.9) we find
\[
c_{\{qX\}}(k) = c_{U_r}(ark) E e^{2\pi i k Y / r} = c_{\{aY\}}(k).
\]
So \(\{qX\} \overset{d}{=} \{aY\} \); from (4.8) we have that \(\{qX\} \) is infdiv \((\text{mod } 1)\) with \(\text{Rep}(qX) = 1 \).

2. If \(\gcd(q,r) = 1 \), then from Lemma 4.9(iii) we know that \(c_{U_r}(qk) = c_{U_r}(k) \).
So, from (4.9) it follows \(\{qX\} \overset{d}{=} U_r + \frac{1}{r} \{qY\} \). Expression (4.8) implies that \(\{qX\} \) is infdiv \((\text{mod } 1)\) with \(\text{Rep}(qX) = r \).

3. If \(\gcd(q,r) = p \), then \(r = mp \) and \(q = np \) for some \(m, n \in \mathbb{N} \). Further we have \(\gcd(m,n) = 1 \). Applying part (ii) and (iii) of Lemma 4.9 it follows
\[
\{qU_r\} \overset{d}{=} \{npU_m\} \overset{d}{=} \{nU_m\} \overset{d}{=} U_r \overset{d}{=} U_r / p.
\]
Consequently, from (4.9) we find
\[
\{qX\} \overset{d}{=} U_r / p + \frac{p}{r} \{qY/p\}.
\]
Then (4.8) implies that \(\{qX\} \) is infdiv \((\text{mod } 1)\) with \(\text{Rep}(qX) = r/p \).

We note that the assertion of Theorem 4.11 is also true if \(q \in \mathbb{Z} \setminus \mathbb{N} \); if \(q=0 \), then \(\{qY\} \) is infdiv \((\text{mod } 1)\) with \(\text{Rep}(qY) = 1 \). Furthermore, if \(X \overset{d}{=} U \), then \(\{qX\} \overset{d}{=} U \), i.e. \(\{qX\} \) is infdiv \((\text{mod } 1)\) with \(\text{Rep}(qX) = \infty \) (\(q \in \mathbb{Z} \setminus \{0\} \)).

In general \(\{qX\} \) is not infdiv \((\text{mod } 1)\) if \(q \in \mathbb{R} \setminus \mathbb{Z} \) and \(X \) is infdiv \((\text{mod } 1)\). For example, if \(X \overset{d}{=} U_2 \) and \(q = 3/2 \), then \(c_{\{3X/2\}}(1) \neq 0 \) and \(c_{\{3X/2\}}(2) = 0 \); hence \(\text{Rep}(3X/2) = 1 \). Since \(c_{\{3X/2\}}(2) = 0 \), \((3X/2) \) is not infdiv \((\text{mod } 1)\).

This is also true for rv's \(X \) with \(\text{Rep}(X) = 1 \): Let \(Y \) be exponentially distributed with \(EY = 1/\lambda \). Then \(\{Y\} \) is infdiv \((\text{mod } 1)\) with \(\text{Rep}(Y) = 1 \); it is easy to verify that \(\{Y/2\} \) is not infdiv \((\text{mod } 1)\).
4.12. Examples

(i) Let X have a normal distribution with $E X = \mu$, $\text{Var} X = \sigma^2$. Then $c_{(X)}(k) = \exp\left(2\pi i k \mu - 2(k \sigma)^2\right)$, and (X) is infdiv (mod 1) with $\text{Rep}(X) = 1$.

(ii) Let $r, k \in \mathbb{N}$ with $k \geq r + 1 \geq 2$, and $X \overset{d}{=} U + \frac{1}{r}$. Then $X \overset{d}{=} U + \frac{1}{r} \frac{1}{k}$, and hence X is infdiv (mod 1) with $\text{Rep}(X) = r$.

(iii) Let X have FSS c. The FSS \tilde{c} of the rv Y with compound Poisson distribution generated by c is defined by $\tilde{c}(k) = \exp(\alpha(c(k) - 1))$ $(k \in \mathbb{Z}, \alpha > 0)$.

Since the chf of Y is infdiv (cf. Feller (1971)), we have that \tilde{c} is infdiv (mod 1) with $\text{Rep}(Y) = 1$.

Let $m \in \mathbb{N}$, and take $X \overset{d}{=} U_m$. Then

$$c(k) = e^{-\lambda} + \left(1 - e^{-\lambda}\right) \sum_{j=0}^{m-1} P(Y=j) = e^{-\lambda} + \frac{1}{m} \left(1 - e^{-\lambda}\right)$$

for $j=0, \ldots, m-1$.

5. Stable (mod 1) distributions.

Stable characteristic functions (or distributions) in the customary sense are defined as follows: a chf ϕ is said to be stable if for every $b_1, b_2 > 0$ there exist constants $b > 0, \alpha \in \mathbb{R}$ such that

$$\phi(b_1 t) \phi(b_2 t) = \phi(bt) \exp(i \alpha t) \quad (t \in \mathbb{R}).$$

In modulo 1 sense FSS's are very useful, but unfortunately it is not possible to give a definition similar to (5.1) since a FSS is only defined for integers $k \in \mathbb{Z}$ (cf. definition 2.1). When trying to define self-decomposability modulo 1 the same problem arises. Therefore, we consider stability modulo 1 according to the following definition.

Definition 5.1. Let $X \in \mathbb{I}[0,1)$. Then $c := c_X$, X or F_X are said to be stable (mod 1) if there exists a real number $\alpha \in (0,1)$ such that
Clearly, from relation (5.2) it follows that for each \(n \in \mathbb{N} \) there exists a real number \(\alpha_n^* \in [0,1) \) such that
\[
c^n(k) = c(k) \exp(2\pi ik\alpha_n^*) \quad (k \in \mathbb{Z}),
\]
or equivalently, for each \(n \in \mathbb{N} \) there exists a sequence \((X_j) \) of iid rv's in \(X(0,1) \) and a real number \(\alpha_n \in [0,1) \) such that the equation
\[
\{X_1 + \ldots + X_n + \alpha_n\} \overset{d}{=} X_1
\]
holds. It is clear that \(U \) is stable (mod 1) (take \(\alpha_n = 0 \)). Furthermore, it is easy to verify that if \(X \) is stable (mod 1), then \(X \) is infdiv (mod 1).

In the following theorems we characterize stable (mod 1) distributions. We note that in Wilms and Thiemann (1993) solutions of equation (5.3) are characterized.

Theorem 5.2. Let \(r \in \mathbb{N} \), and \(X \in X(0,1) \). Then the following statements are equivalent:
(a) \(X \) is stable (mod 1).
(b) \(X \overset{d}{=} U \) or \(X \overset{d}{=} U_r + \beta \) for some \(\beta \in [0,1/r) \).

Proof: Let \(c \) denote the FSS of \(X \). Let \(X \) be stable (mod 1). Then (5.2) holds, i.e. \(c(k)(c(k) - \exp(2\pi ik\alpha)) = 0 \) (\(k \in \mathbb{Z} \)). If \(c(k) = 0 \) for all \(k \neq 0 \), then \(X \overset{d}{=} U \). Alternatively, suppose there exists an integer \(k \in \mathbb{N} \) such that \(c(k) \neq 0 \). Take \(r = \min\{k \in \mathbb{Z} : c(k) \neq 0\} \). Hence \(c(r) \exp(-2\pi i r \alpha) = 1 \). Thus \(\{X - \alpha\} \overset{d}{=} U_r \). Then there exist an integer \(s \in \{0, \ldots, r-1\} \) and \(\beta \in [0,1/r) \) such that \(\alpha = \beta + s/r \). Therefore \(X \) has its distribution concentrated on the set \(\{\beta, \beta + 1/r, \ldots, \beta + (r-1)/r\} \). Hence \(X \overset{d}{=} U_r + \beta \). So (a) \(\Rightarrow\) (b).

Let \(X \overset{d}{=} U \). From Lemma 2.5(i) we have \(c(k) = 0 \) for \(k \neq 0 \). Thus if we take \(\alpha = 0 \), then relation (5.2) holds, i.e. \(U \) is stable (mod 1).

Let \(X \overset{d}{=} U_r + \beta \) for some \(\beta \in [0,1/r) \). Using Lemma 2.5(ii) we have
\[
c(k) = \begin{cases}
\exp(2\pi ik\beta) & \text{if } k \in \mathbb{Z} \\
0 & \text{otherwise}.
\end{cases}
\]

So if we take \(\alpha = \beta \), then relation (5.2) holds, i.e. \(X \) is stable (mod 1). \(\square \)
Theorem 5.3. The set of stable (mod 1) distributions coincides with the set of distributions that are limits of \((X_1+\ldots+X_n+\alpha_n)\), where \((X_i)_{n=1}^\infty\) are iid rv's in \([0,1)\), \(\alpha_n \in (0,1)\), and equation (5.3) holds.

Proof: Let \(F\) be stable (mod 1). Then (5.3) holds. Hence the distribution of \(X_1\) is a limit of the distribution of \((X_1+\ldots+X_n+\alpha_n)\).

Suppose there exist a sequence \((X_i)\) of iid rv's in \([0,1)\) and \(Y \in \mathcal{L}(0,1)\) such that \((X_1+\ldots+X_n+\alpha_n) \overset{d}{\to} Y\) (\(n \to \infty\)), or equivalently

\[
c_n(k) \exp(2\pi ik\alpha_n) \to c_Y(k) \quad (k \in \mathbb{Z}, \ n \to \infty).
\]

If \(c_Y(k) = 0\) for all \(k \neq 0\), then \(Y \overset{d}{=} U\). Hence \(Y\) is stable (mod 1).

Alternatively, suppose there exists an integer \(k \in \mathbb{N}\) such that \(c_Y(k) \neq 0\). Take \(r = \min\{k \in \mathbb{N}: c_Y(k) \neq 0\}\). Then \(|c_Y(r)| = 1\), and thus \(|c_Y(r)| = 1\). So there exists a real number \(\beta \in (0,1)\) such that \(c_Y(r) = \exp(2\pi ir\beta)\). Thus \((Y-\beta) \overset{d}{=} U\). As in the proof of Theorem 5.2 we find \(Y \overset{d}{=} U + \beta\) for some \(\beta \in (0,1/r)\). Then Theorem 5.2 yields \(Y\) is stable (mod 1).

6. A generalization of a limit theorem by Schatte.

In this section we generalize the result as given by Schatte in Proposition 3.5.

Theorem 6.1. Let \(F\) be a df, and let \((F_n)_{n=1}^\infty\) be a sequence of infdiv (mod 1) df's such that \(F_n \overset{w}{\to} F\) (\(n \to \infty\)). Let \((c_n)_{n=1}^\infty\) be the corresponding sequence of FSS's all with finite replication number \(r\) and represented by

\[
c_n(kr) = \exp \left(ik\alpha_n + \int_{0,1} \frac{\exp \left(-i k \sin 2\pi x\right)}{1 - \cos 2\pi x} \, d\theta_n(x)\right) \quad (k \in \mathbb{Z}).
\]

Then \(c_F\) is represented by (3.1) with \(\text{Rep}(c_F) = pr = m\) for some \(p \in \mathbb{N}\) iff (3.2) holds for \(k = 1, \ldots, m-1\), and

\[
K_n \overset{w}{\to} \theta, \quad \beta_n \overset{a}{\to} \alpha \quad (n \to \infty),
\]

where
\[K_n(x) = \sum_{s=0}^{m-1} \int_{0}^{1} \frac{1-\cos 2\pi t}{1-\cos 2\pi (t+s)/m} \, d\theta_n \left(\frac{t+s}{m} \right) (x \in [0,1]), \]

\[\beta_n = \max_n \int_{0}^{1} \sin 2\pi x \, d(K_n(x)-m \theta_n(x)). \]

Proof: The proof of this theorem is analogous to the proof of Schatte. The only modification, which needs some attention, is the following expression:

\[c_n(km) = \exp\left(ik \alpha_n + \int_{0}^{1} \frac{e^{2\pi i k x} - 1 - ik \sin 2\pi x}{1 - \cos 2\pi x} \, d\theta_n(x) \right) (k \in \mathbb{Z}), \]

which can be written as

\[c_n(km) = \exp\left(ik \beta_n + \int_{0}^{1} \frac{e^{2\pi i k x} - 1 - ik \sin 2\pi x}{1 - \cos 2\pi x} \, dK_n(x) \right) (k \in \mathbb{Z}). \]

\[\Box \]

Acknowledgment.

The author is indebted to F.W. Steutel and J.G.F. Thiemann for giving comments on earlier versions of this paper.

7. References.

<table>
<thead>
<tr>
<th>Number</th>
<th>Month</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>93-01</td>
<td>January</td>
<td>P. v.d. Laan</td>
<td>Subset selection for the best of two populations: Tables of the expected subset size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. v. Eeden</td>
<td></td>
</tr>
<tr>
<td>93-02</td>
<td>January</td>
<td>R.J.G. Wilms</td>
<td>Characterizations of shift-invariant distributions based on summation modulo one.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.G.F. Thiemann</td>
<td></td>
</tr>
<tr>
<td>93-03</td>
<td>February</td>
<td>Jan Beirlant</td>
<td>Asymptotic confidence intervals for the length of the shorttt under random censoring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John H.J. Einmahl</td>
<td></td>
</tr>
<tr>
<td>93-04</td>
<td>February</td>
<td>E. Balas</td>
<td>One machine scheduling with delayed precedence constraints</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. K. Lenstra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Vazacopoulos</td>
<td></td>
</tr>
<tr>
<td>93-05</td>
<td>March</td>
<td>A.A. Stoorvogel</td>
<td>The discrete time minimum entropy H_{∞} control problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.H.A. Ludlage</td>
<td></td>
</tr>
<tr>
<td>93-06</td>
<td>March</td>
<td>H.J.C. Huijberts</td>
<td>Controlled invariance of nonlinear systems: nonexact forms speak louder than exact forms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C.H. Moog</td>
<td></td>
</tr>
<tr>
<td>93-07</td>
<td>March</td>
<td>Marinus Veldhorst</td>
<td>A linear time algorithm to schedule trees with communication delays optimally on two machines</td>
</tr>
<tr>
<td>93-08</td>
<td>March</td>
<td>Stan van Hoesel</td>
<td>A class of strong valid inequalities for the discrete lot-sizing and scheduling problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antoon Kolen</td>
<td></td>
</tr>
<tr>
<td>93-09</td>
<td>March</td>
<td>F.P.A. Coolen</td>
<td>Bayesian decision theory with imprecise prior probabilities applied to replacement problems</td>
</tr>
<tr>
<td>93-10</td>
<td>March</td>
<td>A.W.J. Kolen</td>
<td>Sensitivity analysis of list scheduling heuristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.H.G. Rinnooy Kan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C.P.M. van Hoesel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A.P.M. Wagelmans</td>
<td></td>
</tr>
<tr>
<td>93-11</td>
<td>March</td>
<td>A.A. Stoorvogel</td>
<td>Squaring-down and the problems of almost-zeros for continuous-time systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.H.A. Ludlage</td>
<td></td>
</tr>
<tr>
<td>93-12</td>
<td>April</td>
<td>Paul van der Laan</td>
<td>The efficiency of subset selection of an ε-best uniform population relative to selection of the best one</td>
</tr>
<tr>
<td>93-13</td>
<td>April</td>
<td>R.J.G. Wilms</td>
<td>On the limiting distribution of fractional parts of extreme order statistics</td>
</tr>
<tr>
<td>Number</td>
<td>Month</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>93-14</td>
<td>May</td>
<td>L.C.G.J.M. Habets</td>
<td>On the Genericity of Stabilizability for Time-Day Systems</td>
</tr>
<tr>
<td>93-15</td>
<td>June</td>
<td>P. van der Laan, C. van Eeden</td>
<td>Subset selection with a generalized selection goal based on a loss function</td>
</tr>
<tr>
<td>93-16</td>
<td>June</td>
<td>A.A. Stoorvogel, A. Saberi, B.M. Chen</td>
<td>The Discrete-time H_{∞} Control Problem with Strictly Proper Measurement Feedback</td>
</tr>
<tr>
<td>93-17</td>
<td>June</td>
<td>J. Beirlant, J.H.J. Einmahl</td>
<td>Maximal type test statistics based on conditional processes</td>
</tr>
<tr>
<td>93-18</td>
<td>July</td>
<td>F.P.A. Coolen</td>
<td>Decision making with imprecise probabilities</td>
</tr>
<tr>
<td>93-19</td>
<td>July</td>
<td>J.A. Hoogeveen, J.K. Lenstra, B. Veltman</td>
<td>Three, four, five, six or the Complexity of Scheduling with Communication Delays</td>
</tr>
<tr>
<td>93-20</td>
<td>July</td>
<td>J.A. Hoogeveen, J.K. Lenstra, B. Veltman</td>
<td>Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard</td>
</tr>
<tr>
<td>93-21</td>
<td>July</td>
<td>P. van der Laan, C. van Eeden</td>
<td>Some generalized subset selection procedures</td>
</tr>
<tr>
<td>93-22</td>
<td>July</td>
<td>R.J.G. Wilms</td>
<td>Infinite divisible and stable distributions modulo 1</td>
</tr>
</tbody>
</table>