PatRec

Citation for published version (APA):

DOI:
10.1145/3441852.3476563

Document status and date:
Published: 17/10/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl

providing details and we will investigate your claim.
PatRec: A Mobile Game for Learning Social Haptic Communication

Jessica G. J. Vuijk
Human Media Interaction, University of Twente
jessica-vuijk@outlook.com

James Gay
Affective and Cognitive Institute, Offenburg University of Applied Sciences
g.james@gmx.net

Myrthe A. Plaisier
Mechanical Engineering, Eindhoven University of Technology
m.a.plaisier@tue.nl

Astrid M. L. Kappers
Human Technology Interaction, Eindhoven University of Technology
a.m.l.kappers@tue.nl

Arthur Theil
Digital Media Technology Lab, Birmingham City University
arthur.theil@bcu.ac.uk

ABSTRACT
Social Haptic Communication (SHC) is one of the many tactile modes of communication used by persons with deafblindness to access information about their surroundings. SHC usually involves an interpreter executing finger and hand signs on the back of a person with multi-sensory disabilities. Learning SHC, however, can become challenging and time-consuming, particularly to those who experience deafblindness later in life. In this work, we present PatRec: a mobile game for learning SHC concepts. PatRec is a multiple-choice quiz game connected to a chair interface that contains a 3x3 array of vibration motors emulating different SHC signs. Players collect scores and badges whenever they guess the right SHC vibration pattern, leading to continuous engagement and a better position on a leaderboard. The game is also meant for family members to learn SHC. We report the technical implementation of PatRec and the findings from a user evaluation.

CCS CONCEPTS
• Human-centered computing • Accessibility technologies;

KEYWORDS
Deafblindness, Haptics, Game-Based Learning, Vibrotactile feedback, Visual Impairments, Assistive Technology, Tactile Sign Language, Accessible Games

1 INTRODUCTION
Social Haptic Communication (SHC) is one of the many modes of communication used by persons living with deafblindness [6, 8]. SHC is broadly defined as the interaction of two or more people in a social context where information is conveyed using the sense of touch. Social Haptic Communication can be applied across the spectrum of language users, from those with highly complex signed or spoken language to those with limited communication [19]. SHC signs, also known as haptics, are performed on neutral zones on the body of a person with deafblindness. Most SHC signs are executed on the upper back using fingers or hand movements, but other parts of the body such as arm, wrist, palm and upper knee can be used. In other words, SHC allows for discreet near real-time information transfer, where a person with deafblindness can passively receive information while sitting or standing [18, 20]. For instance, SHC signs may be used to inform persons with deafblindness about emotions and facial expressions or to provide spatial information about locations, including descriptions of rooms or the number of people around them. Learning Social Haptic Communication, however, can become challenging and time-consuming, particularly to those who experience deafblindness later in life. There is a growing body of accessibility literature exploring the potential benefits of using digital games for educational purposes [12, 13, 21]. Game-based learning can be an engaging and motivating tool for improving literacy and communication skills [5, 7, 12, 13]. Therefore, we introduce PatRec: a mobile game for learning Social Haptic Communication concepts. The game interface connects to a chair cover that contains a 3x3 array of vibration motors emulating different haptics (i.e. touch signs) that would otherwise be executed using fingers or hands on the back of the user. Our goal was to develop a haptic game for supporting SHC learning in a fun and engaging way to both users with and without sensory disabilities.

2 THE MOBILE GAME
PatRec was developed with the aim to introduce SHC concepts to persons with and without deafblindness in a gamified learning context. As shown in Figure 1, a vibration pattern is activated onto the backrest of a chair and players need to select the on-screen graphical representation of the SHC sign that best matches the pattern they felt on the back. This is done using a four choices quiz-game mechanic that increases difficulty as the player progresses.
Figure 1: (a) PatRec uses a 3x3 array of vibration motors attached to a chair. (b) Vibration patterns emulating SHC signs are displayed onto the back of the user. (c) Using a mobile interface, the user needs to guess the right SHC sign based on the vibration pattern perceived on the back.

into the game. The game levels consisted of 16 Dutch SHC signs [18] grouped by topics and their difficulty increases with the user’s experience. The design of the vibration patterns was informed by co-creation sessions with individuals with deafblindness [16, 17]. The mobile game incorporates the principles of game-based learning by rewarding players with a collection of badges and experience points (XP) as they achieve new game levels. To improve the competitive element, players lose game lives and points on the leaderboard whenever they choose the wrong SHC sign option. PatRec was designed to foster social play between mixed-ability players that can compete for a better spot on the leaderboard. For this, we ensured that the game interface was accessible for players with different sensory characteristics. These elements have been included as research suggests that gamified learning brings many advantages, among which improved learning outcomes, increased learner’s engagement and the offer of enjoyable experiences [2, 7, 10, 14]. This could help minimizing the problem that more than half of the adults with deafblindness reported being unsatisfied with their current recreational and social activities [11]. The mobile game implementation is described below.

2.2 Software Implementation

The mobile game application was developed in Unity and its prototype is compatible with Android devices. The vibration patterns that emulate SHC concepts are encoded as JSON files. Vibration pattern duration varied between 0.5 and 4 seconds depending on the pattern. Vibration motor activation (i.e. frame) also varied between patterns but the shortest frame duration was 200 milliseconds. Frame interpolation (i.e. overlap) was only used for patterns emulating a line being traced. The mobile interface sends these vibration patterns to the chair using a MQTT message bus [3].

2.3 Accessibility Implementation

The game interface uses high contrast pictorial representations of SHC concepts with proper sizing and extra spacing for text [4]. The GUI works across devices with different screen sizes. An audio-description mode was implemented for blind and low vision users in which the definition of each SHC sign is described in audio through a “tap to hear, tap twice to confirm” system. Currently, the game is accessible to players with residual sight and/or hearing.

3 USER EVALUATION

As a proof-of-concept, a usability test was conducted with 10 participants with no reported sensory disabilities (age range 18-63 years old; mean age = 31 years old; 3 male; 7 female). Participants were first given an introduction to the game and how it works. Participants were then asked to complete four interaction tasks using a think-out-loud protocol: (1) create an account and adjust the accessibility sessions to their wishes, (2) explore the game options, (3) complete at least 3 game levels, and (4) check their achievements. Upon completion, participants were asked to evaluate the game using a SUS questionnaire [1, 9] and shared their views about the mobile game in semi-structured interviews. Our findings include
an average SUS score of 80.1/100, which indicates a usability score between "good" and "excellent" (Figure 2). Furthermore, most participants were able to complete all game levels without major issues. Some participants, however, noticed that some on-screen representations of SHC signs are easier to be linked to vibrotactile patterns than others. This finding indicates that designing intuitive graphical representations of haptics should be prioritized as patterns become more complex to be perceived. All sessions were recorded, and the study received ethical approval by the Ethics Committee of the Eindhoven University of Technology’s HTI Group.

3.1 Demonstration session with an expert in SHC
A high-fidelity prototype was presented to a teacher and expert in Dutch Social Haptic Communication who evaluated the mobile game positively as it is suitable for family-use and encourages social play for both users with and without sensory disabilities. The expert also appreciated the different accessibility features present in the game and suggested including in-app haptic feedback when selecting a pattern (in)correctly. Additionally, the participant recommended braille-reader compatibility in future versions of the game.

3.2 Follow-up session with a user with deafblindness
A follow-up session was conducted with a participant with deafblindness (47 years old, female; Usher Type 2A, i.e. hearing loss from birth and progressive vision loss) who tested the game with a family member. The participant did not have prior knowledge in SHC. As the participant had low vision and hearing aids, she interacted with the mobile interface using audio-descriptions of on-screen SHC concepts. We found that the participant was able to learn how to match vibration patterns to SHC signs quickly and accurately. The participant also mentioned that if the set of vibration patterns would be expanded, it would definitely be practical for future use. However, the participant mentioned that the intensity of the vibration was too strong at times. In her own words, she “felt like the vibrations were flowing through to her upper legs and neck”. From experience, she shared that persons with deafblindness sometimes feel fatigued by tactile communication, and having such strong vibrations could become overwhelming. The participant suggested the possibility to adapt the intensity of the vibrations as well as the location and grid size of the vibration motors. Furthermore, the participant’s family member also demonstrated great interest in the game, confirming the thoughts of the expert in SHC.

4 DISCUSSION AND CONCLUSION
Our findings show that there is a compelling opportunity to using haptic games for users with a diverse set of sensory characteristics. Overall, users described PatRec as “fun”, “interesting”, “useful”, “practical”, and “adaptable to user needs”. The ability to foster social play between mixed-ability players was also welcomed by different users. Additionally, most users were able to complete all SHC levels in relatively easy manner. Although most participants initially reported that they enjoyed playing the game, we were not able to observe how PatRec engages users in learning Social Haptic Communication over a longer period of time. Therefore, a longitudinal study is still needed for investigating the long-term effects of gamified learning on SHC literacy.

For future work, we plan to include an expansion of Social Haptic Communication concepts available in the game. We used Dutch SHC signs for our proof-of-concept, however future iterations of the game could include local SHC concepts used by persons with deafblindness in other countries. Furthermore, based on user feedback, a number of iterations can be made to the user interface. The ability to adapt the intensity of the vibrations was deemed as useful for users with sensitive tactile perception. We also plan to expand the vibration grid from 3x3 to 4x4, as well as including more participants with deafblindness in the co-design process.

Finally, PatRec allows users to learn new Social Haptic Communication concepts at their own pace using vibrotactile patterns that emulate meaningful touch messages. Users are introduced to haptics while challenging themselves to score points, earn badges and compete against other players for a better spot on the leaderboard. In this way, PatRec uses gamified learning and social play to engage different individuals with SHC, allowing for better situational awareness and social integration of persons with deafblindness.
at the same time that it decreases dependency on others. We conclude that haptic games like PatRec are promising tools for players regardless of their sensory characteristics.

ACKNOWLEDGMENTS

The authors thank all their participants. The authors would also like to thank Nils-Krister Persson, Li Guo and Amelie Olesen from the University of Borås for designing the chair cover used in this study.

This work was supported by the European Union’s Horizon 2020 research and innovation programme under Grant 780814, Project SUITCEYES. PatRec and its source codes are openly available at https://github.com/Suitceyes-Project/PatRec

REFERENCES

