Formalization and Verification of
Event-driven Process Chains

by

W.M.P. van der Aalst

98/01
Formalization and Verification of Event-driven Process Chains

W.M.P. van der Aalst
Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands, telephone: +31 40 247 4295, e-mail: wsinwa@win.tue.nl

Abstract
For many companies, business processes have become the focal point of attention. As a result, many tools have been developed for business process engineering and the actual deployment of business processes. Typical examples of these tools are BPR (Business Process Reengineering) tools, ERP (Enterprise Resource Planning) systems, and WFM (Workflow Management) systems. Some of the leading products, e.g. SAP R/3 (ERP/WFM) and ARIS (BPR), use Event-driven Process Chains (EPCs) to model business processes. Although event-driven process chains have become a widespread process modeling technique, they suffer from a serious drawback: neither the syntax nor the semantics of an event-driven process chain are well defined. In this paper, this problem is tackled by mapping event-driven process chains onto Petri nets. Petri nets have formal semantics and provide an abundance of analysis techniques. As a result, the approach presented in this paper gives formal semantics to event-driven process chains. Moreover, many analysis techniques become available for event-driven process chains. To illustrate the approach, it is shown that the correctness of an event-driven process chain can be checked in polynomial time by using Petri-net-based analysis techniques.

1 Introduction
As a response to increased competitive pressure in the global marketplace, enterprises are looking to improve the way they are running their businesses. The term business process engineering ([Sch94b]) subsumes the set of principles, activities, and tools to support improvements of business processes. At the moment many software tools are available to support and enable business process engineering efforts. Typical examples of these tools are:

- **BPR (Business Process Reengineering) tools**
 A BPR tool can be used to model and analyze business processes. The visual
representation of processes and the ability to evaluate alternatives support the (re)engineering of business processes.

- **ERP (Enterprise Resource Planning) systems**
 ERP systems such as SAP R/3, BAAN, PeopleSoft, and Oracle automate manufacturing processes, organize accountants' books, and streamline corporate departments like human resources. An explicit representation of the business processes is used as a starting point for configuring these systems.

- **WFM (Workflow Management) systems**
 A WFM system is a generic software tool which allows for the definition, execution, registration and control of workflows (cf. [Law97]). In essence, the workflow management system is a generic building block to support business processes.

BPR tools support the 're-thinking' of business processes, ERP and WFM systems are the software applications that make these reengineered processes possible. Each of these tools requires an explicit representation of the business processes at hand. Most of the business process modeling techniques that are used, are vendor specific, i.e., they are supported by just one tool. Only a few tools use a generic technique such as Petri nets, SADT, IDEF, or EPC.

In this paper, we focus on the process modeling technique used by some of the leading tools in the field of business process engineering. Process models made with this technique are called **Event-driven Process Chains (EPCs)**, cf. [KNS92]. Event-driven process chains are used in tools such as SAP R/3 (SAP AG), ARIS (IDS Prof. Scheer GmbH), LiveModel/Analyst (Intellicorp Inc.), and Visio (Visio Corp.). SAP R/3 ([Her97]) is the leading ERP-system and is used in more that 7500 companies in 85 countries. ARIS ([Sch94a]) leads the BPR tool market (7000 licenses). LiveModel/Analyst and Visio are also examples of BPR tools based on event-driven process chains.

Event-driven process chains have become a widespread process modeling technique, because of the success of products such as SAP R/3 and ARIS. Unfortunately, neither the syntax nor the semantics of an event-driven process chain are well defined. As a result, an event-driven process chain may be ambiguous. Moreover, it is not possible to check the model for consistency and completeness. These problems are serious because event-driven process chains are used as the specification of business processes and need to be processed by ERP and WFM systems. The absence of formal semantics also hinders the exchange of models between
tools of different vendors and prevents the use of powerful analytical techniques.

In this paper, these problems are tackled by an approach based on Petri nets (cf. [Mur89]). The Petri net formalism is a popular and powerful process modeling technique for the representation of processes which exhibit concurrency, parallelism, synchronization, non-determinism, and mutual exclusion. The building blocks used in an event-driven process chain (events, functions and connectors) are close to the building blocks used in a Petri net (places and transitions). In fact, event-driven process chains correspond to a subclass of Petri nets. We will show that it is possible to map an event-driven process chain onto a Petri net. This way we can use the Petri net formalism to give formal semantics to event-driven process chains. Moreover, we can use advanced Petri-net-based techniques to analyze event-driven process chains. To show the potential of this approach, we present a technique to verify the correctness of an event-driven process chain. For this purpose, we use the so-called soundness property introduced in [Aal97]. An event-driven process chain is sound if, for any case, the process terminates properly, i.e., termination is guaranteed, there are no dangling references, and deadlock and livelock are absent. We will show that for event-driven process chains the soundness property can be checked in polynomial time.

This paper builds on the results presented in [Aal97, Aal98b]. The application of Petri nets to workflow modeling is also described in [MEM94, EKR95, EN93, AH97, Aal98a]. Researchers of both the University of Hamburg [LSW97] and the University of Saarland [CS94] have investigated the relation between event-driven process chains and Petri nets. There are several differences between these approaches and the approach described in this paper. First of all, in this paper the translation to Petri nets is formalized. Secondly, our approach is based on the classical Petri net instead of a high-level variant. Finally, we provide tools and techniques to check the soundness property in polynomial time.

2 Event-driven process chains

Event-driven process chains are an intuitive graphical business process description language introduced by Keller, Nüttgens and Scheer in 1992 ([KNS92]). The language is targeted to describe processes on the level of their business logic, not necessarily on the formal specification level, and to be easy to understand and use by business people. The methodology inherited the name from the diagram type shown in Figure 1. Such a diagram shows the control flow structure of the process as a chain of events and functions, i.e., an event-driven process chain.
Figure 1: Modeling of a business process, using event-driven process chains.
An event-driven process chain consists of the following elements:

- **Functions**
 The basic building blocks are functions. A function corresponds to an activity (task, process step) which needs to be executed.

- **Events**
 Events describe the situation before and/or after a function is executed. Functions are linked by events. An event may correspond to the postcondition of one function and act as a precondition of another function.

- **Logical connectors**
 Connectors can be used to connect activities and events. This way the flow of control is specified. There are three types of connectors: \(\land \) (and), \(\text{XOR} \) (exclusive or) and \(\lor \) (or).

These building blocks are shown in Figure 2.

![Function, Event, Logical Connectors](image)

Figure 2: The building blocks of an event-driven process chain.

The process modeled in Figure 1 models the processing of a customer order. The process starts with the event `customer order received`. First the customer order data is checked and as a result of this function the order is either rejected or accepted. The \(\text{XOR} \) connector models the fact that after the execution of the function `compare customer order data` one of the two events (`customer order accepted` or `customer order rejected`) holds. If the order is rejected, the process stops. For each accepted order, the availability is checked. If the articles are not available, then two functions are executed in parallel: `purchase material` and `make production plan.

After executing both functions, the articles are produced. If either the event `articles available` or the event `finished product` holds, then the function `ship order` can be executed. After the order has been shipped, the bill is sent. After sending the bill, it is checked whether the bill has been paid (function `check payment`). If the check has a positive result, the process is completed (event `customer order completed`). Otherwise the check is repeated until the result is positive. The example shown in Figure 1 shows that event-driven process chains are easy to read. It illustrates why event-driven process chains have been accepted as a modeling technique by many persons involved in business process engineering projects.

The event-driven process chain shown in Figure 1 is a so-called basic event-driven
process chain. It is possible to extend event-driven process chains with entities (things in the real world), business objects (e.g. data), and organizational units. This way it is possible to model the input and output of a function in terms of entities, business objects, and parts of the organization. Moreover, it is possible to specify allocation rules and responsibilities. These extended event-driven process chains (eEPCs) are supported by tools such as ARIS and SAP R/3. In this paper we abstract from these extensions and focus on the control flow.

3 Formalization of EPCs

Not every diagram composed of events, functions and connectors is a correct event-driven process chain. For example, it is not allowed to connect two events to each other (cf. [KNS92]). Unfortunately, a formal syntax for event-driven process chains is missing. In this section, we give a formal definition of an event-driven process chain. This definition is based on the restrictions described in [KNS92] and imposed by tools such as ARIS and SAP R/3. This way we are able to specify the requirements an event-driven process chain should satisfy.

Definition 1 (Event-driven process chain) An event-driven process chain is a five-tuple \((E, F, C, T, A)\):
- \(E\) is a finite set of events,
- \(F\) is a finite set of functions,
- \(C\) is a finite set of logical connectors,
- \(T : C \rightarrow \{\land, \lor, \lor\}\) is a function which maps each connector onto a connector type,
- \(A \subseteq (E \times F) \cup (F \times E) \cup (E \times C) \cup (C \times E) \cup (F \times C) \cup (C \times F) \cup (C \times C)\) is a set of arcs.

An event-driven process chain is composed of three types of nodes: events \((E)\), functions \((F)\) and connectors \((C)\). The type of each connector is given by the function \(T: T(c)\) is the type \((\land, \lor, \lor)\) of a connector \(c \in C\). Relation \(A\) specifies the set of arcs connecting functions, events and connectors. Definition 1 shows that it is not allowed to have an arc connecting two functions or two events. There are many more requirements an event-driven process chain should satisfy, e.g., only connectors are allowed to branch, there is at least one start event, there is at least one final event, and there are several limitations with respect to the use of connectors. To formalize these requirements we need to define some additional concepts and introduce some notation.
Definition 2 (Directed path, elementary path) Let EPC be an event-driven process chain. A directed path \(p \) from a node \(n_i \) to a node \(n_k \) is a sequence \((n_i, n_2, \ldots, n_k) \) such that \((n_i, n_{i+1}) \in \mathcal{A} \) for \(1 \leq i \leq k - 1 \). \(p \) is elementary if for any two nodes \(n_i \) and \(n_j \) on \(p \), \(i \neq j \Rightarrow n_i \neq n_j \).

The definition of directed path will be used to limit the set of routing constructs that may be used. It also allows for the definition of \(\mathcal{C}_{EF} \) (the set of connectors on a path from an event to a function) and \(\mathcal{C}_{FE} \) (the set of connectors on a path from a function to an event). \(\mathcal{C}_{EF} \) and \(\mathcal{C}_{FE} \) partition the set of connectors \(\mathcal{C} \). Based on the function \(T \) we also partition \(\mathcal{C} \) into \(\mathcal{C}_\Lambda, \mathcal{C}_\lor, \) and \(\mathcal{C}_{\text{XOR}} \). The sets \(\mathcal{C}_J \) and \(\mathcal{C}_S \) are used to classify connectors into join connectors and split connectors.

Definition 3 \((N, \mathcal{C}_\Lambda, \mathcal{C}_\lor, \mathcal{C}_{\text{XOR}}, \bullet, \mathcal{C}_J, \mathcal{C}_S, \mathcal{C}_{EF}, \mathcal{C}_{FE})\) Let \(\text{EPC} = (E, F, C, T, A) \) be an event-driven process chain.

- \(N = E \cup F \cup C \) is the set of nodes of \(\text{EPC} \).
- \(\mathcal{C}_\Lambda = \{c \in C | T(c) = \land\} \)
- \(\mathcal{C}_\lor = \{c \in C | T(c) = \lor\} \)
- \(\mathcal{C}_{\text{XOR}} = \{c \in C | T(c) = \text{XOR}\} \)
- For \(n \in N: \)
 - \(\bullet n = \{m \mid (m, n) \in A\} \) is the set of input nodes, and
 - \(n \bullet = \{m \mid (n, m) \in A\} \) is the set of output nodes.
- \(\mathcal{C}_J = \{c \in C \mid |c \bullet| \geq 2\} \) is the set of join connectors.
- \(\mathcal{C}_S = \{c \in C \mid |c \bullet| \geq 2\} \) is the set of split connectors.
- \(\mathcal{C}_{EF} \subseteq C \) such that \(c \in \mathcal{C}_{EF} \) if and only if there is a path \(p = (n_1, n_2, \ldots, n_{k-1}, n_k) \) such that \(n_1 \in E, n_2, \ldots, n_{k-1} \in C, n_k \in F \), and \(c \in \{n_2, \ldots, n_{k-1}\} \).
- \(\mathcal{C}_{FE} \subseteq C \) such that \(c \in \mathcal{C}_{FE} \) if and only if there is a path \(p = (n_1, n_2, \ldots, n_{k-1}, n_k) \) such that \(n_1 \in F, n_2, \ldots, n_{k-1} \in C, n_k \in E \), and \(c \in \{n_2, \ldots, n_{k-1}\} \).

Consider for example the logical connector \(c \) connecting the function \text{check availability} and the events \text{articles available} and \text{articles need to be produced} in Figure 1. Connector \(c \) is a split connector of type \text{XOR} connecting one function and two events, i.e., \(c \in \mathcal{C}_{\text{XOR}}, c \in \mathcal{C}_S, \) and \(c \in \mathcal{C}_{FE} \). Definition 3 enables us to specify the additional requirements an event-driven process chain should satisfy.
Definition 4 (Event-driven process chain (2)) An event-driven process chain $EPC = (E, F, C, T, A)$ satisfies the following requirements:

- The sets E, F, and C are pairwise disjoint, i.e., $E \cap F = \emptyset$, $E \cap C = \emptyset$, and $F \cap C = \emptyset$.

- For each $e \in E$: $|e| \leq 1$ and $|e \cdot | \leq 1$.

- There is at least one event $e \in E$ such that $|e| = 0$ (i.e. a start event).

- There is at least one event $e \in E$ such that $|e \cdot | = 0$ (i.e. a final event).

- For each $f \in F$: $|f| = 1$ and $|f \cdot | = 1$.

- For each $c \in C$: $|c| \geq 1$ and $|c \cdot | \geq 1$.

- The graph induced by EPC is weakly connected, i.e., for every two nodes $n_1, n_2 \in N$, $(n_1, n_2) \in (A \cup A^{-1})^*$.

- C_J and C_S partition C, i.e., $C_J \cap C_S = \emptyset$ and $C_J \cup C_S = C$.

- C_{EF} and C_{FE} partition C, i.e., $C_{EF} \cap C_{FE} = \emptyset$ and $C_{EF} \cup C_{FE} = C$.

The first requirement states that each component has a unique identifier (name). Note that connector names are omitted in the diagram of an event-driven process chain. The other requirements correspond to restrictions on the relation A. Events cannot have multiple input arcs and there is at least one start event and one final event. Each function has exactly one input arc and one output arc. For every two nodes n_1 and n_2 there is a path from n_1 to n_2 (ignoring the direction of the arcs). A connector c is either a join connector ($|c| = 1$ and $|c \cdot | \geq 2$) or a split connector ($|c| = 1$ and $|c \cdot | \geq 2$). The last requirement states that a connector c is either on a path from an event to a function or on a path from a function to an event. It is easy to verify that the event-driven process chain shown in Figure 1 is syntactically correct, i.e., all the requirements stated in Definition 4 are satisfied. In the remainder of this paper we assume all event-driven process chains to be syntactically correct.

Note that $\{C_J, C_S\}$, $\{C_{EF}, C_{FE}\}$, and $\{C_\Lambda, C_{XOR}, C_v\}$ partition C, i.e., C_J and C_S are disjoint and $C = C_J \cup C_S$, C_{EF} and C_{FE} are disjoint and $C = C_{EF} \cup C_{FE}$, and C_Λ, C_{XOR} and C_v are pairwise disjoint and $C = C_\Lambda \cup C_{XOR} \cup C_v$. In principle there are $2 \times 2 \times 3 = 12$ kinds of connectors! In [KNS92] two of these 12 constructs are not allowed: a split connector of type C_{EF} cannot be of type XOR or V, i.e., $C_S \cap C_{EF} \cap C_{XOR} = \emptyset$ and $C_S \cap C_{EF} \cap C_v = \emptyset$. As a result of this restriction, there are no choices between functions sharing the same input event. A choice is resolved after the execution of a function, not before. In this paper, we will not impose this restriction because in some cases it is convenient to model such a choice between functions.
4 Mapping EPCs onto Petri nets

Definitions 1 and 4 only relate to the syntax of an event-driven process chain and not to the semantics. In this section, we define the semantics in terms of a Petri net. Since Petri nets have formal semantics, it is sufficient to map event-driven process chains onto Petri nets to specify the behavior unambiguously. Note that some users may have problems with these formal semantics. They are used to drawing diagrams which only give an intuitive description: the actual behavior is approximated by hiding details and exceptions. A precise and detailed diagram may be undesirable in the early stages of the (re)design of a business process. However, users of event-driven process chains should not feel restricted by the presence of formal semantics. The formal semantics can be ignored during the early stages of the (re)design process. However, if the event-driven process chains are used as a starting point for analysis (e.g. simulation) or implementation using a WFM or ERP system, it is vital to have diagrams which specify the behavior unambiguously.

In the remainder of this section we assume the reader to be familiar with Petri nets. Appendix A introduces basic concepts such as the firing rule, firing sequences, reachability, liveness, boundedness, strongly connectedness, and S-coverability. For an introduction to Petri nets the reader is referred to [Mur89] or [Rei85].

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{events_places.png}
\caption{Events are mapped onto places and functions are mapped onto transitions.}
\end{figure}

Figure 3 shows the basic strategy that is used to map event-driven process chains onto Petri nets: events correspond to places and functions correspond to transitions. The translation of connectors is much more complex. A connector may correspond to a number of arcs in the Petri net or to a small network of places and transitions. Figure 4 shows the rules that are used to map connectors onto Petri net constructs. The behavior of a connector of type V corresponds to the behavior of
a place, i.e., a connector of type \lor agrees with a node of type ‘place’ in the Petri net. A connector of type \land agrees with a node of type ‘transition’. If the type of a join connector agrees the type of the output node in the corresponding Petri net, the connector is replaced by two or more arcs. For example, a join connector of type \land corresponds to a number of arcs in the Petri net if and only if the output node is a transition (see Figure 4). If the type of a join connector and the type of the output node do not agree, the connector is replaced by a small network. If the type of a split connector does not agree with the type of the input node in the Petri net, the connector is replaced by a small network. Otherwise, the connector is replaced by a number or arcs.

Figure 4 does not give any constructs for connectors of type \lor. The semantics of join connectors of type \lor are not clear. This problem is tackled in Section 6. For the moment, we assume all the connectors to be of type \land or XOR. Based on this assumption the formalization of the mapping is rather straightforward.

Definition 5 (N) Let $EPC = (E, F, C, T, A)$ be an event-driven process chain with $C_v = \emptyset$ and $A \cap (C \times C) = \emptyset$. $N(EPC) = (P_{PN}, T_{PN}, F_{PN})$ is the Petri net generated by EPC: $P_{PN} = E \cup (\cup_{c \in C} p_{PN}^c)$, $T_{PN} = F \cup (\cup_{c \in C} T_{PN}^c)$, and $F_{PN} = (A \cap ((E \times F) \cup (F \times E))) \cup (\cup_{c \in C} F_{PN}^c)$. See Table 1 for the definition of p_{PN}^c, T_{PN}^c, and F_{PN}^c.

The places in the Petri net correspond either to events or to constructs needed to model the behavior of a connector in the event-driven process chain. Transitions correspond to functions or are the result of the translation of a connector. Each connector $c \in C$ corresponds to the places, transitions and/or arcs listed in Table 1. In Table 1 it is assumed that connectors are only connected to functions and events, i.e., $A \cap (C \times C) = \emptyset$. Although it is possible to extend Table 1 with additional rules for connections between connectors, we use an alternative approach. Every arc connecting two connectors is replaced by an event and a function, i.e., fake events and functions are added to the event-driven process chain before the translation to a Petri net. Figure 5 illustrates the approach that is used to handle arcs in $A \cap (C \times C)$. The arc between the XOR-join (join connector of type XOR) and the AND-join (join connector of type \land) is replaced by function X and event X and three arcs. The arc between the AND-join and the XOR-split is also replaced by a function, an event and three arcs.

Figure 6 shows the Petri net which corresponds to the event-driven process chain shown in Figure 1. Note that the arc between the two XOR connectors is replaced by an event and a function, and mapped onto an additional place and transition in the Petri net. In this case there was no real need to add these additional nodes. However, there are situations where adding events and functions is the only way to model the control flow properly.
Figure 4: Mapping connectors onto places and transitions.
Table 1: Mapping an EPC connector $c \in C$ onto places, transitions, and arcs.
It is easy to see that for any event-driven process chain $EPC = (E, F, C, T, A)$ satisfying the requirements in Definition 4, $N(EPC) = (P^{PN}, T^{PN}, F^{PN})$ is a Petri net, i.e., $P^{PN} \cap T^{PN} = \emptyset$ and $F^{PN} \subseteq (P^{PN} \times T^{PN}) \cup (T^{PN} \times P^{PN})$. Moreover, the Petri net is free-choice (see Definition 12).

Lemma 1 Let $EPC = (E, F, C, T, A)$ be an event-driven process chain and $PN = N(EPC)$ the Petri net generated by EPC. PN is free-choice.

Proof.
We have to prove that for any two transitions t_1, t_2 sharing an input place, $\bullet t_1 = \bullet t_2$. Therefore, we have to check every place with two or more output arcs. An event cannot have more than two output arcs. The only way to obtain a place with multiple output arcs is the mapping of XOR-split connectors onto Petri net constructs (see Figure 4). However, the rules given in Table 1 guarantee that the output transitions have identical sets of input places. Therefore, the Petri net is free-choice.

Free-choice Petri nets are a class of Petri nets for which strong theoretical results and efficient analysis techniques exist. For example, the well-known Rank Theorem ([DE95]) allows for the efficient analysis of liveness and boundedness. In free-choice Petri nets it is not allowed to mix choice and synchronization (see Definition 12). Lemma 1 shows that in an event-driven process chain choice and synchronization are separated. On the one hand, Lemma 1 is a positive result because
Figure 6: The event-driven process chain of Figure 1, mapped onto a Petri net.
it shows that event-driven process chain correspond to a subclass with many desirable properties. On the other hand, the result shows that the expressive power of event-driven process chains is limited compared to Petri nets. It is not possible to model advanced control structures which involve a mixture of choice and synchronization (cf. [Aal97, Aal98b]).

5 Verification of EPCs

The correctness, effectiveness, and efficiency of the business processes supported by ERP or WFM systems are vital to the organization. An information system which is based on erroneous event-driven process chains may lead to serious problems such as angry customers, back-log, damage claims, and loss of goodwill. Flaws in the design of an event-driven process chain may also lead to high throughput times, low service levels, and a need for excess capacity. Therefore, it is important to analyze the event-driven process chain before it is put into production. In this section we focus on the verification (i.e. establishing the correctness) of event-driven process chains. The bridge between event-driven process chains and Petri nets presented in this paper allows for the use of the powerful analysis techniques that have been developed for Petri nets ([Mur89]). Linear algebraic techniques can be used to verify many properties, e.g., place invariants, transition invariants, and (non-)reachability. Other techniques such as coverability graph analysis, model checking, and reduction techniques can be used to analyze the dynamic behavior of the event-driven process chain mapped onto a Petri net. In this section we will show that Petri-net-based techniques can be used to analyze the so-called soundness property. To simplify the definition of this property, we restrict ourselves to regular event-driven process chains.

Definition 6 (Regular) An event-driven process chain EPC is regular if and only if:

(i) EPC has two special events: e_{start} and e_{final}. Event e_{start} is a source node: $e_{start} = 0$. Event e_{final} is a sink node: $e_{final} \bullet = 0$.

(ii) Every node $n \in N$ is on a path from e_{start} to e_{final}.

The identification of e_{start} and e_{final} allows for a clear definition of the initial state and the final state. An event-driven process chain with multiple start events (i.e. events without any input arcs) or multiple final events (i.e. events without any output arcs) can easily be extended with an initialization and/or a termination part such that the first requirement is satisfied. The second requirement demands that every
event or function is in the scope bordered by e_{start} and e_{final}. In the remainder of this paper we assume all event-driven process chains to be regular.

An event-driven process chain describes a procedure with an initial state and a final state. The procedure should be designed in such a way that it always terminates properly. Moreover, it should be possible to execute any given function by following the appropriate route though the event-driven process chain.

Definition 7 (Sound) A regular event-driven process chain EPC is sound if and only if:

(i) For every state M reachable from the initial state (i.e. the state where event e_{start} is the only event that holds), there exists a firing sequence leading from state M to the final state (i.e. the state where event e_{final} is the only event that holds).

(ii) The final state (i.e. event e_{final} is the only event that holds) is the only state reachable from the initial state where event e_{final} holds.

(iii) There are no dead functions, i.e., for each function f there is a firing sequence which executes f.

The correctness criterion defined in Definition 7 is the minimal requirement any event-driven process chain should satisfy. A sound event-driven process chain is free of potential deadlocks and livelocks. If we assume fairness (cf. [Val87]), then the first two requirements imply that eventually the final state will be reached. Consider for example the event-driven process chain shown in Figure 1. To make the event-driven process chain regular, the two sink events (customer order completed and customer order rejected) are joined by a termination part (i.e. an XOR-join connector, a function, and an event). By checking all possible firing sequences it is possible to verify that the event-driven process chain is sound, i.e., it is guaranteed that eventually every customer order that is received will be handled completely.

Figure 7 describes an alternative process to handle customer orders. The event-driven process chain shown in Figure 7 is not sound. If the billing process is skipped (i.e. the event no billing needed holds after executing the function register customer order), then the event-driven process chain will deadlock (the input event outstanding accounts of the AND-join preceding the function produce articles will never hold). If multiple payment checks are needed, then the fake event (the event added to connect the AND-split and the AND-join) will hold after termination.

For the small examples shown in this paper it is easy to see whether an event-driven process chain is sound or not. However, for the complex event-driven process chains encountered in practice it is far from trivial to verify the soundness
Figure 7: An erroneous event-driven process chain.
property. Fortunately, Petri-net-based techniques and tools can be used to analyze the soundness property. Inspection of the coverability graph ([Mur89, Rei85]) of the Petri net which corresponds to the event-driven process chain is sufficient to decide soundness. For complex event-driven process chains the coverability graph may become very large. This phenomenon is known as the 'state explosion problem'. A typical event-driven process chain with 80 tasks and events can easily have more than 200,000 states. Although today’s computers have no problem analyzing coverability graphs of this size, there are more advanced techniques which exploit the structure of the Petri net generated by an event-driven process chain. These techniques allow for very efficient decision procedures. Before presenting such a procedure, we first list some properties that hold for any Petri net generated by a sound event-driven process chain.

Proposition 1 Let $EPC = (E, F, C, T, A)$ be a sound event-driven process chain and $PN = N(EPC)$ the Petri net generated by EPC. Let \overline{PN} be PN with an extra transition t^* connecting e_{final} to e_{start} and let M be the initial state with one token in e_{start}.

- \overline{PN} is strongly connected,
- \overline{PN} is S-coverable,
- (\overline{PN}, M) is live,
- (\overline{PN}, M) is bounded, and
- (\overline{PN}, M) is safe.

Proof.
\overline{PN} is strongly connected because every node is on a path from e_{start} to e_{final} and e_{final} is connected to e_{start} via t^*. PN is a WF-net (see [Aal97]). Therefore, soundness coincides with liveness and boundedness (see Theorem 11 in [Aal97]). (\overline{PN}, M) is free-choice, live, and bounded. In [Aal96] it is shown that this implies that \overline{PN} is S-coverable and (\overline{PN}, M) is safe.

Building on the results presented in [Aal97], we can prove that soundness can be verified in polynomial time.

Theorem 1 An event-driven process chain can be checked for soundness in polynomial time.
Proof.
An event-driven process chain corresponds to a free-choice WF-net (see \[Aal97\]).
A WF-net is sound if and only if the extended net $(\overrightarrow{P}, N, M)$ is live and bounded.
Liveness and boundedness can be decided in polynomial time (use the well-known
Rank Theorem [DE95]). Hence, soundness can be verified in polynomial time. □

Theorem 1 shows that it is possible to extend tools such as ARIS and SAP R/3 with
efficient decision procedures to verify the correctness of an event-driven process
chain. To guide the user in finding and correcting flaws in the design of an event-
driven process chain, it is also possible to supply additional diagnostics based on
the structure of the event-driven process chain / Petri net. For example, it is useful
to check whether the event-driven process chain is well-structured.

Definition 8 (Well-structured) An event-driven process chain is well-structured
iff for any pair of connectors $c_1 \in C_\Lambda$ and $c_2 \in C_{\text{XOR}}$ such that one of the nodes is in
C_Λ and the other in C_{XOR} and for any pair of elementary paths p_1 and p_2 leading
from c_1 to c_2, $\alpha(p_1) \cap \alpha(p_2) = \{c_1, c_2\}$ \Rightarrow $p_1 = p_2$.

Figure 8 illustrates the concept of well-structuredness. An event-driven process
chain is not well-structured if an AND-split is complemented by an XOR-join, or
an XOR-split is complemented by an AND-join. Consider for example the event-
driven process chain shown in Figure 7. The XOR-split before \textit{start billing} is com-
plemented by the AND-join before \textit{ship order}: there is an elementary path from
this XOR-join to the AND-join via \textit{no billing needed} and there is an elementary
path from this XOR-join to the AND-join via \textit{start billing, send bill, outstanding}

$\alpha(p) = \{n_1, n_2, \ldots, n_k\}$.

19
accounts, produce articles, and finished product. The fact that there is an imbalance between the splits and the joins reveals the source of the error in the design of the event-driven process chain shown in Figure 7. The XOR-split can bypass the synchronization point before produce articles. It is possible to have a sound event-driven process chain which is not well-structured. Nevertheless, well-structuredness is a desirable property. If possible, non-well-structured constructs should be avoided. If such a construct is really necessary, then the correctness of the construct should be double-checked, because it is a potential source of errors. Another diagnostic which might be useful is a list of all S-components (see Definition 15). If an event or a function corresponds to a place or transition not in any S-component, then this indicates an error. Note that a Petri net which corresponds to a sound event-driven process chain is S-coverable (see Proposition 1).

Woflan ([AHV97]) is an example of a Petri-net-based analysis tool which can be used to decide soundness. Woflan (WOrkFLow ANalyzer) has been designed to verify process definitions which are downloaded from a workflow management system. At the moment there are two workflow tools which can interface with Woflan: COSA (COSA Solutions/Software-Ley, Pullheim, Germany) and Protos (Pallas Athena, Plasmolen, The Netherlands). Woflan generates the diagnostics mentioned in this paper (and many more). In the future we hope to provide a link between Woflan and EPC-based tools such as ARIS and SAP R/3.

6 Connectors of type V

In the second half of this paper (i.e. Sections 4 and 5), we abstracted from V-connectors. The reason for this abstraction is the fact that the semantics of join connectors of type V are not clear. Consider for example the event-driven process chain shown in Figure 9. If event X holds, function A or B needs to be executed. There are three possibilities: (1) function A, (2) function B, or (3) function A and function B are executed. Although the intention of the construct shown in Figure 9 is clear,
net where the V-connectors are mapped onto places and transitions in a straightforward manner. The transitions $S.A, S.AB$ and $S.B$ model the OR-split by a choice between the three possibilities. The OR-join is modeled in a similar way. Clearly, the Petri net shown in Figure 10 is not the correct way to model the event-driven process chain in Figure 9. If $S.AB$ fires, $J.A$ and $J.B$ may fire after the completion of both functions. Moreover, event Y may hold before both functions are actually executed. The core of the problem is that it is difficult to determine whether a join connector of type V should synchronize or not.

There are several ways to deal with connectors of type V.

- First of all, it is possible to refine the event-driven process chain until all connectors of type V are replaced by connectors of type \land and/or XOR. This may lead to an 'explosion' of the event-driven process chain. Note that if there are n functions connected to each other by V-connectors, then there are $2^n - 1$ possible combinations. For example, for 10 functions, there are 1023 possible combinations.

- Secondly, it is possible to couple OR-splits and OR-joins, i.e., the selection made by the split connector of type V is used by the join connector of type V to see when all inputs have arrived. The semantics of such a concept can be expressed in terms of a Petri net. Consider for example Figure 10: the synchronization problem can be resolved by adding a place connecting $S.A$ to $J.A$, a place connecting $S.AB$ to $J.AB$, and a place connecting $S.B$ to $J.B$.

- Finally, it is possible to adapt the firing rule with respect to transitions which correspond to a join connector of type V. A transition t of a set of transitions X which corresponds to an OR-join is enabled if and only if (1) the input places of t (●) are marked and (2) it is not possible that additional input
places of \(X \) \((\bullet X)\) will become marked by firing other transitions. In other words, postpone the join until the moment that it is clear that the input is maximal.

None of the solutions seems to be very satisfactory. The first solution will lead to large and unreadable event-driven process chains. The second solution only works if every OR-split is complemented by an OR-join, i.e., the event-driven process chain is symmetric with respect to connectors of type \(\lor \). The last solution leads to situations which are difficult to interpret and is difficult to formalize. Further research is needed to tackle the problem in a more satisfactory manner.

7 Conclusion

In this paper, we have presented formal semantics for event-driven process chains. Although event-driven process chains have become a widespread process modeling technique, such a basis was missing. By mapping event-driven process chains onto Petri nets we have tackled this problem. In addition, many analysis techniques have become available for event-driven process chains. This has been demonstrated by a decision procedure which verifies the correctness (i.e. soundness) in polynomial time. The results presented in this paper give designers a handle to construct correct event-driven process chains.

At the moment we are working on two directions for further research. First of all, we are working on a tool to support the approach presented in this paper. We hope to extend Woflan such that event-driven process chains exported by ARIS and SAP R/3 can be analyzed directly. Secondly, we are looking for a more satisfactory way to deal with connectors of type \(\lor \).

References

A Petri nets

This appendix introduces the basic Petri net terminology and notations.\footnote{Note that states are represented by weighted sums and note the definition of (elementary) paths.}

The classical Petri net is a directed bipartite graph with two node types called \textit{places} and \textit{transitions}. The nodes are connected via directed \textit{arcs}. Connections between two nodes of the same type are not allowed. Places are represented by circles and transitions by rectangles.

\textbf{Definition 9 (Petri net)} A Petri net is a triple (P, T, F):

- P is a finite set of places,
- T is a finite set of transitions $(P \cap T = \emptyset)$,
A place p is called an input place of a transition t iff there exists a directed arc from p to t. Place p is called an output place of transition t iff there exists a directed arc from t to p. We use $\bullet t$ to denote the set of input places for a transition t. The notations t_\bullet, p_\bullet and p_\bullet have similar meanings, e.g., p_\bullet is the set of transitions sharing p as an input place. Note that we restrict ourselves to arcs with weight 1. In the context of workflow procedures it makes no sense to have other weights, because places correspond to conditions.

At any time a place contains zero or more tokens, drawn as black dots. The state, often referred to as marking, is the distribution of tokens over places, i.e., $M \in P \rightarrow \mathbb{N}$. We will represent a state as follows: $1p_1 + 2p_2 + 1p_3 + 0p_4$ is the state with one token in place p_1, two tokens in p_2, one token in p_3 and no tokens in p_4. We can also represent this state as follows: $p_1 + 2p_2 + p_3$. To compare states we define a partial ordering. For any two states M_1 and M_2, $M_1 \leq M_2$ iff for all $p \in P$: $M_1(p) \leq M_2(p)$

The number of tokens may change during the execution of the net. Transitions are the active components in a Petri net: they change the state of the net according to the following firing rule:

1. A transition t is said to be enabled iff each input place p of t contains at least one token.

2. An enabled transition may fire. If transition t fires, then t consumes one token from each input place p of t and produces one token in each output place p of t.

Given a Petri net (P, T, F) and a state M_1, we have the following notations:

- $M_1 \xrightarrow{t} M_2$: transition t is enabled in state M_1 and firing t in M_1 results in state M_2

- $M_1 \rightarrow M_2$: there is a transition t such that $M_1 \xrightarrow{t} M_2$

- $M_1 \Rightarrow M_n$: the firing sequence $\sigma = t_1t_2\ldots t_{n-1}$ leads from state M_1 to state M_n, i.e., $M_1 \xrightarrow{t_1} M_2 \xrightarrow{t_2} \ldots \xrightarrow{t_{n-1}} M_n$

A state M_n is called reachable from M_1 (notation $M_1 \xrightarrow{\sigma} M_n$) iff there is a firing sequence $\sigma = t_1 t_2 \ldots t_{n-1}$ such that $M_1 \xrightarrow{\sigma} M_n$. Note that the empty firing sequence is also allowed, i.e., $M_1 \xrightarrow{} M_1$.

We use (PN, M) to denote a Petri net PN with an initial state M. A state M' is a
reachable state of \((PN, M)\) iff \(M \xrightarrow{*} M'\). Let us define some properties for Petri nets.

Definition 10 (Live) A Petri net \((PN, M)\) is live iff for every reachable state \(M'\) and every transition \(t\), there is a state \(M''\) reachable from \(M'\) which enables \(t\).

Definition 11 (Bounded, safe) A Petri net \((PN, M)\) is bounded iff for each place \(p\) there is a natural number \(n\) such that for every reachable state the number of tokens in \(p\) is less than \(n\). The net is safe iff for each place the maximum number of tokens does not exceed 1.

Definition 12 (Free-choice) A Petri net is a free-choice Petri net iff for every two transitions \(t_1\) and \(t_2\), \(\bullet t_1 \cap \bullet t_2 \neq \emptyset\) implies \(\bullet t_1 = \bullet t_2\).

Definition 13 (Path) Let \(PN\) be a Petri net. A path \(C\) from a node \(n_1\) to a node \(n_k\) is a sequence \((n_1, n_2, \ldots, n_k)\) such that \((n_i, n_{i+1}) \in F\) for \(1 \leq i \leq k - 1\).

Definition 14 (Strongly connected) A Petri net is strongly connected iff for every pair of nodes (i.e. places and transitions) \(x\) and \(y\), there is a path leading from \(x\) to \(y\).

Definition 15 (S-coverable) A Petri net \(PN = (P, T, F)\) is S-coverable iff for each place \(p\) there is subnet \(PN_s = (P_s, T_s, F_s)\) such that: \(p \in P_s\), \(P_s \subseteq P\), \(T_s \subseteq T\), \(F_s \subseteq F\), \(PN_s\) is strongly connected, \(PN_s\) is a state machine (i.e. each transition in \(PN_s\) has one input and one output arc), and for every \(q \in P_s\) and \(t \in T\): \((q, t) \in F\) \(\Rightarrow (q, t) \in F_s\) and \((t, q) \in F\) \(\Rightarrow (t, q) \in F_s\).

A subnet \(PN_s\) which satisfies the requirements stated in Definition 15 is called an *S-component*. \(PN_s\) is a strongly connected state machine such that for every place \(q\): if \(q\) is an input (output) place of a transition \(t\) in \(PN\), then \(q\) is also an input (output) place of \(t\) in \(PN_s\).
<table>
<thead>
<tr>
<th>Issue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>96/01</td>
<td>Process Algebra with Autonomous Actions</td>
<td>M. Voorhoeve and T. Basten</td>
</tr>
<tr>
<td>96/02</td>
<td>Multi-User Publishing in the Web: DreSS, A Document Repository Service Station</td>
<td>P. de Bra and A. Aerts</td>
</tr>
<tr>
<td>96/03</td>
<td>Parallel Computation of Reachable Dead States in a Free-choice Petri Net</td>
<td>W.M.P. van der Aalst</td>
</tr>
<tr>
<td>96/04</td>
<td>Example specifications in phi-SDL</td>
<td>S. Mauw</td>
</tr>
<tr>
<td>96/05</td>
<td>A Process-Algebraic Approach to Life-Cycle Inheritance</td>
<td>T. Basten and W.M.P. v.d. Aalst</td>
</tr>
<tr>
<td>96/06</td>
<td>Life-Cycle Inheritance A Petri-Net-Based Approach</td>
<td>W.M.P. van der Aalst and T. Basten</td>
</tr>
<tr>
<td>96/07</td>
<td>Structural Petri Net Equivalence</td>
<td>M. Voorhoeve</td>
</tr>
<tr>
<td>96/08</td>
<td>OODB Support for WWW Applications: Discovering the internal structure of Hyperdocuments</td>
<td>A.T.M. Aerts, P.M.E. De Bra, J.T. de Munk</td>
</tr>
<tr>
<td>96/09</td>
<td>A Formal Specification of Deadlines using Dynamic Deontic Logic</td>
<td>F. Dignum, H. Weigand, E. Verharen</td>
</tr>
<tr>
<td>96/10</td>
<td>Explicit Substitution: on the Edge of Strong Normalisation</td>
<td>R. Bloo, H. Geuvers</td>
</tr>
<tr>
<td>96/11</td>
<td>AUTOMATH and Pure Type Systems</td>
<td>T. Laan</td>
</tr>
<tr>
<td>96/12</td>
<td>A Correspondence between Nuprl and the Ramified Theory of Types</td>
<td>F. Kamareddine and T. Laan</td>
</tr>
<tr>
<td>96/13</td>
<td>Priorcan Tense Logics in Modal Pure Type Systems</td>
<td>S.H.J. Bos and M.A. Reniers</td>
</tr>
<tr>
<td>96/14</td>
<td>The I^2 C-bus in Discrete-Time Process Algebra</td>
<td>M.A. Reniers and J.J. Vereijken</td>
</tr>
<tr>
<td>96/15</td>
<td>Completeness in Discrete-Time Process Algebra</td>
<td>E. Bolten and P. Hoogendijk</td>
</tr>
<tr>
<td>96/16</td>
<td>Nested collections and polytypism</td>
<td>P.D.V. van der Stok</td>
</tr>
<tr>
<td>96/17</td>
<td>Real-Time Distributed Concurrency Control Algorithms with mixed time constraints</td>
<td>M.A. Reniers</td>
</tr>
<tr>
<td>96/18</td>
<td>Static Semantics of Message Sequence Charts</td>
<td>L. Feljs</td>
</tr>
<tr>
<td>96/19</td>
<td>Algebraic Specification and Simulation of Lazy Functional Programs in a concurrent Environment</td>
<td>L. Bijlsma and R. Nederpelt</td>
</tr>
<tr>
<td>96/20</td>
<td>Predicate calculus: concepts and misconceptions</td>
<td>M.C.A. van de Graaf and G.J. Houben</td>
</tr>
<tr>
<td>96/21</td>
<td>Designing Effective Workflow Management Processes</td>
<td>W.M.P. van der Aalst</td>
</tr>
<tr>
<td>96/22</td>
<td>Structural Characterizations of sound workflow nets</td>
<td>M. Voorhoeve and W. van der Aalst</td>
</tr>
<tr>
<td>96/23</td>
<td>Conservative Adoption of Workflow</td>
<td>M. Vaccari and R.C. Backhouse</td>
</tr>
<tr>
<td>96/24</td>
<td>A Discretisation Method for Asynchronous Timed Systems</td>
<td>B. Knaack and R. Gerth</td>
</tr>
<tr>
<td>96/26</td>
<td>Basic Conditional Process Algebra</td>
<td>J. Blanco and A. v. Deursen</td>
</tr>
<tr>
<td>96/27</td>
<td>Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric Time</td>
<td>J.C.M. Baeten and J.A. Bergstra</td>
</tr>
<tr>
<td>96/28</td>
<td>Discrete-Time Process Algebra with Empty Process</td>
<td>J.C.M. Baeten and J.J. Vereijken</td>
</tr>
<tr>
<td>96/29</td>
<td>Tools for the Construction of Correct Programs: an Overview</td>
<td>M. Franssen</td>
</tr>
<tr>
<td>96/30</td>
<td>Bounded Stacks, Bags and Queues</td>
<td>J.C.M. Baeten and J.A. Bergstra</td>
</tr>
</tbody>
</table>
97/08 P. Hoogendijk and R.C. Backhouse When do datatypes commute? p. 35.
97/13 W.M.P. van der Aalst Exploring the Process Dimension of Workflow Management, p. 56.
97/14 J.F. Groote, F. Morin and J. Springintveld A computer checked algebraic verification of a distributed summation algorithm, p. 28.
97/15 M. Franssen λP: A Pure Type System for First Order Loginc with Automated Theorem Proving, p. 35.
97/16 W.M.P. van der Aalst On the verification of Inter-organizational workflows, p. 23.
97/17 M. Vaccari and R.C. Backhouse Calculating a Round-Robin Scheduler, p. 23.