Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3
Hoex, B.; Schmidt, J.; Bock, R.; Altermatt, P.P.; van de Sanden, M.C.M.; Kessels, W.M.M.

Published in:
Applied Physics Letters

DOI:
10.1063/1.2784168

Published: 01/01/2007

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 18. Dec. 2018
Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al₂O₃

B. Hoex
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

J. Schmidt and R. Bock
Institute for Solar Energy Research Hameln (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany

P. P. Altermatt
Department of Solar Energy, Institute of Solid-State Physics, University of Hannover, Appelstrasse 2, 30167 Hannover, Germany

M. C. M. van de Sanden and W. M. M. Kessels
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 6 July 2007; accepted 21 August 2007; published online 11 September 2007)

From lifetime measurements, including a direct experimental comparison with thermal SiO₂, a-Si:H, and as-deposited a-SiNₓ:H, it is demonstrated that Al₂O₃ provides an excellent level of surface passivation on highly B-doped c-Si with doping concentrations around 10¹⁹ cm⁻³. The Al₂O₃ films, synthesized by plasma-assisted atomic layer deposition and with a high fixed negative charge density, limit the emitter saturation current density of B-diffused p⁺-emitters to ~10 and ~30 fA/cm² on >100 and 54 Ω/sq sheet resistance p⁺-emitters, respectively. These results demonstrate that highly doped p-type Si surfaces can be passivated as effectively as highly doped n-type surfaces. © 2007 American Institute of Physics. [DOI: 10.1063/1.2784168]

Research within the crystalline silicon (c-Si) photovoltaic community is driven by the necessity to decrease the costs per watt peak. As a consequence, the thickness of c-Si solar cells is reduced and alternative c-Si material and production processes are investigated. Presently, most Si solar cells are fabricated from p-type c-Si base material. However, the relative insensitivity of n-type c-Si to various impurities and defects could well result in a switch in the future to predominantly n-type base material.¹ The success of these developments will depend, among others, on the level of surface passivation that can be obtained on the surfaces of interest. Especially the passivation of highly doped p-type surfaces is of key interest for diffused emitter cells based on n-type silicon.

The passivation of highly B-doped p-type c-Si (for example, a p⁺-emitter on a n-type Si wafer) is still trailing behind the results obtained on highly doped n-type c-Si.²⁻³ This gap in performance can, at least partly, be explained by the presence of positive built-in charges in the commonly used passivation films such as thermal SiO₂ and as-deposited a-SiNₓ:H.² Recently, Chen et al., however, demonstrated that highly B-doped p-type c-Si can be effectively passivated by silicon rich a-SiNₓ:H after prolonged annealing (up to 4 h) yielding an at least equal performance to as-grown thermal SiO₂ for sheet resistances >130 Ω/sq.⁴ Furthermore, it was shown that a-Si:H can yield a surface passivation of p⁺-emitters comparable to forming gas annealed thermal oxide⁵ whereas the performance of a-SiCₓ:H remained significantly poorer.⁵

An appealing approach is to passivate highly doped p-type c-Si by a dielectric containing a fixed negative charge density. In this way, the minority carrier (electron) concentration is effectively reduced at the highly defective surface and consequently the recombination rate is reduced. It is well known that Al₂O₃ can contain a high density of built-in negative charges (up to ~10¹³ elementary charges/cm²) and Al₂O₃ has recently been shown to provide a state-of-the-art level of surface passivation on moderately doped p- and n-type c-Si.⁶⁻⁷ In this letter, we show that Al₂O₃ synthesized by plasma-assisted atomic layer deposition (ALD) provides an excellent level of surface passivation on B doped p⁺-type emitters with surface concentrations ranging from 5 × 10¹⁸ to 3 × 10¹⁹ cm⁻³. From a direct experimental comparison, it is established that Al₂O₃ yields a higher level of surface passivation than forming gas annealed thermal SiO₂, a-Si:H, and as-deposited a-SiNₓ:H applied on the same samples. Moreover, it is demonstrated that highly B-doped p-type c-Si surfaces can as effectively be passivated as highly doped n-type c-Si surfaces.

The p⁺/n/p⁺ structures used in this study were prepared at the Australian National University by exposing (100) shiny etched n-type c-Si (90 and 20 Ω cm) with a thickness of ~260 μm to BB₃ at T=895–1010 °C.⁸ After stripping the B containing glass, B diffusion was driven by thermal oxidation at 1050 °C.⁸ The sheet resistance of the samples was determined by four-point probe measurements and the doping profile, shown in Fig. 1, was determined by both electrochemical capacitance-voltage (ECV) profiling and secondary ion mass spectrometry (SIMS). The level of surface passivation of thermal SiO₂, a-SiNₓ:H and a-Si:H on these p⁺-emitter samples was already reported in a previous study.²⁻⁸ Before deposition a possibly remaining film from previous experiments was stripped off and the samples received a conventional RCA cleaning with a final dip in di-

¹Electronic mail: b.hoex@tue.nl
²Electronic mail: w.m.m.kessels@tue.nl
Al₂O₃ films were deposited on both sides of the samples by alternating Al(CH₃)₃ dosing and O₂ plasma exposure in a remote plasma ALD reactor (Oxford Instruments FlexAL™) at a substrate temperature of 200 °C. 255 ALD cycles of 4 s resulted in 30 nm thick Al₂O₃ as determined by in situ spectroscopic ellipsometry. Subsequently, the samples received a 30 min annealing at 425 °C in N₂.

The passivation quality of the films was quantified by the emitter saturation current density \(J_{0e}\) of the \(p^+\)-emitters. The emitter saturation current density \(J_{0e}\) was determined from contactless photoconductance decay measurements in both the quasi-steady-state and transient mode (Sinton WCT-100) from the relation proposed by Kane and Swanson

\[
\frac{1}{\tau_{\text{eff}}} - \frac{1}{\tau_{\text{Auger}}} = \frac{1}{\tau_{\text{SRH}}} + 2\frac{J_{0e}(N_d + \Delta n)}{qen^2W},
\]

where \(\tau_{\text{eff}}\) is the measured effective excess carrier lifetime, \(\tau_{\text{Auger}}\) the intrinsic Auger lifetime, \(\tau_{\text{SRH}}\) the defect-related bulk lifetime, \(N_d\) the base doping level, \(n_i\) the intrinsic carrier concentration of \(c\)-Si, \(q\) the elementary charge, \(\Delta n\) the excess carrier density, and \(W\) the sample thickness.

In Fig. 2, the Auger-corrected inverse effective lifetimes are shown for samples with various sheet resistances passivated by 30 nm Al₂O₃ films. The curves do not show a strong nonlinear behavior such as in the case of \(a\)-SiNₓ:H. Consequently, Eq. (1) can be used to extract \(J_{0e}\) and no alternative quantification such as implied open-circuit voltage has to be used in this case. Nevertheless a small nonlinearity is still observed, possibly explained by minor experimental uncertainties or uncertainty in the empirically determined Auger lifetime at high injection level. Therefore, \(J_{0e}\) is determined for a moderate injection level up to \(2 \times 10^{16}\) cm⁻³ where Auger recombination does not dominate. Similar to the results obtained on lightly doped \(n\)- and \(p\)-type \(c\)-Si, the level of surface passivation by Al₂O₃ is dramatically affected by the postdeposition annealing.

In Fig. 3, the extracted \(J_{0e}\) values are shown as a function of the emitter sheet resistance of \(p^+\)-emitter samples passivated by Al₂O₃ and are compared to earlier published results for thermal SiO₂, \(a\)-Si:H and \(a\)-SiNₓ:H. The \(p^+\)-emitter samples with SiO₂ were forming gas annealed and those with \(a\)-SiNₓ:H were as deposited. Clearly, the \(J_{0e}\) values obtained for Al₂O₃ are significantly lower for the complete sheet resistance range tested; \(J_{0e}\) values below 10 fA/cm² are obtained for a sheet resistance >100 Ω/sq and \(J_{0e}\) is only ~50 fA/cm² for a 31 Ω/sq emitter. The emitter saturation currents on \(p^+\)-emitters are even lower than obtained on highest-quality \(n^+\)-emitters with a comparable sheet resistance passivated with aluminum annealed thermal SiO₂ or as-deposited \(a\)-SiNₓ:H. The emitter saturation current density obtained in this study for a 95 Ω/sq emitter would limit the room temperature open circuit voltage of a solar cell to 747 mV by applying the ideal diode law and assuming a short-circuit current of 40 mA/cm².

In the most fundamental property to compare, however, is the surface recombination velocity at the highly doped B surface which strongly depends on the surface doping concentration. The \(S_{n0}\) values were extracted from the experimental \(J_{0e}\) values and dopant profiles by numerical modeling using the device simulation package SENTAURUS (Ref. 17) and the physical models established in Refs. 2 and 3 and the
results are shown in Fig. 4. The experimental errors in both \(J_{0r} \) and the dopant profile and the relative strong Auger recombination in these emitters only allowed extraction of the maximum error bounds for the \(\text{Al}_2\text{O}_3 \). For comparison also the \(S_{p0} \) values obtained for thermal \(\text{SiO}_2 \), \(\text{a-Si:H} \), and \(\text{a-SiN}_x: \text{H} \) are given as determined on the same sample set.\(^2\) The solid blue line in Fig. 4 shows the empirically determined limit of the surface recombination velocity \(S_{p0} \) obtained by aluminum annealed thermal \(\text{SiO}_2 \) on highly doped \(n^+ \)-emitters.\(^3\) From Fig. 4 it is evident that the level of surface passivation on highly doped \(p \)-type \(c \)-Si provided by thermal \(\text{SiO}_2 \), \(\text{a-Si:H} \), and \(\text{a-SiN}_x: \text{H} \) was significantly poorer than what is obtained on highly doped \(n \)-type \(c \)-Si. Moreover, the \(S_{p0} \) values obtained by \(\text{Al}_2\text{O}_3 \) on the highly doped \(p \)-type \(c \)-Si are well below the best values obtained on highly doped \(n \)-type surfaces which indicates that highly doped \(p \)-type surfaces can as effectively be passivated as highly doped \(n \)-type \(c \)-Si. Figure 4 also illustrates that a negative built-in charge is indeed very beneficial for passivating highly doped \(p \)-type surfaces compared to the positive built-in charge commonly present in thermal \(\text{SiO}_2 \) and as-deposited \(\text{a-SiN}_x: \text{H} \). At the same time the excellent results for \(B \) concentrations of \(\sim 10^{19} \text{ cm}^{-3} \) indicate that also the \(c \)-\(\text{Si}/\text{Al}_2\text{O}_3 \) interface defect density is sufficiently low and/or that the dominant interface defect has a relatively low electron capture cross section.

In summary, we have demonstrated that \(\text{Al}_2\text{O}_3 \) synthesized by plasma-assisted atomic layer deposition shows an excellent level of surface passivation on highly doped \(p \)-type \(c \)-Si. Consequently, highly doped \(p \)-type \(c \)-Si can as effectively be passivated as highly doped \(n \)-type \(c \)-Si allowing maximum freedom in the solar cell design either using \(p \)-type or \(n \)-type \(c \)-Si base material.

The authors acknowledge the experimental work of M. Kerr and A. Cuevas, and thank W. Keuning, M. J. F. van de Sande, J. F. C. Jansen and J. J. A. Zeebregts for their skillful technical assistance. The Netherlands Technology Foundation STW is acknowledged for their financial support. The work of one of the authors (B.H.) is financially supported by OTB Solar. The research of another author (W.K.) has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW).

\(^{16}\)M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Upper Saddle River, NJ, 1982).
\(^{17}\)SENTAURUS, Mountain View, CA (www.synopsys.com/products/tcad/tcad.html).