Switching Sequence Optimization for Service Restoration in Distribution Networks

Citation for published version (APA):

Document license:
CC BY

DOI:
10.1109/ISGT-Europe47291.2020.9248817

Document status and date:
Published: 26/10/2020

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Sep. 2023
Switching Sequence Optimization for Service Restoration in Distribution Networks

Irena Dukovska
Electrical Energy Systems
Department of Electrical Engineering
Eindhoven University of Technology
Eindhoven, the Netherlands
i.dukovska@tue.nl

Johan Morren
Enexis B.V. &
Department of Electrical Engineering
Eindhoven University of Technology
the Netherlands
johan.morren@enexis.nl

Han (J.G.) Slootweg
Enexis B.V. &
Department of Electrical Engineering
Eindhoven University of Technology
the Netherlands
han.slootweg@enexis.nl

Abstract—This study considers the service restoration problem in medium voltage distribution networks that have a meshed topology but are operated radially. A mixed-integer linear program (MILP) is proposed to incorporate technical constraints as well as practical considerations from the Distribution System Operator (DSO). As a result, a sequence of switching steps that need to be done to restore the power supply to the customers is provided. The proposed methodology can assist the decision making of operators in the control center at the DSO. To demonstrate this, a real distribution network is used in a case study.

Index Terms—Contingency assessment, Distribution system, mixed-integer linear programming (MILP), service restoration, switching sequence

I. INTRODUCTION

Distribution system restoration is the process of restoring the power supply to the de-energized sections of the system after an occurrence of a fault. This is achieved through a sequence of switching actions to isolate the fault and to reconfigure the topology of the network. It is important to preserve the technical constraints and maintain the radial topology of the network at each step of the restoration procedure [1].

Several different objectives can be considered during the restoration process. This includes, among others, maximization of the restored affected power demand, minimization of the time and switching actions required to implement the restoration process [1][2]. A combination of objectives with different priorities may also be used, with the resupply of the unserved demand as an imperative.

Various approaches are used for contingency assessment and power restoration. Engineering rules and computational expert systems relying on operator’s experience are used both in literature and practice [3][4]. Next, heuristics and graph theory are also applicable as solution techniques. Finally, a large family of methods consists of mathematical optimization models. This can be further divided into meta-heuristic techniques such as genetic algorithms and exact methods using mathematical programming. For a detailed updated review of existing methods for service restoration, please refer to [2].

Service restoration is a relevant engineering problem since it is directly related to the reliability of the distribution system. In principle, the operation of the Distribution Systems Operators (DSOs) is assessed based on the reliability indices for the networks they operate, more specifically, the System Average Interruption Duration Index (SAIDI) and the related Customer Minutes Lost (CML). Moreover, in the Netherlands, approximately 60% of the CML experienced by end-consumers are contributed by faults in the medium voltage (MV) grid [5].

Therefore, improvements in the restoration process in MV distribution grids can contribute to increased reliability. In this regard, developments in smart grid technologies for distribution networks also play a role. Traditionally, switchgear is operated manually to reconfigure the network, which requires a maintenance crew to be sent on-site. In recent years, the installation of distributed automation equipment such as remotely controllable switchgear and advanced monitoring in the distribution networks, provide opportunities for faster response and switchgear manipulation in the case of an outage [5].

In this regard, there is a rising necessity for service restoration solution methodologies that can incorporate technical and practical constraints, also considering remotely controllable switchgear. An important aspect for service restoration is to provide a switching sequence of intermediate steps that preserve all technical constraints, rather than only a final network topology. Nevertheless, only a small number of existing works present such methods [3][6][7].

Therefore, this study aims to develop a methodology that combines mathematical programming and practical requirements so that the restoration process can benefit from the aforementioned new technologies. Such a new operational paradigm should be easily incorporated in the daily operation of a control center of a DSO for fast and reliable performance. Hence, it is required that the method should be developed based on the available data, measurements, and estimations that can be obtained for a network in operation by the DSO. To this end, a mixed-integer linear programming (MILP) model is proposed for service restoration that combines these requirements. Thus, the contributions of this paper are twofold:

- A service restoration framework that is applicable for use in a DSO control center and takes into consideration
practical operational requirements
- A MILP mathematical model that provides an optimal sequence of switching steps and can be solved with commercially available solvers.

The remainder of the paper is organized as follows: Requirements for contingency analysis and structure of the developed framework are outlined in Section II. The mathematical formulation is presented in Section III. The description of the case study, as well as the corresponding results and discussion, are given in Section IV. Finally, conclusions and the future outlook of this study are presented in Section V.

II. METHODOLOGY

A. Contingency analysis in Dutch MV distribution networks

Dutch distribution networks can have both distribution (MV-D) and transmission function (MV-T). MV-D networks connect HV or MV-T networks to residential customers located in LV networks through MV/LV network substations, as well as large industrial/commercial customers in MV networks through MV/MV customer substations, as in Figure 1 [8].

The design and operation of MV-T networks are in a meshed structure, whereas MV-D networks are either ring- or mesh-shaped, but are always operated radially. The goal is to maintain a simple protection scheme and ensure an acceptable level of reliability by reducing the number of customers that can be disconnected in the occurrence of a fault in the MV-D network. The reconfigurability in the topology is enabled through the existence of sectionalizing switchgear, or so-called Normally Open Points (NOP) that can facilitate different supply paths in the case of fault restoration or maintenance operation. Additionally, circuit breakers (CB) are located at the beginning of every feeder connected to the substation [4].

There are multiple reconfiguration options for a single outage for most distribution networks. DSOs usually maximize the number of switching operations to restore power supply. Due to a large number of possibilities, this problem can become computationally challenging, especially if multiple power flow calculations are involved. In the operation phase, this process can be further affected by the current network loading, distributed generation present and the operational status of the network. Furthermore, due to the implementation of monitoring measurement and remote control of the switching operations, the decision for the best sequence for power restoration is not straightforward [3].

B. Framework

The objective of this study is the development of a method that can be incorporated in the daily operation of the control center of a DSO in the Netherlands. To this aim, practical considerations applied in the DSO control center are used as guidelines and constraints. The complete framework is composed of the following steps:

1) Fault location and isolation - The first step consists of fault location and isolation, which is considered to take place before the analysis performed for the restoration process. In the case of one or multiple faults, the circuit breaker at the beginning of the feeder automatically opens and isolates the affected feeders up to the NOPs. In practice, DSOs rely on the measurement infrastructure and protection systems as well as customer reports to identify the fault location as accurately as possible.

2) Preliminary network analysis - A preliminary analysis of the resulting topology after fault isolation is performed. The islanded zones consisting of buses and lines are identified. Each zone is limited by adjacent switchable lines. Hence, possible restoration paths are determined for each zone.

3) Service restoration optimization - In this step, mathematical optimization is performed to determine an optimal restoration sequence taking into consideration operational and topological constraints.

4) Restoration sequence execution - The final step consists of the execution of the restoration sequence by remote operation of switches by the operator in the control center and dispatch of maintenance crews to the field if necessary.

The main contributions of this study are incorporated in steps 2 and 3 as indicated in Figure 2. In these steps, the following requirements from the DSO are incorporated as assumptions in the mathematical model. Resupplying zones using distributed generation is not practically possible so all buses must be connected to the main substation at the end of the restoration process [8]. In addition, it is assumed that faults occur in the distribution lines, not in the substations. Last, it is assumed that the system is balanced along the three phases.

III. MATHEMATICAL MODEL

In this section, the mathematical formulation of the optimization model for network restoration is detailed. In principle, service restoration is a combinatorial optimization prob-
lem, due to the binary variables used to represent the on/off status of various assets. Moreover, it is a nonlinear problem due to the AC power flow equations [3]. However, multiple linearizations are possible to transform the nonlinear equations to linear approximations with sufficient accuracy. Hence, the model presented in this paper is a mixed-integer linear program (MILP). The main notation used in this paper is defined in Table I. Other symbols and abbreviations are defined when they first appear.

1) Objective function: The objective function of the optimization model is to minimize the number of customers affected by the defect at each step of the restoration process, regardless of the size of the outage, and is expressed by (1). It is an adaptation of the relation for calculation of Customer Minutes Lost (CML) which represents the total interruption times the number of affected customers experienced [5]. The objective function can be extended by adding weights to prioritize specific types of loads or customers.

\[
\min \sum_{t \in T} \sum_{b \in B^O} (1 - u_{b,t}) \cdot N_{cust}^b \cdot \Delta t
\]

subject to: constraints: (2) - (6), (8) - (27).

2) Power Flow constraints: Linear DistFlow equations are used to model the power flow [9]. They are primarily used in radial networks as a sufficiently accurate approximation of the power flow equations. Moreover, based on the assumption that non-linear terms are comparatively small to linear terms in radial networks, the non-linear terms can be omitted in the calculations of this model, [9].

Constraints (2) and (3) represent the active and reactive power balance per node respectively, where total power inflow should be equal to the power outflow from the bus. The voltage magnitude difference between the two nodes of an energized line is expressed in (4) and (5), and depends only on the linear terms according to the DistFlow linear model. The two relations are used to account for the two possible directions of the power flow. When the line is not energized, it does not have to fulfill the second Kirchoff’s law. Hence, the voltage magnitude difference between the corresponding nodes can vary within the allowed range expressed with the auxiliary variable \(U_{aux}\) which is defined in (6).

\[
\text{3) Power capacity and voltage limit constraints: Assets in the distribution network are allowed to operate within a given range under certain conditions. The power flow in the lines should not exceed the maximum allowed capacity, expressed through the non-linear, quadratic relation in (7). A polygon-based linearization procedure for convex quadratic constraints is introduced in [10] and it is implemented in this study. Specifically, a hexagon approximation is used to replace (7) with the linear equations (8) - (10). The box constraints for active and reactive power flow that additionally restrict power flow only to energized lines, are shown in (11) and (12). Voltage limits for buses depending on their energization status are presented in (13).}

\[
(P_{l,t}^L)^2 + (Q_{l,t}^L)^2 \leq S_{l,t}^{max}, \forall l \in L, t \in T
\]

\[
-(\sqrt{3}(P_{l,t}^L + S_{l,t}^{max}) \leq Q_{l,t}^L \leq -\sqrt{3}(P_{l,t}^L - S_{l,t}^{max}))
\]
bus or zone shedding is not allowed as expressed through

\[
\sqrt{3}/2 \cdot S_{\text{l}, \text{max}}^{\text{max}} \leq Q_{\text{l}, \text{t}}^{\text{max}} \leq \sqrt{3}/2 \cdot S_{\text{b}, \text{max}}^{\text{max}}
\]

(9)

\[
\sqrt{3}(P_{\text{l}, \text{t}}^{\text{max}} - S_{\text{l}, \text{max}}^{\text{max}}) \leq Q_{\text{l}, \text{t}}^{\text{max}} \leq \sqrt{3}(P_{\text{l}, \text{t}}^{\text{max}} + S_{\text{l}, \text{max}}^{\text{max}})
\]

(10)

\[-u_{\text{l}, \text{t}}^{\text{L}} \cdot S_{\text{l}, \text{max}}^{\text{max}} \leq P_{\text{l}, \text{t}} \leq u_{\text{l}, \text{t}}^{\text{L}} \cdot S_{\text{l}, \text{max}}^{\text{max}}, \forall \text{l} \in L, \text{t} \in T
\]

(11)

\[-u_{\text{l}, \text{t}}^{\text{L}} \cdot S_{\text{l}, \text{max}}^{\text{max}} \leq Q_{\text{l}, \text{t}} \leq u_{\text{l}, \text{t}}^{\text{L}} \cdot S_{\text{l}, \text{max}}^{\text{max}}, \forall \text{l} \in L, \text{t} \in T
\]

(12)

\[-u_{\text{b}, \text{t}}^{\text{P}} \cdot (V_{\text{b}, \text{min}}^{\text{max}})^2 \leq U_{\text{b}, \text{t}} \leq u_{\text{b}, \text{t}}^{\text{P}} \cdot (V_{\text{b}, \text{max}}^{\text{max}})^2, \forall \text{b} \in B, \text{t} \in T
\]

(13)

4) Topological and sequencing constraints: Throughout the restoration process and in the final configuration, the network topology must remain radial. First, (14) states that should be no loops in the network. This is a necessary, albeit not sufficient condition for radial configuration, as it does not guarantee connectivity of the network (11). Therefore, additional constraints for the sequencing procedure are introduced in the model. The faulted lines are kept de-energized after the fault is located, as given in (15). Substation nodes are maintained always on as given in (16).

\[
\sum_{\text{l} \in L} u_{\text{l}, \text{t}}^{\text{P}} = \sum_{\text{b} \in B} u_{\text{b}, \text{t}}^{\text{P}} - 1, \forall \text{t} \in T
\]

(14)

\[
 u_{\text{l}, \text{t}}^{\text{P}} = 0, \forall \text{l} \in L^F, \text{t} \in T
\]

(15)

\[
 u_{\text{b}, \text{t}}^{\text{P}} = 1, \forall \text{b} \in B^{SS}, \text{t} \in T
\]

(16)

\[
 u_{\text{l}, \text{t}}^{\text{L}} - u_{\text{l}, \text{t}}^{\text{L}, \text{op}} = u_{\text{l}, \text{t}}^{\text{L}, \text{cl}} - u_{\text{l}, \text{t}}^{\text{L}, \text{op}}, \forall \text{l} \in L^{SW}, \text{t} \in T
\]

(17)

\[
 u_{\text{l}, \text{t}}^{\text{L}, \text{op}} + u_{\text{l}, \text{t}}^{\text{L}, \text{cl}} \leq 1, \forall \text{l} \in L^{SW}, \text{t} \in T
\]

(18)

\[
 u_{\text{z}, \text{t}}^{\text{Z}} \leq \sum_{\text{l} \in L^{\Omega_{\text{l}, \text{SW}}}} u_{\text{l}, \text{t}}^{\text{L}}, \forall \text{z} \in Z^O, \text{t} \in T
\]

(19)

\[
 u_{\text{l}, \text{t}}^{\text{Z}} \leq u_{\text{l}, \text{t}+1}^{\text{Z}} + u_{\text{l}, \text{t}+1}^{\text{Z}, \text{op}}, \forall \text{l} \in L^{SW}, \text{t} \in T
\]

(20)

\[
 u_{\text{l}, \text{t}}^{\text{Z}} \leq u_{\text{l}, \text{t}+1}^{\text{Z}} + u_{\text{l}, \text{t}+1}^{\text{Z}, \text{op}}, \forall \text{l} \in L^{\Omega_{\text{l}, \text{SW}}}, \text{t} \in T
\]

(21)

\[
 u_{\text{b}, \text{t}}^{\text{B}} \leq u_{\text{b}, \text{t}+1}^{\text{B}}, \forall \text{b} \in B^{\Omega_{\text{b}, \text{SS}}}, \text{t} \in T
\]

(22)

\[
 u_{\text{l}, \text{t}}^{\text{L}, \text{op}} \geq u_{\text{l}, \text{t}+1}^{\text{L}, \text{op}}, \forall \text{l} \in L \setminus L^F, \text{t} > 1
\]

(23)

\[
 u_{\text{b}, \text{t}}^{\text{B}} \geq u_{\text{b}, \text{t}+1}^{\text{B}}, \forall \text{b} \in B, \text{t} > 1
\]

(24)

\[
 u_{\text{z}, \text{t}}^{\text{Z}} \geq u_{\text{z}, \text{t}+1}^{\text{Z}, \text{op}}, \forall \text{z} \in Z, \text{t} > 1
\]

(25)

\[
 u_{\text{z}, \text{t}}^{\text{Z}} \geq 1, \forall \text{z} \in Z, \text{t} = T
\]

(26)

\[
 u_{\text{l}, \text{t}}^{\text{L}, \text{ini}}, u_{\text{b}, \text{t}}^{\text{B}, \text{ini}}, u_{\text{z}, \text{t}}^{\text{Z}, \text{ini}}, \text{t} = 1, \forall \text{l} \in L, \forall \text{b} \in B, \forall \text{z} \in Z
\]

(27)
the same low voltage network. If necessary, the model can be adjusted to include priority for a certain load, for example, industrial/commercial customers.

In the two cases, the voltage level is within the allowed range, including the DG dominant case II. The maximum line loading measured in both cases is within the allowed range for emergency situations, which is $1.3 \cdot S_{nom}^S$. The lines are more loaded in case I, when no local DG is available, which is a situation that can occur during the night or in case of low wind. In this case, if the network was assessed based on the nominal line loading, some of the lines would be loaded above that level.

V. CONCLUSION

In this study, a mixed-integer linear model (MILP) model for obtaining the switching sequence of the restoration process in meshed-structured but radially operated medium voltage distribution networks was introduced. The model incorporates constraints and practical considerations that are not accounted for in the existing literature. The proposed framework is intended to support the decision-making process of operators in the control center of a DSO during an outage, foreseeing implementation of distributed automation and more varying load and DG in the networks. The applicability of this method is demonstrated on a case study with a real MV network.

REFERENCES

