ON A HELE–SHAW-TYPE DOMAIN EVOLUTION WITH CONVECTED SURFACE ENERGY DENSITY

MATTHIAS GÜNTER† AND GEORG PROKERT‡

Abstract. Interest is directed to a moving boundary problem with a gradient flow structure which generalizes surface tension–driven Hele–Shaw flow to the case of nonconstant surface tension coefficient taken along with the liquid particles at the boundary. In the case with kinetic undercooling regularization, well-posedness of the resulting evolution problem in Sobolev scales is proved, including cases in which the surface tension coefficient degenerates. The problem is reformulated as a vector-valued, degenerate parabolic Cauchy problem. To solve this, we prove and apply an abstract result on Galerkin approximations with variable bilinear forms.

Key words. free boundary motion, degenerate nonlocal parabolic evolution

AMS subject classifications. 35R35, 76B07

DOI. 10.1137/S0036141004444846

1. Introduction. Various experimental studies investigate the influence of spatial variations of the surface energy density (corresponding to the surface tension coefficient γ) on surface tension–driven Hele–Shaw flows (cf., e.g., [15]). However, a mathematical model for such flows seems to be lacking. In this paper, a first step is attempted to close this gap. We derive and investigate a moving boundary problem which arises, at least from a mathematical point of view, as a natural generalization from the case where γ is a positive constant to the case of variable, nonnegative γ. Let us give an informal description of this generalization here; for details we refer to section 2.

The Hele–Shaw moving boundary problem with constant γ is well investigated. In particular, our starting point is the following observation [1, 8]: On the Fréchet manifold \mathcal{M} of the surfaces Γ that bound a domain of fixed given volume, an evolution $t \mapsto \Gamma_t$ satisfying the moving boundary problem can be interpreted as a gradient flow with respect to (w.r.t.) the energy functional

$$(1.1) \quad \mathcal{E} = \mathcal{E}(\Gamma) := \gamma \text{meas}(\Gamma)$$

and the Riemannian metric g given by (2.4).

In our generalization to nonconstant γ we use the energy functional

$$(1.2) \quad \mathcal{E} = \mathcal{E}(\Gamma, \gamma) := \int_{\Gamma} \gamma \, d\Gamma$$

and keep the demand that the evolution be given by a gradient flow w.r.t. the same Riemannian metric. (A parallel procedure applied to viscous free boundary flows leads to the usual description of the Marangoni effect.) This leads to two related difficulties: First, the functional \mathcal{E} no longer depends on Γ only. This is resolved in

*Received by the editors June 25, 2004; accepted for publication (in revised form) December 30, 2004; published electronically October 14, 2005.

†Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany (Matthias.Guenther@math.uni-leipzig.de).

‡Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands (g.prokert@tue.nl).
the following way: Instead of the manifold M we consider the vector bundle F over M, having as fiber space at Γ the (smooth) functions on Γ. On this bundle, \mathcal{E} is well defined. Second, one also has to prescribe an evolution law for γ as a function on the moving surface $t \mapsto \Gamma_t$. Again, we make a simple choice: We assume γ to be transported along with the velocity field at the boundary, and we allow the tangential transport to be diminished by a “slip factor” $\delta \in [0, 1]$. The case $\delta = 1$ describes a fixed coupling of the values of γ to the moving liquid particles. Physically, this would occur, e.g., if γ is temperature-dependent and heat conduction is negligible. On the other hand, the case $\delta = 0$ corresponds to transport in the normal direction only. In differential geometric terms, this transport law is realized by introducing a suitable connection D on F and demanding parallel transport of γ; see (2.7)–(2.10).

Let us note here that we do not claim that these assumptions are necessarily in accordance with the physics of an actual Hele–Shaw flow with nonuniform surface energy density, e.g., induced by the presence of a surfactant. It is well conceivable that the interface dynamics in such a situation might be dominated by more complex phenomena like the occurrence of boundary layers, thin surfactant films, or other effects. For instance, if a surfactant is present, one has to solve a transport equation for the surfactant concentration and determine γ from this. (See [17] for the case of Stokes flow; such a modification of our problem would not present new principal difficulties.)

To test our assumptions in a concrete situation, numerical work as well as comparison with experiments would be necessary. However, even our simple model is of mathematical interest in its own right and as a typical example for nonlocal, degenerate parabolic evolutions.

In section 2 of this paper we derive the moving boundary problem (2.12), (2.13) from the gradient flow formulation. In what follows, we prove our main result, namely, a local existence and uniqueness result for this problem in scales of Sobolev spaces. For the precise formulation and further results concerning continuous dependence on the initial data, see Theorems 3.1 and 3.2. If the surface Γ_t and the coefficient γ_t are known at some time t, then the velocity potential ϕ_t is completely determined by (2.12). If one parametrizes Γ_t over a fixed reference surface S, the moving boundary problem can be interpreted as an evolution equation with nonlinear, nonlocal pseudodifferential operators. The parametrization can be constructed in at least two different ways: On one hand, it is possible to parametrize the surfaces using one scalar function, e.g., the normal distance to the reference surface. Then γ_t has to satisfy a transport equation whose coefficients depend on the parametrization and on the velocity potential. On the other hand, the moving boundary can also be represented by mappings $u(\cdot, t) : S \to \mathbb{R}^m$ whose time derivatives are given by the velocity vector, i.e.,

$$\partial_t u = F(u) := ((\nabla_N + \delta \nabla_T)\phi_t) \circ u,$$

where ∇_N and ∇_T denote the normal and tangential component of the gradient, respectively.

This formulation, which we will use in what follows, is \mathbb{R}^m-valued. Therefore, the corresponding Cauchy problem will be necessarily degenerate, even if γ is strictly positive (or even constant). However, this is no crucial disadvantage, as our problem couples a transport equation with a parabolic evolution and we allow γ to degenerate as well. Our approach has two favorable properties: γ now appears only as a known, time-independent function on the reference domain, and the additional freedom in the choice of the diffeomorphisms can be used to derive generalized chain rules for our nonlocal operators which reduce the technical effort in the proofs of the necessary estimates.
As long as \(\gamma \) is nonnegative, the normal component of the linearization \(F'(u)v \) behaves as a degenerate elliptic second order operator on the normal component of \(v \), so that we have, e.g., w.r.t. the \(L^2 \)-inner product
\[
\langle n \cdot v, n \cdot F'(u)v \rangle_{L^2} \leq C\|v\|^2_{L^2}.
\]
An estimate like this does not hold for the complete linearization, including the tangential components. Due to the special structure of \(F \), however, it is possible to define inner products \(\langle \cdot, \cdot \rangle_u \) which define equivalent norms on \(L^2 \) and satisfy
\[
\langle v, F'(u)v \rangle_u \leq C\|v\|^2_{L^2}.
\]
Defining higher order inner products \(\langle \cdot, \cdot \rangle_{u,s} \) on the basis of \(\langle \cdot, \cdot \rangle_u \), one finally can show an \(H^s \)-energy estimate
\[
\langle F(u), u \rangle_{u,s} \leq C\|u\|^2_s,
\]
for \(s \) sufficiently large, and, on the other hand, the dependence of these inner products on \(u \) can be controlled by a weaker Sobolev norm. In a suitable abstract functional analytic framework, these estimates can be used to obtain proofs for our main results. Moreover, these results imply the existence of a unique solution \(w := (\text{Id} - \lambda F)^{-1} \) of the equation \(w - \lambda F(w) = v \) provided \(\lambda \geq 0 \) sufficiently small. The solution of the Cauchy problem for the evolution equation is given by the exponential formula
\[
u(t) = \lim_{n \to \infty} \left(\text{Id} - \frac{t}{n} F \right)^{-n} u(0)
\]
with convergence in \(H^s \) provided \(u(0) \in H^s \), \(s \) sufficiently large.

The structure of the paper after section 2 is as follows: In section 3, we introduce the necessary notation and announce our main results together with the abstract existence theorems which are used. Section 4 is devoted to the behavior of our (nonlocal) operators in scales of Sobolev spaces, and in section 5 the \(u \)-dependent inner products are introduced and the necessary estimates are shown. Finally, the main results (Theorems 3.1 and 3.2) are proved in section 6. The proof of a general abstract existence result (Theorem 3.4), which may be of independent interest, is given in the appendix.

2. The equations of motion. Here we characterize the moving boundary problem as abstract gradient flow on the manifold of the natural configuration space. We start by recalling the following general properties of incompressible, source-free Hele–Shaw flows. One looks for a family of domains \(\Omega(t) \subset \mathbb{R}^m \) parametrized by time \(t \geq 0 \) and corresponding velocity fields \(v(\cdot,t) \) such that (according to Darcy’s law)
\[
v(\cdot,t) = \nabla \varphi(\cdot,t) \text{ in } \Omega(t)
\]
with a potential field \(\varphi(\cdot,t) \) proportional to negative pressure. As we also demand that the boundary \(\Gamma(t) \) of \(\Omega(t) \) moves along with the velocity field, we find the kinematic boundary condition
\[
V_n(t) = \partial_n \varphi(\cdot,t) \text{ on } \Gamma(t),
\]
where \(V_n(t) \) is the normal velocity of the moving boundary \(\Gamma(t) \) and \(\partial_n = \partial / \partial n \) is the derivative in direction of the unit outward normal \(n(t) \) of \(\Gamma(t) \). As \(v \) is divergence-free,
\[
\Delta \varphi(\cdot,t) = 0 \text{ in } \Omega(t).
\]
Thus, in any Hele–Shaw flow, the complete velocity field is determined by the normal velocity at the boundary.

If the surface tension coefficient is a positive constant, the corresponding surface energy is proportional to the surface area and the Hele–Shaw flow driven by surface tension can be interpreted as abstract gradient flow of this functional w.r.t. an appropriately chosen inner product; cf. [1, 8]. As this formulation is a main ingredient in our derivation of the moving boundary problem below, we define this inner product more precisely. Consider for the time being a fixed smooth domain Ω with boundary Γ and define

\[V_\Gamma := \left\{ v \in C^\infty(\Gamma) \mid \int_\Gamma v \, d\Gamma = 0 \right\}. \]

The space \(V_\Gamma \) can be interpreted as the space of all possible normal boundary velocities; the restriction expresses conservation of volume. We fix \(\beta \geq 0 \) and introduce on \(V_\Gamma \) the bilinear form \(g_\Gamma \) given by

\[g_\Gamma(v_1, v_2) := \int_\Omega \nabla \varphi_1 \nabla \varphi_2 \, dx + \beta \int_\Gamma v_1 v_2 \, d\Gamma, \tag{2.4} \]

where the \(\varphi_i, i = 1, 2, \) are (weak) solutions of the Neumann problems

\[\Delta \varphi_i = 0 \text{ in } \Omega, \quad \partial_n \varphi_i = v_i \text{ on } \Gamma. \]

To give a physical interpretation of the quadratic functional \(v \mapsto g_\Gamma(v, v) \) we remark that the first term represents energy dissipation by the corresponding Hele–Shaw flow (cf. [8]), while for \(\beta > 0 \) the second term is a penalty for large normal boundary velocities. Note that, by Green’s formula,

\[g_\Gamma(v_1, v_2) = \int_\Gamma (\varphi_1 + \beta \partial_n \varphi_1) v_2 \, d\Gamma. \tag{2.5} \]

In differential geometric terms, this inner product defines a Riemannian metric on the Fréchet manifold \(M \) of boundaries \(\Gamma = \partial \Omega \) to smooth compact domains \(\Omega \subset \mathbb{R}^m \) with given fixed volume. By interpreting a tangent vector at \(\Gamma \in M \) as the normal velocity field of the boundary, there is a natural way of thinking of vector fields \(X \) on \(M \) as sections in the Fréchet vector bundle \(E = \cup_{\Gamma \in M} V_\Gamma \) with base \(M \) and fiber \(V_\Gamma \); i.e., there is a natural isomorphism \(T_\Gamma M \simeq V_\Gamma \) and we have for any real functional \(J \in C^\infty(M) \)

\[(XJ)(\Gamma) = \partial_\varepsilon J(\Gamma_\varepsilon)|_{\varepsilon = 0}, \]

where \(\varepsilon \mapsto \Gamma_\varepsilon \in M \) is a path of admissibles shapes with normal velocity \(v \) for \(\varepsilon = 0 \),

\[\Gamma_\varepsilon := \{ x_\varepsilon \mid x \in \Gamma \}, \quad x_\varepsilon := x + \varepsilon (v(x) + O(\varepsilon)) n(x). \tag{2.6} \]

Thus, identifying a vector \(X_\Gamma \in T_\Gamma M \) in this sense with its image \(v \in V_\Gamma \) and considering smooth domain dependence of the solution to a Neumann problem, \(\Gamma \mapsto g_\Gamma \) defines a Riemannian metric \(g \) on the manifold \(M \). It is remarkable that in the case \(\beta = 0 \) a geodetic line w.r.t. this metric gives the motion of an incompressible irrotational perfect fluid with a free boundary; for the corresponding Levi-Civita derivative, Riemannian curvature, and an analysis of the Jacobi equation from a differential geometric point of view, we refer to [3].
Now, considering first the surface energy (1.1) with constant γ, the normal velocity $V_n \in V_\Gamma$ of a surface tension–driven Hele–Shaw flow is determined by
\[
g_\Gamma(V_n, v) = -\mathcal{E}'(\Gamma)\{v\} \quad \text{for all } v \in V_\Gamma,
\]
where $\mathcal{E}'(\Gamma)\{v\} := (X\mathcal{E})(\Gamma)$ denotes the derivative of the energy in the direction of $X_\Gamma \simeq v$. As a consequence, at each instant of time t the flow reduces the surface energy as rapidly as possible among all normal velocities with prescribed norm corresponding to the inner product (2.4); in particular, the flow is volume preserving and surface area decreasing. By a well-known formula for the first variation of surface area, we find
\[
\mathcal{E}'(\Gamma)\{v\} = -\int_\Gamma \kappa v \, d\Gamma,
\]
where κ is the mean curvature of Γ with sign determined by the above variation formula (negative sign if Ω is convex); for notational convenience, throughout the paper the usual normalization of κ has been changed by a cofactor $m - 1$. To model the influence of a variable surface tension coefficient which is coupled on a transport mechanism, it is now quite natural to consider a surface energy functional of the form (1.2) where $\gamma \geq 0$ denotes a surface energy density function along Γ, not necessarily constant. It should be noted that we don’t assume a priori a one-to-one correspondence between the surface Γ and density γ, as is the case in simpler situations, e.g., where a known global function generates the density via restriction or where an anisotropic surface energy density is considered, i.e.,
\[
\gamma = f|_{\Gamma} \quad \text{or} \quad \gamma = f \circ n \quad \text{on } \Gamma,
\]
given $f \in C^\infty(\mathbb{R}^m)$ or $f \in C^\infty(\mathbb{S}^{m-1})$, respectively; the latter energy density is commonly used to model crystal growth problems. In fact, in our setting the functional \mathcal{E} is uniquely defined on the vector bundle $F := \cup_{\Gamma \in M} C^\infty(\Gamma)$ with base M only. In such a case, computation of the derivative of the surface energy in the direction of a given vector field requires a law for the change of γ on the moving surface. Using differential geometric terms we make the following assumption: along a path c in M the energy density is transported by parallel displacement w.r.t. a given connection D_X which acts on sections γ in F, i.e.,
\[
D_\xi \gamma = 0 \quad \text{along } c.
\]
In further considerations we restrict our attention to the connection D_X, defined as follows: Let X be any vector field, let $\Gamma \in M$, and let $v \in V_\Gamma$ with $X_\Gamma \simeq v$; then we set for any section γ in F
\[
D_X \gamma|_\Gamma := \partial_\xi \overline{\gamma}_\varepsilon |_{\varepsilon = 0} + \delta \nabla_\Gamma \psi \nabla_\Gamma \gamma, \quad \delta \in [0, 1],
\]
where in terms of the notation (2.6)
\[
\overline{\gamma}_\varepsilon(x) := \overline{\gamma}_{\Gamma_\varepsilon}(x), \quad (\varepsilon, x) \in (-\varepsilon_0, \varepsilon_0) \times \Gamma,
\]
and ψ is a solution of the Neumann problem
\[
\Delta \psi = 0 \quad \text{in } \Omega, \quad \partial_n \psi = v \quad \text{on } \Gamma.
\]
Interpretation of \(D_X \) and parallel transport w.r.t. \(D_X \) is quite obvious in terms of the underlying Hele–Shaw flow. In contrast to the case of constant \(\gamma \), we also have to consider the influence of the tangential motion at the boundary which results from a normal variation of the boundary. As pointed out before, in a Hele–Shaw flow the velocity field corresponding to a normal boundary velocity \(v \in V_{\Gamma} \) is \(\nabla \psi \), where \(\psi \) solves (2.10). Hence, in the case \(\delta = 1, \) (2.7), (2.8) express that the surface energy density is transported along with the liquid particles, i.e., with the velocity field \(\nabla \psi \) at the boundary. On the other hand, in the case of \(\delta = 0 \), transport in the normal direction without any tangential movement is expressed. The other cases are intermediate. On \(V_{\Gamma} \) we define the linear operator \(A_{ND} \) (Neumann-to-Dirichlet operator) by

\[
A_{ND}v := \psi|_{\Gamma},
\]

where \(\psi \) satisfies (2.10) and \(\int_{\Gamma} \psi \, d\Gamma = 0 \). Hence, again in terms of the notation (2.6), the assumption \(D_v \gamma|_{\Gamma} = 0 \) implies

\[
\partial_{\varepsilon} \tilde{\gamma}_\varepsilon|_{\varepsilon=0} = -\delta \nabla_{\Gamma} \gamma \nabla_{\Gamma} A_{ND} v
\]

and we obtain for

\[
E'(\gamma, \Gamma)\{v\} := \left. \frac{d}{d\varepsilon} E(\gamma_\varepsilon, \Gamma_\varepsilon) \right|_{\varepsilon=0}
\]

using again the formula for the first variation of area

\[
E'(\gamma, \Gamma)\{v\} = \int_{\Gamma} (\partial_{\varepsilon} \tilde{\gamma}_\varepsilon|_{\varepsilon=0} - \kappa v) \, d\Gamma = -\int_{\Gamma} (\kappa \gamma v + \delta \nabla_{\Gamma} \gamma \nabla_{\Gamma} \psi) \, d\Gamma.
\]

It easily follows from Green’s formula that \(A_{ND} \) is symmetric w.r.t. the usual \(L^2 \)-inner product on \(\Gamma \), and thus

\[
(2.11) \quad E'(\gamma, \Gamma)\{v\} = -\int_{\Gamma} (\gamma \kappa v - \delta \Delta_{\Gamma} \gamma A_{ND} v) \, d\Gamma = -\int_{\Gamma} (\gamma \kappa - \delta A_{ND} \Delta_{\Gamma} \gamma) v \, d\Gamma.
\]

We have to consider (2.7), (2.11) as a differential rule for the change of surface energy dependent upon surface and energy density. They allow the computation of the energy along any path in \(M \) starting from a known initial shape \(\Gamma(0) \) with known energy density \(\gamma_0 \). But of course, in general, this computation is path-dependent; i.e., the resulting energy in the endpoint of the path will depend on the history along the whole path.

Now, as in the case of constant \(\gamma \), we define the normal velocity \(V_n \in V_{\Gamma} \) as a solution of the variational problem

\[
g_r(V_n, v) = -E'(\gamma, \Gamma)\{v\} \quad \text{for all} \quad v \in V_{\Gamma}.
\]

Together with (2.2), (2.5), and (2.11), this yields the dynamic boundary condition

\[
\varphi + \beta \partial_n \varphi = \gamma \kappa - \delta A_{ND} \Delta_{\Gamma} \gamma.
\]

Summarizing and using an auxiliary function \(\psi \) instead of the nonlocal operator \(A_{ND} \), we have obtained the following moving boundary problem: For a given bounded domain \(\Omega(0) \subset \mathbb{R}^m \) and a given nonnegative function \(\gamma_0 \) defined on \(\partial \Omega(0) \) one looks
for a family of C^2-domains $\Omega(t) \subseteq \mathbb{R}^m$, $t > 0$, and functions $\varphi(\cdot,t), \psi(\cdot,t) \in C^2(\overline{\Omega(t)})$, $\gamma_t \in C^2(\Gamma(t))$ such that

\[
\begin{aligned}
\Delta \varphi(\cdot,t) &= 0 \quad \text{in } \Omega(t), \\
\Delta \psi(\cdot,t) &= 0 \quad \text{in } \Omega(t), \\
\partial_n \psi(\cdot,t) &= \Delta_{\Gamma(t)} \gamma_t \quad \text{on } \Gamma(t), \\
\varphi(\cdot,t) + \beta \partial_n \varphi(\cdot,t) &= \gamma_t \kappa_t(t) - \delta \psi(\cdot,t) \quad \text{on } \Gamma(t), \\
V_n(t) &= \partial_n \varphi(\cdot,t) \quad \text{on } \Gamma(t),
\end{aligned}
\]

(2.12)

where $\kappa(t)$ is the curvature of $\Gamma(t)$. In the main part of this paper, we restrict our attention to the case $\delta = 1$. The generalization to $\delta \in [0,1)$ is sketched at the end of section 5. Additionally, we describe the transport of γ by (2.7), (2.8) with $\delta = 1$. Introducing Lagrangian coordinates $x = x(\xi, t), \xi \in \Gamma(0)$ corresponding to the velocity field via

\[
\partial_t x(\xi, t) = \nabla \varphi(x(\xi, t), t) \quad \text{for } t \geq 0, \quad x(\xi, 0) = \xi,
\]

(2.13)

we obtain from (2.2) that $x = x(\cdot, t)$ is a diffeomorphism from $\Gamma(0)$ onto $\Gamma(t)$, and the transport law for γ_t takes the form

\[
\gamma_t(x(\xi, t)) = \gamma_0(\xi), \quad \xi \in \Gamma(0), \quad t \geq 0.
\]

(2.14)

In (2.12), $\varphi(\cdot, t)$ and $\psi(\cdot, t)$ are determined up to a constant only, but this is without significance for the evolution of both $\Omega(t)$ and γ_t. Note that in the case $\beta = 0$, by setting $\Phi = \varphi + \psi$, (2.12) simplifies to

\[
\begin{aligned}
\Delta \Phi(\cdot,t) &= 0 \quad \text{in } \Omega(t), \\
\Phi(\cdot,t) &= \gamma_t \kappa(t) \quad \text{on } \Gamma(t), \\
V_n &= \partial_n \Phi(\cdot,t) - \Delta_{\Gamma(t)} \gamma_t \quad \text{on } \Gamma(t).
\end{aligned}
\]

(2.15)

In what follows, however, we will restrict our attention to the case $\beta > 0$. Without loss of generality, we can assume $\beta = 1$. In the case $\beta > 0$, $\delta = 1$, we can show well-posedness of our moving boundary problem even if γ is zero on parts of the boundary, provided its square root is smooth. This seems to be particular to this situation. We intend to discuss the case $\beta = 0$, which leads to a third order problem, in a forthcoming paper.

For $\gamma_t = \gamma = \text{const}$ and $\gamma > 0, \psi$ is constant, and (2.12) is known as the so-called Hele–Shaw flow problem with kinetic undercooling and surface tension regularization. From a modeling point of view, this problem can be seen as the quasi-stationary version of the well-known Stefan problem. In this context, the boundary condition incorporates both the Gibbs–Thomson surface energy and a nonequilibrium effect of temperature decrease at the advancing phase boundary. A short-time existence proof for this problem and a proof that its solution is the limit for the solutions of the corresponding Stefan problems can be found in [20]. For existence results concerning a corresponding two-phase problem we refer to [5, 21]. Both effects are known to regularize the motion of the interface, and this is also true for Hele–Shaw flow problems [13, 18, 19]. In the case $\gamma = 0$, with internal sources or sinks as driving forces, existence results are given in [11] for the two-dimensional case and analytic data and in [16] for arbitrary dimensions in the framework of Sobolev spaces.

If γ is a positive constant, the moving boundary has stable, attractive equilibria which are given by the spheres (see, e.g., [4, 6, 7] for the case $\beta = 0$). In general,
however, after prescribing a nonconstant function γ on the reference domain and an initial diffeomorphism u, it is not a priori clear (even with γ near a constant and the moving domain near a ball) what the long-time evolution and the corresponding equilibrium will be. Instead, determining the equilibria belonging to a γ prescribed on the reference domain leads to a stationary free boundary problem in ψ whose solvability and stability (for Γ near a sphere and γ near a constant) we intend to discuss elsewhere.

3. Notation and main results. We list some notation. C, C_1, \ldots, etc., denote generic constants; their dependences on other quantities is indicated only if not obvious from the context. Let $E \subseteq \mathbb{R}^m$, $m \geq 2$, be a bounded domain with smooth boundary $S := \partial E$ and ν the outer unit normal on S. For $M = S$ or $M = E$, we make constant use of the usual L^2-based Sobolev spaces $H^s(S)$, $H^s(S, \mathbb{R}^m)$ of order s with values in \mathbb{R} and \mathbb{R}^m, respectively. If no confusion is likely, we just write H^s. The norms of these spaces will be denoted by $\| \cdot \|_s$; for $M = S$ the upper index M is dropped in most cases. When Fréchet derivatives of operator-valued mappings are considered, the additional arguments describing the variations are written in braces ($\{\}$).

3.1. Well-posedness for the moving boundary problem. Now, as already mentioned in the introduction, we reformulate the moving boundary problem (2.12)–(2.14) by describing $\Gamma(t)$ as an embedding $u(\cdot, t) : S \to \mathbb{R}^m$ such that the curves $t \mapsto u(y, t)$ for fixed $y \in S$ are trajectories belonging to the velocity field and γ_t is constant along these curves. This approach enables us to consider γ_t as a known function during the evolution at the cost of describing the moving boundary by m functions. To do so, let

$$U := \{ u : S \to \mathbb{R}^m \mid u = w|_S \text{ with } w \in \text{Diff}(\bar{E}, \Omega_u \cup \Gamma_u) \},$$

where

$$\Omega_u := w(E) \quad \text{and} \quad \Gamma_u := \partial \Omega_u = u(S).$$

Throughout this paper, we use the abbreviation

$$U_s := U \cap H^s(S, \mathbb{R}^m).$$

Now, (2.12)–(2.14) is reduced to the following Cauchy problem, which will be investigated in what follows: Given $u_0 \in U_s$, s sufficiently large, we look for $T > 0$ and a mapping $[0, T] \ni t \mapsto u(t) \in U_s$, such that

$$u'(t) = \mathcal{F}(u(t)), \quad t \in [0, T],$$

$$u(0) = u_0.$$

Thereby, for $u \in U$, we have set

$$\mathcal{F}(u) := F(u)(\mathcal{G}(u)) \quad \text{with} \quad \mathcal{G}(u) := H(u) + G(u),$$

where, for any given function f on S,

$$F(u)f := \nabla \varphi(u, f) \circ u,$$

and $\varphi = \varphi(u, f)$ denotes the solution of the Robin boundary value problem

$$\Delta \varphi = 0 \text{ in } \Omega_u, \quad \partial_n \varphi + \varphi = f \circ u^{-1} \text{ on } \Gamma_u.$$
Further, $H(u), G(u)$ are given by

\begin{equation}
H(u) := \gamma_k(g_{\Gamma_u} \circ u), \quad G(u) := -A(u)(\Delta(u)\gamma).
\end{equation}

Here $\gamma \in C^\infty(S)$ is a fixed and given nonnegative function, κ_{Γ_u} denotes the mean curvature of Γ_u with sign and scaling conventions as above,

\begin{equation}
\Delta(u)w := \Delta_{\Gamma_u}(w \circ u^{-1}) \circ u
\end{equation}
is the pullback to S of the Laplace–Beltrami operator Δ_{Γ_u} on Γ_u, and

\begin{equation}
A(u)f := \varphi_N(u, f) \circ u
\end{equation}
is the Neumann–Dirichlet operator, i.e., $\varphi_N = \varphi_N(u, f)$ solves the Neumann problem

\begin{equation}
\Delta \varphi_N = 0 \text{ in } \Omega_u, \quad \partial_n \varphi_N = c + f \circ u^{-1} \text{ on } \Gamma_u, \quad \int_{\Gamma_u} \varphi_N \, dx = 0.
\end{equation}
The constant $c = c(u, f) \in \mathbb{R}$ in (3.10) is determined by the solvability condition

\begin{equation}
\int_{\Gamma_u} (f \circ u + c) \, d\Gamma_u = 0;
\end{equation}
clearly $c(u, f) = 0$ for $f = \Delta(u)\gamma$. For fixed smooth γ on S, the mappings $u \mapsto H(u)$ and $u \mapsto \Delta(u)\gamma$ constitute quasi-linear second order differential operators on S. Moreover, the solutions of the boundary value problems (3.6), (3.10) depend smoothly on the domain Ω_u, i.e., on $u \in H^s$, $s > (m + 1)/2$, and $f \mapsto F(u)f, f \mapsto A(u)f$ represent pseudodifferential operators of order zero and minus one, respectively. In particular, G is a pseudodifferential operator of lower order than H and may be considered as a correction term to ensure the gradient flow structure of the evolution problem. For precise formulations of the mapping properties of F and A and detailed proofs, see section 4. As a consequence, this leads to

\begin{equation}
[u \mapsto F(u)] \in C^\infty(U_s, H^{s-2}(S, \mathbb{R}^m))
\end{equation}
for $s > (m + 3)/2$. Now we are in position to formulate our main results.

Theorem 3.1 (short-time existence and uniqueness). Fix an integer $s_0 > (m + 5)/2$ and assume $\gamma = \rho^2$ with $\rho \in C^\infty(S)$. Let $s \geq s_0$ be an integer and let $u_0 \in U_s$. Then there exists $T > 0$ and a unique solution

\begin{equation}
u \in C([0, T], U_s) \cap C^1([0, T], H^{s-2}(S, \mathbb{R}^m))\end{equation}
of the initial value problem (3.2), (3.3). Additionally, any given $u_0 \in U_{s_0}$ has a suitable H^{s_0}-neighborhood K, such that for initial values u_0 varying in $K \cap H^s$, there are $T > 0$ and C independent of u_0 such that

\begin{equation}
\|u(t)\|_s \leq C(1 + \|u(0)\|_s) \quad \text{for all } t \in [0, T].
\end{equation}

Theorem 3.2 (regularity and continuous dependence on initial values). Under the assumptions of Theorem 3.1 let u be any solution to (3.2) in the class (3.13) with some $T > 0$. Then the following holds:

(i) $u(0) \in H^{s+1}(S, \mathbb{R}^m)$ implies

$$u \in C([0, T], U_{s+1}) \cap C^1([0, T], H^{s-1}(S, \mathbb{R}^m)).$$

(ii) Assume $u_0^n \rightharpoonup u_0$ in $H^s(S, \mathbb{R}^m)$ for $n \to \infty$. Then, for n sufficiently large, there exist solutions u_n of (3.2) in the class (3.13) with initial values $u_n(0) = u_0^n$, and there holds $u_n \rightharpoonup u$ in $C([0, T], H^s(S, \mathbb{R}^m))$.

The proofs of both theorems are given in section 6.
3.2. An existence result for abstract evolution equations. Here we consider (3.2), (3.3) as an abstract nonlinear Cauchy problem for an unknown function $u = u(t)$ with values in a Banach space and prove existence of a solution if the nonlinearity F satisfies a certain condition of semiboundedness w.r.t. a family of bilinear forms. As a general framework we adopt the following assumptions:

\begin{align*}
\text{(H)} \quad &\text{Let } X \subseteq Y \subseteq Z \text{ be real, separable Banach spaces with dense and continuous embeddings and } U \subseteq Y \text{ open. For every } u \in U \text{ let } \langle \cdot, \cdot \rangle_u : X \times Z \to \mathbb{R} \text{ be a continuous and nondegenerate bilinear form, such that with fixed constants } C \geq 1, M \geq 0, \\
&\quad \text{(H1)} \quad \langle v, w \rangle_u = \langle w, v \rangle_u \text{ for all } v, w \in X; \\
&\quad \text{(H2)} \quad C^{-1} \|v\|_Y^2 \leq \langle v, v \rangle_u \leq C \|v\|_Y^2 \text{ for all } v \in X, u \in U; \\
&\quad \text{(H3)} \quad \langle v, v \rangle_u \leq \langle v, v \rangle_u (1 + M \|u - w\|_Z) \text{ for all } v \in X, u, w \in U; \\
&\quad \text{(H4)} \quad \text{weak convergences } u_n \rightharpoonup u \text{ in } Y, \, u_n, u \in U, \text{ and } w_n \rightharpoonup w \text{ in } Z \text{ imply } \langle v, w_n \rangle_{u_n} \rightharpoonup \langle v, w \rangle_u \text{ for all } v \in X.
\end{align*}

Assuming (H) holds, by the dense embedding $X \subseteq Y$ and

$$\left| \langle v, w \rangle_u \right|^2 \leq \langle v, v \rangle_u \langle w, w \rangle_u \leq C^2 \|v\|_Y^2 \|w\|_Y^2 \quad \text{for } v, w \in X$$

there exists for each $u \in U$ an inner product $\langle \cdot, \cdot \rangle_u$ on Y, which is compatible with $\langle \cdot, \cdot \rangle_u$; i.e., we have

$$\langle v, w \rangle_u = \langle v, w \rangle_u \quad \text{for } v \in X, w \in Y.$$

Moreover, for $u_n, u \in U$, $u_n \rightharpoonup u$, $w_n \rightharpoonup w$ in Y implies

$$\langle v, w_n \rangle_{u_n} \rightharpoonup \langle v, w \rangle_u \quad \text{for all } v \in X.$$

In further considerations, for the sake of brevity we put

$$\|v\|_u = (v, v)_u^{1/2}, \quad \|u\| = (u, u)_u^{1/2}.$$

Assumption (H2) implies that $\| \cdot \|_Y$ and $\| \cdot \|_u$ are equivalent, and hence Y has all topological properties of a Hilbert space—in particular, Y is reflexive. From $u_n, u \in U$, $u_n \rightharpoonup u$ in Y it follows that

$$\|u\| = \lim_{n \to \infty} \|u_n\|;$$

if $\|u\| = \lim_{n \to \infty} \|u_n\|$, one concludes hereby that $u_n \rightharpoonup u$ in Y.

Theorem 3.3. Let (H) be valid and let $F : U \to Z$ be a weakly sequentially continuous mapping such that for every $u_0 \in U$ there exists a neighborhood $B(u_0) \subset U$ of u_0 in Y with

$$\sup \{ \langle u, F(u) \rangle_u \mid u \in B(u_0) \cap X \} < +\infty.$$

Then for any $u_0 \in U$, there exist $T > 0$ and a solution u of (3.2), (3.3) in the class

$$C_w([0, T], U) \cap C^1_w([0, T], Z).$$

Additionally, this solution satisfies $u(t) \to u_0$ in Y for $t \to +0$. Moreover, $T > 0$ can be chosen uniformly for initial values taken from a suitable neighborhood of u_0 in Y.

In (3.16), we denote by $C_w([0,T],U)$ the space of functions from $[0,T]$ to U which are continuous w.r.t. weak convergence in Y. Similarly, $C^1_w([0,T],Z)$ denotes the set of weakly differentiable functions from $[0,T]$ to Z with the derivative in $C_w([0,T],Z)$. It should be noted that in general there is no uniqueness and no continuous dependence on initial data in any sense in Theorem 3.3. This theorem can be easily derived from a more elaborate, quantitative formulation given in the next theorem. Note that, for the limit case $R = +\infty$ and bilinear forms independent of u, this theorem coincides with Theorem A in [14], but, as already mentioned in the introduction, our application requires only the generalization to such variable bilinear forms.

Theorem 3.4. Assume (H) is satisfied with some ball

$$U = B := \{ u \in Y \mid \|u\|_Y < R \}, \quad R > 0,$$

and $G : B \to Z$ is a weakly sequentially continuous mapping such that

$$2\langle u, G(u) \rangle_u + M \|G(u)\|_Z \|u\| \leq \beta(\|u\|^2) \quad \text{for all } u \in X \cap B$$

(3.17) with a C^1-function $\beta : \mathbb{R}_+ \to \mathbb{R}_+ = [0,\infty)$. Let $u_0 \in B$,

$$\|u_0\| < r := R/(2C^3)^{1/2},$$

and $T > 0$ such that the solution ρ of the scalar Cauchy problem

$$dp/dt = \beta(\rho(t)), \quad \rho(0) = \|u_0\|^2$$

exists on $[0,T]$ and satisfies $\rho(t) < r^2$ there. Then the Cauchy problem

$$u'(t) = G(u(t)), \quad u(0) = u_0$$

(3.19) possesses a solution u in the class (3.16) for which additionally

$$\|u(t)\|^2 \leq \rho(t) \quad \text{for all } t \in [0,T],$$

$$u(t) \to u_0 \text{ in } Y \text{ for } t \to +0.$$

The proof of this theorem will be given in the appendix.

Proof of Theorem 3.3. Let $u_0 \in U$ and $B(u_0)$ as in Theorem 3.3 be given. We set

$$G(v) = \mathcal{F}(v + w_0) \quad \text{for } v \in B := \{ v \in Y \mid \|v\|_Y < R \},$$

$$\langle \cdot , \cdot \rangle_{v,1} := \langle \cdot , \cdot \rangle_{v+w_0}, \quad \|v\|_1 := \langle v , v \rangle_{1/2}^{1/2},$$

whereby the density of X in Y enables us to choose $w_0 \in X$ and $R > 0$ such that

$$\|w_0 - u_0\|_Y < R/(32C^5)^{1/2}, \quad \{ w_0 + v \mid v \in B \} \subseteq B(u_0).$$

Clearly, the bilinear form $\langle \cdot , \cdot \rangle_{v,1}, v \in B$, satisfies the assumptions (H) again (with the same constants as $\langle \cdot , \cdot \rangle_u , u \in U$). Further, by (3.15), there exists $L > 0$ such that

$$\langle v + w_0, G(v) \rangle_{v,1} \leq L \quad \text{for all } v \in B \cap X$$

and, by the weak sequential continuity of \mathcal{F}, the reflexivity of Y and (H4),

$$|\langle w_0, G(v) \rangle_{v,1} |, \|G(v)\|_Z \leq L \quad \text{for all } v \in B.$$
Thus

\[2(v, G(v))_{v,1} + M \|G(v)\|_Z \|v\|_1 \leq K \] for all \(v \in B \cap X\)

with \(K := L(4 + MCR)\). Now, for any given \(w \in Y\) with

\[\|w - u_0\|_Y \leq R/(32C^5)^{1/2}, \]

we apply Theorem 3.4 to solve the initial value problem

\[dv/dt = G(v), \quad v(0) = w - w_0, \]

which corresponds to (3.2) with initial value \(u(0) = w\). As

\[||w - w_0||_1 \leq C(||w - u_0||_Y + ||u_0 - w_0||_Y) < r/2, \quad r := R/(2C^3)^{1/2}, \]

Theorem 3.4 ensures the existence of a solution in the class (3.16) with

\(w \in H^{s_0}(M)\) (note the continuity of \(w\) by Sobolev’s embedding),

(4.2) \[[w \mapsto \Psi(\cdot, w(\cdot))] \in C^\infty(H^s(M), H^s(M)), \]

and it holds that

(4.3) \[\|\Psi(\cdot, w(\cdot))\|_s^M \leq C(1 + \|w\|_s^M) \]

for all \(w\) from bounded subsets of \(H^{s_0}(M)\), where the constant depends, in addition to \(s_0\), \(s\), and \(M\), on \(\Psi\) and on upper bounds of \(\|w\|_{s_0}\). In particular,

(4.4) \[\|1/w\|_{s}^M \leq C(\alpha, ||w||_{s_0}^M)\|w\|_{s}^M \]

for all \(w \in H^s(M)\) with \(w \geq \alpha > 0\) on \(M\). On the other hand, we have the following counterpart of (4.1) for the product of functions \(w_1 \in H^{s_1}(M), \ldots, w_n \in H^{s_n}(M)\):

(4.5) \[\|w_1 w_2 \cdots w_n\|_{s}^M \leq c \|w_1\|_{s_1}^M \|w_2\|_{s_2}^M \cdots \|w_n\|_{s_n}^M \]
if $0 \leq s \leq s_1, \ldots, s_n \leq s_0$ with $s_1 + \cdots + s_n \geq s + (n-1)s_0$ and $s_0 > d/2$.

In the following, for functions w defined on S let $\mathcal{E}w$ be an extension into \bar{E}, i.e.,
\[\mathcal{E}w|_S = w, \]
whereby the trace mapping theorem permits us to choose
\[(4.6) \quad \mathcal{E} \in \mathcal{L}(H^s(S), H^{s+1/2}(E)) \quad \text{for all } s > 0. \]

For \mathbb{R}^m-valued functions we apply \mathcal{E} componentwise.

Our first technical concern is the extension of the mapping $u \in U_s$ to a suitable diffeomorphism \tilde{u} from \bar{E} to $\Omega_u \cup \Gamma_u$. For fixed, smooth $u_0 \in \text{Diff}(\bar{E}, \Omega_u) \cup \Gamma_u$,
\[(4.7) \quad \text{clearly defines a possible extension for all } u \in U_s \text{ such that } \|u_0\|_S - \|u\|_s < \varepsilon \text{ for sufficiently small } \varepsilon > 0. \]
However, ε depends on u_0 in an uncontrolled way. Eventually, this would restrict our existence results to evolutions in an open and dense subset of U_s containing $U_s \cap C^\infty(S, \mathbb{R}^m)$ but being uncharacterized otherwise. The following lemma provides a way to avoid this unnecessary restriction.

Lemma 4.1. Let $v \in U_s$, $s > (m+1)/2$. Then there exist an H^s-neighborhood $V_s \subseteq U_s$ of v and a map $u_0 \in C^\infty(\bar{E}, \mathbb{R}^m)$ such that for every $u \in V_s$ the mapping
\[(4.7) \quad \tilde{u} := u_0 + \mathcal{E}(u - u_0) \]
defines a diffeomorphism of \bar{E} onto Ω_u.

Proof. By the definition (3.1) of U, every $v \in U$ has an extension $v_1 \in \text{Diff}(\bar{E}, \Omega_v)$ and there exists an $\varepsilon > 0$ such that $w \in \text{Diff}(\bar{E}, \Omega_w)$ for all $w \in C^1(\bar{E}, \mathbb{R}^n)$ with $\|w - v_1\|_{C^1} < \varepsilon$. Thus it suffices to find u_0 and V_s with
\[(4.8) \quad \|	ilde{u} - v_1\|_{C^1} < \varepsilon \quad \text{for all } u \in V_s, \]
where \tilde{u} is given by (4.7). Let
\[(4.9) \quad \mathcal{E}_1 \in \mathcal{L}(C^1(S, \mathbb{R}^m), C^1(\bar{E}, \mathbb{R}^m)) \]
be an extension operator which maps $C^\infty(S, \mathbb{R}^m)$ into $C^\infty(\bar{E}, \mathbb{R}^m)$. Setting
\[u_0 = w_1 + \mathcal{E}_1w_2 \quad \text{with} \quad w_1 \in C^\infty(\bar{E}, \mathbb{R}^m), \; w_2 \in C^\infty(S, \mathbb{R}^m) \]
to be chosen later, we get by Sobolev embedding $H^{s+1/2}(E) \hookrightarrow C^1(\bar{E})$ and (4.6),
\[(4.9) \quad \|\tilde{u} - v_1\|_{C^1} \leq C\|u - u_0\|_{\mathcal{H}^s} + \|u_0 - v_1\|_{C^1} \]
\[\leq C\left(\|w_2\|_{C^1} + \|u - u_0\|_{\mathcal{H}^s} + \|w_1 - v_1\|_{C^1}\right) \]
\[\leq C\left(\|w_1 - v_1\|_{C^1} + \|w_2 + w_1 - v\|_{\mathcal{H}^s} + \|u - u_0\|_{\mathcal{H}^s} + \|u - v\|_{\mathcal{H}^s}\right). \]

Hence, letting $\delta = \varepsilon/(4C)$ and choosing first w_1 with $\|w_1 - v_1\|_{C^1} \leq \delta$ and, afterwards,
\[w_2 \text{ with } \|w_2 + w_1 - v\|_{\mathcal{H}^s} \leq \delta, \text{ then (4.8) is valid with } V_s = \{ u \mid \|u - v\|_{\mathcal{H}^s} < \delta \}. \]

Fix $s > (m+1)/2$, $v \in U_s$, and V_s according to Lemma 4.1. Maintaining notation and construction of this lemma, let
\[(4.10) \quad \tilde{E} \ni x \to y = \tilde{u}(x) = (\tilde{u}_1(x), \ldots, \tilde{u}_m(x)) \in \bar{\Omega}_u, \quad u \in V_s, \]
be the corresponding diffeomorphism (4.7), $J = (\partial_i \tilde{u}_j)$ its Jacobian, and $(g_{ij}) = J^\top J$ the Euclidean metric tensor relative to the above coordinates. Furthermore let (g^{ij}) be the inverse of (g_{ij}) and $g = \det(g_{ij})$. Then we have $(g^{ij}) = g^{-1}(\text{Cof } J)^\top (\text{Cof } J)$, where
Cof $J = (a_{ij})$ and a_{ij} is the algebraic complement of $\partial_i \tilde{u}_j$ in J. Note that, uniformly in $u \in V_s$, the function g is strictly positive in E. Moreover, for the transformation $\omega = d\Gamma_u/dS$ of surface area elements via (4.10) and the outer normals n of Ω_u and ν of S, the following holds:

$$\omega = |(\text{Cof } J)\nu|, \quad n \circ \tilde{u} = (\text{Cof } J)\nu/|(\text{Cof } J)\nu|.$$

By definition, all of the quantities g, g_{ij}, a_{ij}, and g^{ij} are polynomials in the first derivatives of \tilde{u} and, in the case of g^{ij}, additionally in $1/g$. Consequently, remembering (4.1)–(4.5) and the construction (4.7) of \tilde{u}, we obtain smooth dependence of these quantities on u. More precisely, we have

$$(u \mapsto q) \in C^\infty \left(V_s, H^{s+1/2}(E) \right), \quad q = g, g_{ij}, a_{ij}, \text{ or } g^{ij},$$

and (4.5) implies an estimate of the derivatives corresponding to (4.12).

$$(u \mapsto q) \in C^\infty \left(V_s, H^{s+1}(E) \right), \quad q = \omega, g, g_{ij}, a_{ij}, \text{ or } g^{ij},$$

with an estimate of the derivatives corresponding to (4.12).

Now, introducing the transformed velocity potential $\psi = \psi(u)f = \varphi(u,f) \circ \tilde{u}$ and the transformed Laplace and boundary operator according to

$$L(u)\psi = \partial_i(\sqrt{g}g^{ij}\partial_j \psi), \quad B(u)\psi = \omega \psi + \nu \sqrt{g}g^{ij}\partial_j \psi,$$

the Robin problem (3.6) may be written as

$$(u \mapsto \psi) \in C^\infty \left(V_s, H^{s+1}(E) \right), \quad \psi = \omega \circ \tilde{u},$$

with an estimate of the derivatives corresponding to (4.12).

Note that the values of $\psi(u)f$ in E depend not only on u and f, but also on the deformation \tilde{u}, i.e., on the chosen V_s. On the other hand, $\psi(u)f|_S$ is completely determined by u and f. The symmetry of the operator $h \mapsto \varphi(u)h$ w.r.t. the L^2-inner product on Γ_u implies

$$(u \mapsto \psi) \in C^\infty \left(V_s, H^{s+1}(E) \right), \quad \psi = \omega \circ \tilde{u},$$

(recall that $\omega = d\Gamma_u/dS$ and the operator F from (3.5) gets the form

$$(u \mapsto F(u)) \in C^\infty \left(V_s, H^{s+1}(E) \right), \quad F(u)f = (F_1(u)f, \ldots, F_m(u)f), \quad F_i(u)f = a_{ij}\partial_j \psi(u)f/\sqrt{g}.$$
Moreover, let \(\mu \in H^s(\Omega) \) with \(s > m/2 \) and \(\mu(x_0) = 0 \). Then there is an \(s_1 \in (m/2, s) \) such that

\[
\lim_{\varepsilon \to 0} \| \chi_\varepsilon \mu \|_{s_1}^\Omega = 0.
\]

Proof. Note at first that

\[
\| \chi_\varepsilon \|_{s}^{\mathbb{R}^m} \leq C \varepsilon^{m/2-s}.
\]

This is immediately clear for integer \(s \); the general case follows by interpolation. By Sobolev’s embedding, we have \(\mu \in C^\alpha(\Omega) \) for some \(\alpha > 0 \), and consequently, due to \(\mu(x_0) = 0 \),

\[
|\mu(x)| \leq C \varepsilon^\alpha, \quad x \in \text{supp} \chi_\varepsilon \cap \Omega.
\]

Thus,

\[
\| \chi_\varepsilon \mu \|_{0}^\Omega \leq C \varepsilon^\alpha \| \chi_\varepsilon \|_{0}^\Omega \leq C \varepsilon^{\alpha+m/2}
\]

and

\[
\| \chi_\varepsilon \mu \|_{s}^\Omega \leq C \| \chi_\varepsilon \|_{s}^\Omega \| \mu \|_{s}^\Omega \leq C \varepsilon^{m/2-s}.
\]

The assertion follows now from interpolation. \(\square\)

Lemma 4.3. Let \(s > (m+1)/2 \), \(s_0 \in ((m+1)/2, s) \) be given.

For any \(v \in U_s \) there is an \(H^{s_0} \)-neighborhood \(V_{s_0} \) such that the boundary value problem

\[
L(u)w = \partial_i h_i \text{ in } E, \quad B(u)w = \omega e + \nu_i h_i \text{ on } S
\]

is uniquely solvable for \(u \in V_{s_0} \cap H^s(S, \mathbb{R}^m) \), \(e \in H^{s-1}(S) \), \(h \in H^{s-1/2}(E, \mathbb{R}^m) \).

Moreover, we have

\[
(4.17) \quad \|w\|_t^E \leq C(\|h\|_{t-1}^E + \|e\|_{t-3/2}^S)
\]

for \(t \in [1, s+1/2] \) with \(C \) independent of \(h, e \), and \(u \) varying in \(H^s \)-bounded subsets of \(V_{s_0} \cap H^s(S, \mathbb{R}^m) \).

Proof. 1. Fix \(v \in U_s \) and choose \(V_{s_0} \) according to Lemma 4.1. Fix \(u \in V_{s_0} \cap H^s(S, \mathbb{R}^m) \). For \(t = 1 \), the assertions are easily seen from the variational formulation. For \(t = s+1/2 \), the assertions follow from the \(H^s \)-regularity theory of elliptic boundary value problems (with operators in divergence form). Our coefficients \(\sqrt{g} \partial_j \), however, are only in \(H^{s-1/2}(E) \), which is slightly nonstandard. To prove the necessary regularity result in this case, we can proceed as in the proof of Theorem A.14 in [12], replacing the Hölder norms there by Sobolev norms. To control the error terms occurring from the freezing of coefficients, we use the estimate

\[
\| \mu_{ij} \partial_j w \|_{s-1/2}^E \leq C(\| \mu_{ij} \|_{s_1}^E \| w \|_{s+1/2}^E + \| \mu_{ij} \|_{s-1/2} \| w \|_{s_1+1/2}^E)
\]

(and a corresponding one for the boundary term) with \(s_1 \) from Lemma 4.2. Recalling that \(\mu_{ij} \) has a form to which that lemma applies, (4.17) can be established for \(t = s+1/2 \) by a usual perturbation argument, with a constant \(C = C(u) \). The general case follows by interpolation.
2. To show uniformity w.r.t. \(u \in V_{s_0} \cap H^s(S, \mathbb{R}^m) \), we proceed in a similar way: For \(t = s + 1/2 \), pick \(u_1, u_2 \in V_{s_0} \cap H^s(S, \mathbb{R}^m) \), denote the corresponding coefficients by \(\sqrt{g}g^{ij}_k \), \(k = 1, 2 \), and estimate

\[
\| (\sqrt{g}g^{ij}_1 - \sqrt{g}g^{ij}_2) \partial_\nu w \|_{s-1/2}^E \\
\leq C(\| u_1 - \bar{u}_1 \|_{s+1/2}^E \| w \|_{s+1/2}^E + \| u_2 - \bar{u}_2 \|_{s+1/2}^E \| w \|_{s+1/2}^E) \\
\leq C(\| u_1 - u_2 \|_{s+1}^E \| w \|_{s}^E + \| w \|_{1}^E),
\]

where an interpolation inequality has been used. A similar estimate can be given for the boundary term. After shrinking \(V_{s_0} \) if necessary, one can show the uniformity by another perturbation argument.

Under the assumptions of Lemma 4.3, as a first trivial consequence we obtain the estimate

\[
\| \psi(u)f \|_{t}^E, \| \hat{\psi}(u)f \|_{t-1/2}^E \leq C\| f \|_{t-3/2}
\]

for \(t \in [1, s + 1/2] \). Note for later reference that these estimates continue to hold for \(t \in [0, s + 1/2] \), provided \(s \geq \max\{m + 1, 5\}/2 \). To see this, it is sufficient to show (4.18) for \(t = 0 \); the general case follows by interpolation again. Fix \(u \), pick \(\phi \in L^2(S) \) arbitrary and define \(w \in H^{3/2}(E) \) by

\[
L(u)w = 0 \text{ in } E, \quad B(u)w = \phi \text{ on } S.
\]

Then, by Green’s formula rewritten in the form

\[
\int_E (\phi_1 L(u)\phi_2 - \phi_2 L(u)\phi_1) \, dx = \int_S (\phi_1 B(u)\phi_2 - \phi_2 B(u)\phi_1) \, dS
\]

and (4.17) with \(t = 2 \),

\[
\int_S \phi \hat{\psi}(u) f \, dS = \int_S B(u)w \psi(u) f \, dS = \int_S w \omega f \, dS \\
\leq C\| w \|_{3/2}^E \| f \|_{-3/2}^E \leq C\| \phi \|_{1/2}^E \| f \|_{-3/2}^E.
\]

This proves the second estimate in (4.18). Analogously, picking \(\zeta \in L^2(E) \) and defining \(v \in H^2(E) \) by

\[
L(u)v = \zeta \text{ in } E, \quad B(u)v = 0 \text{ on } S,
\]

we get

\[
\int_E \zeta \psi(u) f \, dx = \int_E L(u)w \psi(u) f \, dx = -\int_S w \omega f \, dS \leq C\| \zeta \|_0 \| f \|_{-3/2}^E.
\]

This proves the first estimate in (4.18).

Furthermore, concerning the smooth dependence of \(\psi(u)f \) on \(u \), Lemma 4.3 together with (4.11), (4.13) implies via a perturbation argument

\[
[u \mapsto \psi(u)] \in C^\infty(V_s, \mathcal{L}(H^{1-3/2}(S), H^1(E))).
\]

Replacing \(t \) by \(t - 3/2 \) and considering (4.16), leads to the following corollary.
Corollary 4.4. Let \(s > (m + 1)/2 \) and \(-1/2 \leq t \leq s - 1\). Then
\[
[u \mapsto F(u)] \in C^\infty(U_s, \mathcal{L}(H^t(S), H^t(S, \mathbb{R}^m))).
\]

Recall that our ultimate goal is to prove the energy estimate (1.3). Since we will translate spatial derivatives into Fréchet derivatives later, higher order Fréchet derivatives will have to be estimated. The operator \((u, f) \mapsto F(u)f\) is of order one w.r.t. \(u \) and of order zero w.r.t. \(f \); note that the estimates (4.20) are standard for local operators of this type, e.g.,
\[
(u, f) \mapsto [x \mapsto \Psi(\nabla u(x))f(x)].
\]

The nonstandard aspect here is that \(F \) involves the solution of an elliptic boundary value problem, and therefore the same is true for its Fréchet derivatives.

Lemma 4.5. Let \(s > (m + 1)/2, u \in U_s, \) and \(t \in [1, s] \) be given. Then for any choice of \(s_1, \ldots, s_k+1 \in [1, s] \) with \(s_1 + \cdots + s_k+1 \geq t + ks \) there exists a constant \(C > 0 \) such that for all \(f \in H^{s_1}(S) \) and all \(u_1, \ldots, u_k \in H^s(S, \mathbb{R}^m) \) the following holds:
\[
\|F^{(k)}(u)\{u_1, \ldots, u_k\}f\|_{t-1} \leq C\|u_1\|_{s_1} \cdots \|u_k\|_{s_k}\|f\|_{s_{k+1}-1}.
\]

The constant may be chosen independently of \(u \) as long as \(u \) varies in \(H^s \)-bounded subsets of \(U_s \) which are \(H^{s_0} \)-closed for some \(s_0 \in ((m + 1)/2, s) \).

Proof. 1. Fix \(v \in U_s \) and a neighborhood \(V_{s_0} \) according to Lemma 4.3. We show (4.20) with \(C \) independent of \(u \in V_{s_0} \cap H^s(S, \mathbb{R}^m) \). To begin with, recall the estimate (4.18) in the form
\[
\|\nabla \psi(u)f\|_{t-1}^2, \|\psi(u)f\|_{t+1/2}^E \leq C\|f\|_{t-1}
\]
for \(t \in [1, s] \); concerning the estimate of \(\nabla \psi \) along \(S \) in the limit case \(t = 1 \), note that the boundary condition allows a representation of \(\nabla \psi \) as a suitable linear combination of \(\psi, f \), and tangential derivatives of \(\psi \). In view of (4.16) this implies the asserted estimate (4.20) for the simplest case \(k = 0 \). To obtain similar estimates for the Fréchet derivatives \(\psi^{(k)} = \psi^{(k)}(u)\{u_1, \ldots, u_k\}f, k = 1, 2, \ldots \), we have to examine the corresponding derivatives of the coefficients in the transformed Laplacian and the boundary terms. For \(\psi^{(k)} \) we get
\[
L(u)\psi^{(k)} = -\sum L^{(l)}(u)\{u_{i_1}, \ldots, u_{i_l}\}\psi^{(k-l)}(u)\{u_{i_{l+1}}, \ldots, u_k\}f \quad \text{in } E,
\]
\[
B(u)\psi^{(k)} = -\sum B^{(l)}(u)\{u_{i_1}, \ldots, u_{i_l}\}\psi^{(k-l)}(u)\{u_{i_{l+1}}, \ldots, u_k\}f
\]
\[
+ \omega^{(k)}\{u_1, \ldots, u_k\}f \quad \text{on } S,
\]
where
\[
L^{(l)}(u)\{u_{i_1}, \ldots, u_{i_l}\}\varphi = \varphi_i((\sqrt{g}g^{ij})^{(k)}\{u_{i_1}, \ldots, u_{i_l}\})\partial_j\varphi,
\]
\[
B^{(l)}(u)\{u_{i_1}, \ldots, u_{i_l}\}\varphi = \varphi_i((\sqrt{g}g^{ij})^{(k)}\{u_{i_1}, \ldots, u_{i_l}\})\partial_j\varphi + \omega^{(l)}\{u_{i_1}, \ldots, u_{i_l}\}\varphi,
\]
and the sums are extended over \(1 \leq l \leq k \) and all decompositions \(i_1 < \cdots < i_l \)
and \(i_{l+1} < \cdots < i_k \) of the indices \(1, 2, \ldots, n \). In particular, if \(k = 1 \), we obtain for \(\psi' = \psi'(u)\{u_1\}f \) the boundary value problem
\[
L(u)\psi' = -\partial_i((\sqrt{g}g^{ij})'\{u_1\})\partial_j\psi \quad \text{in } E,
\]
\[
B(u)\psi' = -\omega_i((\sqrt{g}g^{ij})'\{u_1\})\partial_j\psi + \omega'(u_1)(f - \psi) \quad \text{on } S.
\]
Thus, for any $t \in [1, s]$, Lemma 4.3 implies
\[\|\psi'(u)\{u_1\} f\|_{t+1/2}^E \leq C \left(\|\sqrt{gg^{ij}\psi'}(u_1) \partial_j \psi\|_{t-1/2}^E + \|\omega'(u_1)(f - \psi)\|_{t-1}^S \right). \]
To estimate the terms on the right-hand side, by (4.5) we obtain
\[\|\sqrt{gg^{ij}\psi'}(u_1) \partial_j \psi\|_{t-1/2}^E \leq C \|\sqrt{gg^{ij}\psi'}(u_1)\{u_1\}\|_{s_1-1/2}^E \|\partial_j \psi\|_{s_2-1/2}^E, \]
and accordingly
\[\|\omega'(u_1)(f - \psi)\|_{t-1}^S \leq C \|\psi'(u_1)\|_{s_2-1}^S \|f\|_{s_2-1}^S + \|\psi\|_{s_2-1}^S. \]
for any choice of $s_1, s_2 \in [t, s]$ with $s_1 + s_2 \geq t + s$. As
\[\|\psi\|_{s_2-1}^S \|\partial_j \psi\|_{s_2-1/2}^E \leq C \|\psi\|_{s_2+1/2}^E \leq C' \|f\|_{s_2-1}, \]
by (4.21), using (4.12), (4.13), we find
\[\|\sqrt{gg^{ij}\psi'}(u_1) \partial_j \psi\|_{t-1/2}^E \|\omega'(u_1)(f - \psi)\|_{t-1}^S \leq C' \|u_1\|_{s_1} \|f\|_{s_2-1}, \]
and hence
\[\|\nabla \psi'(u)\{u_1\} f\|_{t-1}^S, \|\psi'(u)\{u_1\} f\|_{t+1/2}^E \leq C \|u_1\|_{s_1} \|f\|_{s_2-1}, \]
where the same remark applies to the estimate of $\nabla \psi'$ along S as to (4.21). Using (4.22), these estimates are extended inductively to $\psi^{(k)}$:
\[\|\nabla \psi^{(k)}\|_{t-1}^S, \|\psi^{(k)}\|_{t+1/2}^E \leq C \|u_1\|_{s_1} \cdots \|u_k\|_{s_k} \|f\|_{s_k+1-1}, \]
provided $t \in [1, s]$, $s_1, \ldots, s_k+1 \in [t, s]$ with $s_1 + \cdots + s_k+1 \geq t + ks$. In view of (4.16), these estimates together with (4.11) and (4.5) imply the asserted estimate (4.20).

2. Let $K \subset U_s$ be H^{s_0}-closed and bounded in $H^s(S, \mathbb{R}^m)$. As shown in part 1 of this proof, K can be covered by H^{s_0}-open sets $V_{s_0, v}, v \in K$, such that (4.20) holds uniformly for $u \in V_{s_0, v} \cap K$. Now the assertion follows from the compactness of K in $H^{s_0}(S, \mathbb{R}^m)$.

Now we use invariance properties w.r.t. diffeomorphisms (cf., e.g., [10]). Let $\tau \in \text{Diff}(S)$. Then by definition
\[\varphi(u, f) = \varphi(u \circ \tau, f \circ \tau) \text{ in } \Omega_u. \]
Recalling the definition of F, we have
\[(F(u)f) \circ \tau = (\nabla \varphi(u, f)) \circ (u \circ \tau), \]
\[F(u \circ \tau)(f \circ \tau) = (\nabla \varphi(u \circ \tau, f \circ \tau)) \circ (u \circ \tau)p; \]
consequently (4.25) implies
\[(F(u)f) \circ \tau = F(u \circ \tau)(f \circ \tau) \text{ on } S. \]
Any smooth vector field D on S, identified with a first order differential operator, generates a one-parameter group of smooth diffeomorphisms $t \mapsto \tau_t$ with $\tau_t = id$ for $t = 0$. Setting $\tau = \tau_t$ in (4.26) and differentiating w.r.t. t at $t = 0$ gives
\[DF(u)f = F'(u)\{Du\}f + F(u)Df \]
Then we have

\[DF^{(k)}(u)\{ \ldots \} f = F^{(k+1)}(u)\{ Du, \ldots \} f + F^{(k)}(u)\{ \ldots \} Df \]

(4.28) \[+ \sum_{j=1}^{k} F^{(k)}(u)\{ u_1, \ldots, u_{j-1}, Du_j, u_{j+1}, \ldots, u_k \} f, \]

where the dots indicate the arguments \(u_1, \ldots, u_k \) \(\in H^s(S, \mathbb{R}^m) \). We choose \(m \) smooth vector fields \(D_1, \ldots, D_m \) on \(S \) such that

\[\text{span}\{D_1, \ldots, D_m\} = T_x \text{ for all } x \in S \]

and use the multi-index notation \(D^\alpha = D_1^{\alpha_1} \cdots D_m^{\alpha_m}, \alpha = (\alpha_1, \ldots, \alpha_m) \), for higher order derivatives. Note that, for \(s \geq 0 \) integer, we can use

\[(u, v)_s = \sum_{|\alpha| \leq s} (D^\alpha u, D^\alpha v)_{L^2(S)} \]

as the inner product generating the norm in \(H^s(S) \). As a consequence of (4.27), (4.28), by induction we obtain a differentiation rule which resembles Leibniz’s rule at an abstract level: For any multi-index \(\alpha \) and \(u \in U_s, f \in H^{s-1}(S), s > |\alpha|+(m+1)/2, \) it holds that

(4.29) \[D^\alpha F(u)f = \sum c_{\beta_1, \ldots, \beta_{k+1}} F^{(k)}(u)\{ D^{\beta_1}u, \ldots, D^{\beta_k}u \} D^{\beta_{k+1}} f, \]

where the sum has to be extended over all integers \(k \) and systems of nonnegative multi-indices \(\beta_1, \ldots, \beta_{k+1} \) with

(4.30) \[0 \leq k \leq |\alpha|, \quad 1 \leq |\beta_1|, \ldots, |\beta_k|, \quad \beta_1 + \cdots + \beta_{k+1} = \alpha. \]

The coefficients are nonnegative integers, in particular, \(c_{\alpha} = c_{\alpha,0} = 1 \).

The differentiation rule (4.29) and Lemma 4.5 enable us to prove estimates involving spatial derivatives of \(F \). Concerning the second part of the following proposition, note that (4.31) provides a splitting of \(D^\alpha F(u)f \) according to (4.29), with \(R_\alpha(u)f \) containing the lower order terms, i.e., the terms involving spatial derivatives up to order \(|\alpha| - 1 \) only. Again, the results (as well as the techniques used in the proof) are standard for local operators of corresponding types.

Proposition 4.6.

(i) Let \(s \geq s_0 > (m+1)/2 \) integer, \(u \in U_{s+1} \). Then

\[\|F(u)f\|_s \leq C(\|u\|_{s+1}\|f\|_{s_0} + \|f\|_s). \]

(ii) Assume additionally \(s \geq s_0 + 1 \) and let \(\alpha \) be any multi-index with \(|\alpha| = s \). Then we have

(4.31) \[D^\alpha F(u)f = F(u)D^\alpha f + F'(u)\{ D^\alpha u \} f + R_\alpha(u)f, \]

where the remainder term allows the estimate

\[\|R_\alpha(u)f\|_s \leq C(\|u\|_s\|f\|_{s_0} + \|f\|_{s-1}). \]
The constants in both estimates can be chosen uniformly as u varies in H^{s_0}-closed, H^{s_0+1}-bounded subsets of U_{s+1}.

Proof. We consider the more complicated situation (ii) only. According to (4.29), the remainder term has a representation as a sum of terms

$$I_\beta = f^{(k)}(u) \{ D^{\beta_1} u, \ldots, D^{\beta_k} u \} D^{\beta_{k+1}} f,$$

where the multi-indices satisfy (4.30) and additionally $|\beta_i| \geq 1$ for at least two indices, say $i = i_1, i_2$. We estimate I_β using (4.20) with $s_i = 1 + (1 - \theta_i)(s_0 - 1)$ and

$$\theta_i = (|\beta_i| - 1)/(s - 2), \quad i = i_1, i_2, \quad \theta_i = |\beta_i|/(s - 2), \quad i \notin \{i_1, i_2\}.$$

Then $s_i \in [1, s_0]$ and $s_1 + \cdots + s_{k+1} = 1 + ks_0$; hence applying (4.20) (with $t = 1$, $s = s_0$) yields

$$\|I_\beta\| \leq C \|u\|_{s_0+1} \|u\|_{s_0+1} \|f\|_{s_0+1} \|f\|_{s_0+1+1}.$$

Note that $\theta_1 + \cdots + \theta_{k+1} = 1$ and set $\lambda := \theta_1 + \cdots + \theta_k$. From

$$|\beta_i| + s_i \leq (1 - \theta_i)(s_0 + 1) + \theta_is,$$

we get by norm convexity and Young’s inequality

$$\|I_\beta\| \leq C \|u\|_{s_0+1}^{k-1} \|u\|_{s_0+1} \|f\|_{s_0} \|f\|_{s_0}^{1-\lambda} \|u\|_{s_0} \|f\|_{s_0}^\lambda \leq C \|u\|_{s_0+1}^{k-1} \|u\|_{s_0+1} \|f\|_{s_0} + \|u\|_{s_0} \|f\|_{s_0}.$$

This proves the assertion. □

We conclude this section with remarks concerning the Neumann–Dirichlet operator A defined by (3.9), (3.10). It is obvious that the regularity properties of $u \mapsto A(u)$ are the same as for $u \mapsto \psi(u)|_S$; hence (4.19) reappears as

(4.32)
$$[u \mapsto A(u)] \in C^\infty(U_s, \mathcal{L}(H^t(S), H^{t+1}(S)))$$

for $s > (m+1)/2$ and $-1/2 \leq t \leq s - 1$. Moreover, the differentiation rule (4.28) also holds for A, and $\psi_N(u)f := \varphi_N(u) f \circ \tilde{u}$ satisfies estimates parallel to (4.23). Hence we get

(4.33)
$$\|A^{(k)}(u) \{ u_1, \ldots, u_k \} f \|_t \leq C \|u_1\|_s \cdots \|u_k\|_s \|f\|_{s+k+1},$$

provided $s_1, \ldots, s_{k+1} \in [t, s]$ with $s_1 + \cdots + s_{k+1} \geq t + ks$. Thus we have the following analogue to Proposition 4.6.

Proposition 4.7.

(i) Let $s \geq s_0 > (m+1)/2$ integer, $u \in U_s$, and $f \in H^{s_0-1}(S)$. Then

$$\|A(u)f\|_s \leq C \|u\|_{s_0} \|f\|_{s_0-1} + \|f\|_{s-1}$$

with a uniform constant as long as u varies in H^{s_0}-closed, H^{s_0}-bounded subsets of U_s.

(ii) Assume additionally $s \geq s_0 + 1$, and let α be any multi-index with $|\alpha| = s - 1$. Then we have

$$\|D^\alpha A(u)f - A(u)D^\alpha f\|_1 \leq C \|u\|_{s_0} \|f\|_{s_0-1} + \|f\|_{s_0-2},$$

where now the constant can be chosen uniformly as u varies in H^{s_0}-closed, H^{s_0+1}-bounded subsets of U_{s+1}.
Finally, for later reference we point out the simple commutator estimate

\[(4.34) \quad \|A(u)(hf) - hA(u)f\|_1 \leq C\|h\|_s\|f\|_{s-1}\]

for \(u \in U_s\), \(f, h \in H^s(S)\), \(s > (m + 1)/2\). Fixing any neighborhood \(V_s\) according to Lemma 4.1, fixing \(u \in V_s\) with corresponding diffeomorphism \((4.10)\), and considering

\[A(u)f = \psi(u)(f - \omega A(u)f)|_S\]

reduces \((4.34)\) to

\[(4.35) \quad \|h\psi(u)f - \psi(u)(hf)\|_1^S \leq C\|h\|_s\|f\|_{s-1}.\]

Let \(\tilde{h}\) be the extension of \(h\) into \(E\) determined by solving the Dirichlet problem

\[L(u)\tilde{h} = 0 \text{ in } E, \quad \tilde{h} = h \text{ on } S.\]

Clearly \(\|\tilde{h}\|^{E}_{s+1/2} \leq C\|h\|_s\) and \(\tilde{\psi} := h\psi(u)f - \psi(u)(hf)\) solves the boundary value problem

\[L(u)\tilde{\psi} = 2\partial_i(\sqrt{g}g^{ij}\partial_j\tilde{h}\psi(u)f) \text{ in } E,\]

\[B(u)\tilde{\psi} = -\omega u_i g^{ij}\partial_i\tilde{h}\psi(u)f \text{ on } S.\]

Hence by Lemma 4.3

\[\|\tilde{\psi}\|^{E}_{3/2} \leq C\|\sqrt{g}g^{ij}\partial_i\tilde{h}\|_{s-1/2}\|\psi(u)f\|^{E}_{1/2} \leq C\|h\|_s\|\psi(u)f\|^{E}_{1/2}.\]

Together with \((4.18)\) this implies \((4.35)\).

5. **The main estimate.** In this section we prove \(H^s\) a priori estimates for the nonlinear operator \(\mathcal{F}\) w.r.t. variable bilinear forms, which we define in what follows.

As already mentioned in the introduction, these estimates are the main ingredient in the existence proof.

To begin with, for \(u \in U_s\), \(s > (m + 1)/2\), we define

\[(5.1) \quad P(u)v := v \cdot (n(u) \circ u), \quad N(u)w := w (n(u) \circ u),\]

\[(5.2) \quad \Lambda(u)w := \nabla_{\Gamma_u}(w \circ u^{-1}) \circ u\]

as the Euclidean inner product and multiplication with outer normal \(n(u)\) of \(\Gamma_u\) and pullback of tangential gradient \(\nabla_{\Gamma_u}\) along \(\Gamma_u\), respectively. If \(P(u), N(u),\) and \(\Lambda(u)\) are considered as operators in \(v\) and \(w\), their coefficients are smooth functions of \(u\) and its first derivatives. Thus, using \((4.1)-(4.5),\)

\[(5.3) \quad P(u) \in \mathcal{L}(H^1(S, \mathbb{R}^m), H^1(S)), \quad N(u) \in \mathcal{L}(H^1(S), H^1(S, \mathbb{R}^m)),\]

\[(5.4) \quad \Lambda(u) \in \mathcal{L}(H^1(S), H^{t-1}(S, \mathbb{R}^m))\]

depend smoothly on \(u \in U_s\) for \(0 \leq t \leq s - 1\) and \(1 \leq t \leq s\), respectively. Clearly, the operators \(P, N, \Lambda\) satisfy invariance properties as stated for \(F\) in \((4.26)\). As a consequence, the differentiation rule \((4.27)\) and its corollary \((4.28)\) are also true for \(P, N, \Lambda\): we make use of that without explicit mention. Further, recall that the pullback \(\Delta(u)w\) of the Laplace–Beltrami operator \(\Delta_{\Gamma_u}\) on \(\Gamma_u\) according to \((3.8)\) and the operator \(H(u)\) according to \((3.7)\) may be expressed as

\[\Delta(u)w = \Lambda_i(u)(\Lambda_i(u)w), \quad H(u) = -\gamma\Lambda_i(u)(n_i(u) \circ u),\]
Furthermore, note the estimates (5.5) provided for the differential operator \(∇ \) by (3.4), (3.7) satisfies

\[[u \mapsto G(u)] \in C^∞(U_s, H^{s-2}(S)), \]

provided \(s > (m + 3)/2 \). Together with Corollary 4.4 this implies the smoothness of \(F \) as stated in (3.12).

In further considerations of this section we fix the integer \(s_0 := [(m + 5)/2] + 1 \) and set

\[\tilde{U}_s := U_s ∩ K \text{ for all } s \geq s_0 \]

with an \(H^∞ \)-bounded and \(L^2 \)-closed subset \(K \subseteq U_{s_0} \). Note that

\[1 \leq C∥u∥_{s_0} \leq C′∥u∥_s, \quad ∥u∥_{C^2(S)} \leq C \]

for all \(u \in \tilde{U}_s, s \geq s_0 \). By transforming the well-known integration by parts formula for the differential operator \(∇_{Γ_u} \) onto \(S \), we get the form

\[\int_S ωΛ_i(u)f dS = -\int_S ω(κ_{Γ_u} ∘ u)(n_i(u) ∘ u)f dS. \]

Consequently, for \(u \in \tilde{U}_s, s \geq s_0 \), and any \(f \in C^1(S) \), we have

(5.5) \[\left| \int_S Λ_i(u)f dS \right| \leq C \int_S |f| dS. \]

Furthermore, note the estimates

\[∥G(u)∥_{s-2}, ∥F(u)∥_{s-2} \leq C∥u∥_s \quad \text{for all } u \in \tilde{U}_s, s \geq s_0. \]

The following lemma is crucial, as it identifies the leading (first) order term in the linearization of \(u \mapsto F(u) \) in an explicit way.

Lemma 5.1. Let \(s \geq s_0 \). Then for \(u \in U_s, v \in H^s(S, \mathbb{R}^m) \), and \(f \in H^{s-1}(S) \) it holds that

\[F′(u)\{v\}f = F(u)(Λ(u)(P(u)v) ∙ F(u)f) + R(u)\{v\}f, \]

where \(R \) allows the estimate

\[∥R(u)\{v\}f∥_0 \leq C∥f∥_{s-1}∥v∥_0. \]

The constant is independent of \(u \) as long as \(u \) varies in \(\tilde{U}_s \).

Proof. As in the proof of Lemma 4.5 we can assume \(u \in V_s \). We have

\[F′_i(u)\{v\}f = ∂_iφ′ ∘ u + v_j∂_i∂_jφ ∘ u, \]

where \(φ′ = φ′(u, f)\{v\} \) denotes the derivative w.r.t. \(u \) of the velocity potential \(φ = φ(u, f) \) in \(Ω_u \). As

\[||φ(u, f)||_{C^2(Ω_u)} \leq C_1||ψ(u)f||_{C^2(E)} \leq C_2||ψ(u)f||_{H^{s+1/2}(E)} \leq C_3||f||_{s-1} \]

by Sobolev’s embedding and (4.21), we obtain

\[||v_j∂_i∂_jφ ∘ u||_0^s \leq C||f||_{s-1}||v||_0. \]
Furthermore, φ' satisfies $\Delta \varphi' = 0$ in Ω_u and the boundary condition

$$\varphi' + n \cdot \nabla \varphi' + n' \cdot \nabla \varphi + (\partial_i \varphi + n_j \partial_j \varphi) v_i \circ u^{-1} = 0 \text{ on } \Gamma_u,$$

where we have used the abbreviation

$$n' = \partial_i (n(u + \varepsilon v) \circ (\text{id} + \varepsilon v \circ u^{-1}))|_{\varepsilon=0}$$

for the variation of the outer normal on Γ_u. A simple calculation (cf. Lemma 1.1 in [3]) shows

$$n' = -\nabla_{\Gamma_u} (n \cdot v \circ u^{-1}) + v_i \circ u^{-1} \nabla_{\Gamma_u} n_i.$$

By retransformation onto the reference domain E, for $\tilde{\psi}' = \varphi' \circ u$ to satisfy the boundary value problem, this implies

$$L(u)\tilde{\psi}' = 0 \text{ in } E, \quad B(u)\tilde{\psi}' = \Lambda(u)(P(u)v) \cdot F(u)f + R_1(u)\{v\}f \text{ on } S.$$

The operator R_1 acts by pointwise multiplications w.r.t. the components of v, and hence by the same reasoning as above we get the estimate

$$\|R_1(u)\{v\}f\|_0^S \leq C\|f\|_{s-1}\|v\|_0.$$

Thus the result follows. \(\Box\)

For $u \in U_s$ let $M(u) \in L(L^2(S, \mathbb{R}^m))$ be the operator defined by

$$M(u)v := v - \Lambda(u)(\psi(u)P(u)v).$$

By (4.19) and (5.4),

$$M(u) \in L(H^t(S, \mathbb{R}^m), H^t(S, \mathbb{R}^m)), \quad 0 \leq t \leq s - 1,$$

depends smoothly on $u \in U_s$, $s > (m + 1)/2$; for later reference we state explicitly

$$\|M^{(k)}(u)\{u_1, \ldots, u_k\}v\|_t \leq C\|u_1\|_s \cdots \|u_k\|_s \|v\|_t.$$

Because of $P(u)\Lambda(u) = 0$ the operator $M(u)$ constitutes an isomorphism in $L^2(S, \mathbb{R}^m)$ with inverse

$$M(u)^{-1}v = v + \Lambda(u)(\psi(u)P(u)v),$$

and we have

$$C^{-1}\|v\|_0 \leq \|M(u)v\|_0 \leq C\|v\|_0$$

for all $v \in L^2(S, \mathbb{R}^m)$ with a positive constant C independent of $u \in \tilde{U}_s$.

The operator M will be used for the definition of our variable inner products; see (5.12) below. The technique used here is comparable to the symmetrization of hyperbolic systems. The following lemma exhibits the crucial property on which the choice of M is based. Note that it relates, up to lower order terms, an inner product for vector-valued functions to an inner product for scalar-valued ones.

Lemma 5.2. Let $s > (m + 3)/2$. There exists a positive constant C such that for all $u \in \tilde{U}_s$ and $f \in L^2(S), w \in L^2(S, \mathbb{R}^m)$

$$\| (M(u)F(u)f, M(u)w) \|_0 - \| f, P(u)w \|_0 \leq C\|f\|_{-1}\|w\|_0.$$
Proof. Reformulating the boundary condition satisfied by $\psi(u)f$, we have

$$P(u)(F(u)f) = f - \psi(u)f, \quad F(u)f - \Lambda(u)(\psi(u)f) = N(u)(f - \psi(u)f),$$

and consequently

$$M(u)F(u)f = F(u)f - \Lambda(u)\psi(u)(f - \psi(u)f)$$

$$= N(u)(f - \psi(u)f) + \Lambda(u)\psi(u)^2f.$$

Further, recalling $P(u)\Lambda(u) = 0$,

$$(N(u)f, M(u)w)_0 = (f, P(u)M(u)w)_0 = (f, P(u)w)_0,$$

and we obtain

$$(M(u)F(u)f, M(u)w)_0 = (f - \psi(u)f, P(u)w)_0 + (\Lambda(u)\psi(u)^2f, M(u)w)_0.$$

Together with

$$\|\Lambda(u)\psi(u)^2f\|_0^S, \|\psi(u)f\|_0^S \leq C\|f\|_{-1}$$

from (4.18), this immediately implies (5.11). \(\square\)

In view of (5.10), for every fixed $u \in U_s$, $s \geq s_0$,

$$(v, w)_{s,u} := (M(u)v, M(u)w)_0 + \sum_{|\alpha|=s} (M(u)D^{\alpha}v, M(u)D^{\alpha}w)_0$$

defines a inner product on $H^s(S, \mathbb{R}^m)$, which is equivalent to the usual one. This inner product (and corresponding bilinear forms) will be used when we apply the abstract existence theorem, Theorem 3.4, to our evolution problem. The next two lemmas provide the properties necessary for this.

Lemma 5.3. Let $s \geq s_0$ and $u \in \tilde{U}_s$.

(i) There exists a $C > 0$ independent of u such that for all $v \in H^{s+2}(S, \mathbb{R}^m)$ and $w \in H^s(S, \mathbb{R}^m)$

$$(v, w)_{s,u} \leq C\|v\|_{s+2}\|w\|_{s-2}.$$ (5.13)

(ii) There exist $\lambda_0, c_0 > 0$ independent of u such that for all $v \in H^{s+4}(S, \mathbb{R}^m)$ and $\lambda \geq \lambda_0$

$$(v, (\Delta_0^2 + \lambda)v)_{s,u} \geq c_0\|v\|_{s+2}^2.$$ (5.14)

with the elliptic operator $\Delta_0 := D_1D_1$ on S.

Proof. (i) We consider a typical term of (5.12) and show

$$(I_{\alpha}(v,w) := (M(u)D^{\alpha}v, M(u)D^{\alpha}w)_0 \leq C\|v\|_{s+2}\|w\|_{s-2}$$

for smooth v, w and multi-indices α with $|\alpha| = s$. Recalling (5.8), we have

$$\|M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}w\|_0 \leq C\|w\|_0$$

if $|\alpha_1|, \ldots, |\alpha_k| \leq 2$. Thus, writing $D^{\alpha}w = D^\beta D^\delta w$ with $|\beta| = 2$ and $|\delta| = s - 2$, multiple application of the differentiation rule gives a representation

$$M(u)D^{\alpha}w = \sum(-1)^{|\alpha_0|}D^{\alpha_0}M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\delta w,$$ (5.16)
where $|\alpha_i| \leq 2$ (in fact $\alpha_0 + \cdots + \alpha_k = \beta$); hence
\[
\|M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\beta w\|_0 \leq C\|w\|_{s-2}.
\]
Furthermore, using the differentiation rule again, we have
\[
\|M(u)D^\alpha v\|_2 \leq C\|v\|_{s+2},
\]
and consequently
\[
(M(u)D^\alpha w, D^\alpha M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\beta v)_0 \leq C\|v\|_{s+2}\|w\|_{s-2}.
\]
This implies (5.15).

(ii) Using the same type of argument as in the proof of part (i), we obtain
\[
(v, \Delta^2_0 v)_{s,u} \geq (D_iD_j v, D_iD_j v)_{s,u} - C\|v\|_{s+1}\|v\|_{s+2},
\]
and consequently
\[
(v, (\Delta^2_0 + \lambda)v)_{s,u} \geq c_0 (\|v\|^2_{s+2} + \lambda\|v\|^2) - C\|v\|^2_{s+1}
\]
with a positive constant c_0. Hence applying
\[
\|v\|^2_{s+1} \leq \sigma\|v\|^2_{s+2} + C(\sigma)\|v\|^2
\]
with $\sigma = c_0/2$ and choosing λ sufficiently large, we get the claim. □

An immediate consequence of Lemma 5.3(i) is the existence of a continuous bilinear form $\langle \cdot, \cdot \rangle_{s,u}$ on $H^{s+2}(S, \mathbb{R}^m) \times H^{s-2}(S, \mathbb{R}^m)$ compatible with $(\cdot, \cdot)_{s,u}$; i.e., it holds that $\langle v, w \rangle_{s,u} = (v, w)_{s,u}$ for all $v, w \in H^{s+2}(S, \mathbb{R}^m)$. Further, we put for $\varepsilon \in (0, 1]$

\[
(5.17) \quad \langle v, w \rangle_{s,u}^{\varepsilon} := \langle v, w \rangle_{s,0,u} + \varepsilon^2 \langle v, w \rangle_{s,u}.
\]

Lemma 5.4. We assume as above that $s \geq s_0$, $\varepsilon \in (0, 1]$.

(i) For fixed $u \in U_s$, the mapping $\langle \cdot, \cdot \rangle_{s,u}^{\varepsilon} : H^{s+2}(S, \mathbb{R}^m) \times H^{s-2}(S, \mathbb{R}^m) \to \mathbb{R}$ constitutes a continuous, nondegenerate bilinear form, symmetric on $H^{s+2}(S, \mathbb{R}^m) \times H^{s-2}(S, \mathbb{R}^m)$.

(ii) With constants $C > 0$ independent of ε, u, v, w, one has for $u, w \in \bar{U}_s$ and $v \in H^{s+2}(S, \mathbb{R}^m)$

\[
(5.18) \quad C(\|v\|_s^2 + \varepsilon^2\|v\|^2_s) \leq \langle v, v \rangle_{s,u}^{\varepsilon} \leq C^{-1}(\|v\|_s^2 + \varepsilon^2\|v\|^2_s),
\]

\[
(5.19) \quad \langle v, v \rangle_{s,u}^{\varepsilon} \leq \langle v, v \rangle_{s,u}^{\varepsilon}(1 + C\|u - w\|_{s_0-2}).
\]

(iii) The weak convergences $u_n \rightharpoonup u \in H^s$, $w_n \rightharpoonup w \in H^{s-2}$ imply for each $v \in H^{s+2}$

\[
\langle v, w_n \rangle_{s,u}^{\varepsilon} \to \langle v, w \rangle_{s,u}^{\varepsilon}.
\]

Proof. (i) It remains only to show nondegeneracy. First note that Lemma 5.3(ii) implies for every $v \in H^{s+2}$ and $\lambda \geq \lambda_0$

\[
\langle v, \Delta^2_0 v + \lambda v \rangle_{s,u}^{\varepsilon} \geq c_0\|v\|_0^2.
\]

Let ε, u, w be fixed such that $\langle v, w \rangle_{s,u}^{\varepsilon} = 0$ for every $v \in H^{s+2}$. Let λ be sufficiently large and let $v \in H^{s+2}$ be the unique solution of the fourth order elliptic equation

\[
\Delta^2_0 v + \lambda v = w \quad \text{on} \quad S.
\]
Thus we have
\[0 = \langle v, w \rangle_{s,u}^\varepsilon = \langle v, \Delta_0^2 v + \lambda v \rangle_{s,u}^\varepsilon \geq c_0\|v\|_0^2 \]
for our special \(v \); consequently it follows that \(v = 0 \) and then \(w = 0 \).

(ii) The estimates (5.18) are immediate consequences of (5.10). Concerning (5.19) we note only that by (5.8)
\[\|M(u)f - M(w)f\|_0 \leq C\|u - w\|_{s_0-2}\|f\|_0, \]
from which the assertion can easily be derived.

(iii) Fix \(v \in H^{s+2}, u \in U_s \), and, for the time being, \(w \in H^s \). Using the representation (5.14), we get for \(|\alpha| = s \)
\[\left(M(u)D^\alpha v, M(u)D^\alpha w \right)_0 = \sum (-1)^{|\alpha|} \left(M(u)D^\alpha v, D^{\alpha_0} M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\delta w \right)_0 \]
with \(|\alpha_i| \leq 2, |\delta| = s - 2 \). Now assume \(u_n \rightharpoonup u \) in \(U_s \); thus \(u_n \rightharpoonup u \) in \(H^s \) with \(s \in [0,s] \), and \(w_n \rightharpoonup w \) in \(H^{s-2} \). According to the above remark, \(\langle v, w_n \rangle_{s,u_n} \) can essentially be represented as a sum of terms
\[\sum (-1)^{|\alpha|} \langle M(u_n)D^\alpha v, D^{\alpha_0} M^{(k)}(u_n)\{D^{\alpha_1}u_n, \ldots, D^{\alpha_k}u_n\}D^\delta w_n \rangle_{H^{2} \times H^{-2}} \]
with \(\alpha, \alpha_i \), and \(\delta \) as above, where \(\langle \cdot, \cdot \rangle_{H^{2} \times H^{-2}} \) denotes the \(L^2 \)-duality map on \(H^2(S, \mathbb{R}^n) \times H^{-2}(S, \mathbb{R}^m) \). From the smoothness properties of \(M \) we conclude that
\[(5.20) \quad M(u_n)D^\alpha v \rightharpoonup M(u)D^\alpha v \text{ in } H^2(S, \mathbb{R}^m). \]

Similarly, uniform boundedness of \(\|w_n\|_{s-2} \) and convergence \(u_n \rightharpoonup u \) in \(H^{s_0-2} \) imply via (5.8)
\[M^{(k)}(u_n)\{D^{\alpha_1}u_n, \ldots, D^{\alpha_k}u_n\}D^\delta w_n - M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\delta w_n \rightharpoonup 0 \]
in \(L^2 \). Since strong continuity of linear operators implies weak continuity, we have
\[M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\delta w_n \rightharpoonup M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\delta w \]
weakly in \(L^2 \), and consequently
\[D^{\alpha_0} M^{(k)}(u_n)\{D^{\alpha_1}u_n, \ldots, D^{\alpha_k}u_n\}D^\delta w_n - D^{\alpha_0} M^{(k)}(u)\{D^{\alpha_1}u, \ldots, D^{\alpha_k}u\}D^\delta w \]
weakly in \(H^{-2} \). Together with (5.20), this completes the proof. \(\square \)

The following estimates, given in Lemma 5.5 and Proposition 5.6, form the core of the existence proof. The techniques are quite standard (cf. (4.1), (4.5)), but it is crucial to use the structure of \(G \) given by (5.25), which provides "coercivity w.r.t. the normal component"; cf. (5.24). Finally, in the proof of Proposition 5.6 we will couple the results concerning the operators \(F \) and \(G \) and use an integration by parts to deal with the possible degeneration of \(\gamma \).

Lemma 5.5. Let \(s \geq s_0 \) be an integer, let \(u \in \overline{U}_s \), and assume \(\gamma = \rho^2 \) with \(\rho \in C^\infty(S) \).
(i) There exist positive constants c, C, independent of u, such that

\[\|G'(u)v\|_0 \leq C(\|\rho P(u)v\|_2 + \|v\|_1), \]

\[(DP(u)v, DG'(u)v)_0 \leq -c\|\rho P(u)Dv\|_1^2 + C\|v\|_1^2 \]

for all $v \in H^2(S, \mathbb{R}^m)$ and any derivative $D = D^\alpha$, $|\alpha| \leq 1$.

(ii) Moreover, for $|\alpha| = s$ we have

\[\|D^\alpha G(u)\|_1 \leq C(\|\rho P(u)D^\alpha u\|_1 + \|u\|_s), \]

\[(P(u)D^\alpha u, D^\alpha G(u))_0 \leq -c\|\rho P(u)D^\alpha u\|_1^2 + C\|u\|_s^2. \]

Proof. (i) To show (5.21), (5.22) it suffices to construct a representation of the form

\[G'(u)v = \gamma \Delta(u)(P(u)v) + \rho R_1(u)v + R_2(u)v \]

with operators $R_1(u), R_2(u)$ such that

\[\|R_1(u)v\|_0, \|R_2(u)v\|_1 \leq C\|v\|_1. \]

For the part $H'(u)v$ of $G'(u)v$, which is a second order differential operator in v, this is quite clear using the well-known fact that the linearization of the mean curvature has $\Delta(u)(P(u)v)$ as its main part. Concerning $G'(u)v$ we note

\[-G'(u)v = A(u)\Delta'(u)\{v\} \gamma + A'(u)\{v\} \Delta(u)\gamma, \]

\[\Delta'(u)\{v\} \gamma = 2\rho\Delta'(u)\{v\} \rho + 4\Lambda'(u)\{v\} \rho \Lambda(u)\rho; \]

hence we have the representation $-G'(u)v = \rho R_1(u) + R_2(u)$ with

\[R_1(u) := 2A(u)\Delta'(u)\{v\} \rho, \]

\[R_2(u) := 2(A(u)(\rho \Delta'(u)\{v\} \rho) - A(u)\Delta'(u)\{v\} \rho) \]

\[+ 4A(u)\Lambda'(u)\{v\} \rho \Lambda(u)\rho + A'(u)\{v\} \Delta(u)\gamma. \]

Due to

\[\|\Delta(u)\rho\|_{s_0-2} \leq C, \quad \|\Delta'(u)\{v\} \rho\|_{-1}, \|\Lambda'(u)\{v\} \rho\|_0 \leq C\|v\|_1, \]

the estimate (5.26) for R_1 is now a consequence of

\[\|A(u)f\|_0 \leq C\|f\|_{-1}, \quad \|\Delta'(u)\{v\} \rho\|_{-1} \leq C\|v\|_1, \]

whereas the estimate for R_2 follows from the commutator estimate (4.34) together with

\[\|A(u)f\|_1 \leq C\|f\|_0, \quad \|A'(u)\{v\} f\|_1 \leq C\|v\|_1\|f\|_{s_0-2}. \]

(ii) Similar to part (i), it suffices to show the existence of a decomposition

\[D^\alpha G(u) = \gamma \Delta(u)(P(u)D^\alpha u) + \rho R_1(u) + R_2(u), \]

with operators R_1, R_2 allowing the estimates

\[\|R_1(u)\|_{-1}, \|R_2(u)\|_0 \leq C\|u\|_s. \]
Again, for the part $D^αH$ of $D^αG$ this is quite clear, where R_1, R_2 are now local differential operators w.r.t. u of order $s + 1$ and s, respectively. Concerning $D^αG(u)$ we write $α = β + δ$ with $|β| = 1$, $|δ| = s - 1$ and calculate

$$-D^αG(u) = 2ρD^βA(u)Δ'(u){D^δu}ρ + Q_1 + \cdots + Q_5$$

with

$$Q_1 := D^β(D^δA(u)Δ(u)γ - A(u)D^δΔ(u)γ),$$
$$Q_2 := D^βA(u)(D^δΔ(u)γ - Δ'(u){D^δu}γ),$$
$$Q_3 := 4D^βA(u)Λ(u){D^δu}ρA(u)ρ,$$
$$Q_4 := 2D^β(A(u)(ρΔ'(u){D^δu}ρ) - ρA(u)Δ'(u){D^δu}ρ),$$
$$Q_5 := 2(D^βρ)A(u)Δ'(u){D^δu}ρ.$$

Now we set $R_1 := 2D^βA(u)Δ'(u){D^δu}ρ$ and $R_2 := Q_1 + \cdots + Q_5$. The necessary estimates follow from the properties of A—in particular, Proposition 4.7 (ii) and (4.34)—and from the additional commutator estimate

$$∥D^δΔ(u)γ - Δ'(u){D^δu}γ∥_0 ≤ C∥u∥_s.$$

Now we are prepared to formulate and prove the following a priori estimates for F w.r.t. the bilinear forms $⟨·,·⟩_{s,u}$.

Proposition 5.6. Let $s ≥ s_0$ be an integer. Then

\begin{align}
(5.27) & \quad ⟨v, F'(u)v⟩_{1,u} ≤ C∥v∥_0^2, \\
(5.28) & \quad ⟨u, F(u)⟩_{s,u} ≤ C∥u∥_s^2
\end{align}

for all $u ∈ \tilde{U}_s$ and $v ∈ H^2(S, \mathbb{R}^m)$ with constants independent of u and v.

Proof. We start with the proof of (5.27). Due to (5.21), for any derivative D

$$∥DF'(u)v - F'(u){Dv}G(u) - F(u)(DG'(u)v)∥_0 ≤ C(∥v∥_1 + ∥ρP(u)v∥_2),$$

and consequently by Lemma 5.1

$$DF'(u)v = F(u)(F(u) · Λ(u)(P(u)Dv) + DG'(u)v) + R(u)v,$$

where the remainder term satisfies

$$∥R(u)v∥_0 ≤ C(∥v∥_1 + ∥ρP(u)v∥_2).$$

Further, by (5.21) we have

$$∥DG'(u)v∥_{-1} ≤ C(∥v∥_1 + ∥ρP(u)v∥_2),$$

and moreover

$$∥F(u) · Λ(u)(P(u)Dv)∥_{-1} ≤ C∥v∥_1.$$

Hence by Lemma 5.2 it follows that

$$⟨Dv, DF'(u)v⟩_{0,u} ≤ (P(u)Dv, F(u) · Λ(u)(P(u)Dv) + DG'(u)v)_{0} + I(u)v^2,$$
where now
\[I(u)v^2 \leq C(\|v\|_1 + \|\rho P(u)v\|_2)\|v\|_1. \]

Writing
\[(P(u)Dv, F(u) \cdot \Lambda(u)(P(u)Dv))_0 = \frac{1}{2}\int_S (\Lambda_i(u)(F_i(u)(P(u)Dv)^2) - (P(u)Dv)^2 \Lambda_i(u)F_i(u)) \, dS, \]
an integration by parts on \(S \) using (5.5) yields
\[|(P(u)Dv, F(u) \cdot \Lambda(u)(P(u)Dv))_0| \leq C\|v\|^2_1; \]
hence together with Lemma 5.5 and (5.22) we obtain the estimate (5.27).

Further, to prove (5.28) we use the abbreviation
\[\|u\|_{s+1}' := \left(\|u\|_s + \sum_{|\alpha|=s} \|\rho P(u)D^\alpha u\|_1 \right). \]

Using Proposition 4.6(ii) we write
\[D^\alpha F(u) = F(u)D^\alpha G(u) + F'(u)(D^\alpha u)G(u) + R_1(u), \]
where \(R_1 \) allows the estimate
\[\|R_1(u)\|_0 \leq C(\|u\|_s\|G(u)\|_{s_0-2} + \|G(u)\|_{s-1}) \leq C\|u\|_{s+1}', \]
because of
\[\|G(u)\|_{s-1} \leq C \left(\sum_{|\alpha|=s} \|D^\alpha G(u)\|_{s-1} + \|G(u)\|_0 \right) \]
and (5.23). Further, using Lemma 5.1 we have
\[D^\alpha F(u) = F(u)\left(D^\alpha G(u) + F(u) \cdot \Lambda(u)(P(u)D^\alpha u)\right) + R_1(u) + R_2(u), \]
where again
\[\|R_2(u)\|_0 \leq C\|D^\alpha u\|_0 \leq C\|u\|_s, \]
and consequently
\[\langle R_1(u) + R_2(u), D^\alpha u \rangle_{0,u} \leq C\|u\|_{s+1}'\|u\|_s. \]

By (5.11) we obtain
\[\langle D^\alpha u, D^\alpha F(u) \rangle_{0,u} = (P(u)D^\alpha u, F(u) \cdot \Lambda(u)(P(u)D^\alpha u) + D^\alpha G(u))_0 + I(u), \]
where \(I(u) \) allows the estimate
\[I(u) \leq C\|D^\alpha u\|_0\left(\|D^\alpha G(u)\|_{s-1} + \|F(u) \cdot \Lambda(u)(P(u)D^\alpha u)\|_{s-1}\right) \leq C(1 + \|u\|_{s+1}'\|u\|_s). \]
Finally, by an integration by parts as above we get
\[
(D^\alpha u, F(u) \cdot \Lambda(u)(P(u)D^\alpha u))_0 \leq C\|u\|_2^2.
\]
Together with (5.24), this completes the proof. \(\square \)

The structure of \(F'(u) \) as stated in Lemma 5.1 and the integration by parts argument used in the above proof are necessary to cover the case of a \(\gamma \) which can degenerate. If \(\gamma \) is strictly positive, the argumentation can be simplified by using Lemma 5.1 to obtain the estimate
\[
\|F'(u)\{v\}f\|_0 \leq C\|P(u)v\|_1 + \|v\|_0\|f\|_{s_0-1}.
\]
To conclude this section we add some remarks about the case of a slip factor \(\delta \) (introduced in (2.8)) different from one. The nonlinear operator of the evolution equation is now
\[
F_1(u) := F_1(u)(G_1(u))
\]
with
\[
F_1(u)f := (\delta id + (1 - \delta)N(u)P(u))F(u)f, \quad G_1(u) = H(u) + \delta G(u).
\]
Clearly, Lemma 4.5 and Proposition 4.6 continue to hold also for \(F_1 \). To see that \(F_1'(u) \) satisfies an estimate parallel to (5.29) as well, note that due to (5.6) we have
\[
\|P'(u)\{v\}w\|_0 \leq C\|P(u)v\|_1 + \|v\|_0\|w\|_{s_0-2},
\]
\[
\|N'(u)\{v\}z\|_0 \leq C\|P(u)v\|_1 + \|v\|_0\|z\|_{s_0-2}.
\]
This implies such an estimate for \(F_1 \). Hence, by changing the definition (5.7) of \(M \)
\[
M(u)v := v - \delta \Lambda(u)(\psi(u)P(u)v)
\]
and \(\langle \cdot, \cdot \rangle_{s,u} \) accordingly, we obtain the crucial estimates (5.27), (5.28) of Proposition 5.6 also for \(F_1 \), at least in the case of strictly positive \(\gamma \). Note that for \(\delta = 0 \) the bilinear forms \(\langle \cdot, \cdot \rangle_{s,u} \) are in fact independent of \(u \).

6. Proofs of Theorems 3.1 and 3.2. As pointed out earlier, the abstract existence results, Theorems 3.3 and 3.4, provide neither uniqueness of the solution nor strong continuity. The corresponding statements of Theorem 3.1 have to be proved separately. We start with a result on (Lipschitz) continuous dependence on the initial data in a weak norm which immediately implies uniqueness but will also be used in the proof of strong continuity. The techniques (Gronwall’s lemma and Taylor expansion, together with the use of estimates obtained earlier) are quite standard.

Lemma 6.1. Fix \(\bar{U}_{s_0} \subset U_{s_0} \). Let \(u, v \in C_w([0, T], H^{s_0}) \cap C^1([0, T], H^{s_0-2}) \) be two solutions of (3.2) with
\[
u(t), v(t) \in \bar{U}_{s_0} \quad \text{for} \quad t \in [0, T].
\]
There exists a real number \(C \) depending only on \(T \) and \(\bar{U}_{s_0} \) such that
\[
\|u(t) - v(t)\|_1 \leq C\|u(0) - v(0)\|_1 \quad \text{for all} \quad t \in [0, T].
\]
Proof. We put \(w(t) := v(t) - u(t) \) and remark
\[
\begin{aligned}
u, v & \in C([0, T], H^s) \cap C^1([0, T], H^{s-2}) \quad \text{for} \quad 2 \leq s < s_0;
\end{aligned}
\]
in particular, the mapping \([0, T] \ni t \mapsto \langle w(t), w(t) \rangle_{0,u(t)}\) is differentiable and we will show
\[
(6.2) \quad \frac{d}{dt} \langle w(t), w(t) \rangle_{1,u(t)} \leq C \langle w(t), w(t) \rangle_{1,u(t)},
\]
which implies (6.1) via Gronwall’s lemma. Recalling that \(H \) is a quasi-linear second order differential operator, we have
\[
\|H'(z)w\|_1 \leq C\|w\|_3, \quad \|H''(z)\{w, w\}\|_1 \leq C\|w\|_3\|w\|_{s_0-2}
\]
and, accordingly by (4.33),
\[
\|G'(z)w\|_1 \leq C\|w\|_3, \quad \|G''(z)\{w, w\}\|_1 \leq C\|w\|_3\|w\|_{s_0-2}.
\]
Consequently, together with Lemma 4.5 and (4.20), we obtain
\[
(6.3) \quad \|\mathcal{F}''(z)\{w, w\}\|_1 \leq C\|w\|_3\|w\|_{s_0-2}.
\]
Using Taylor’s theorem we have
\[
w'(t) := \frac{d}{dt} w(t) = \mathcal{F}(v(t)) - \mathcal{F}(u(t)) = \mathcal{F}'(u(t))w(t) + R(u(t), v(t));
\]
the remainder term therein can be estimated by (6.3) and norm convexity
\[
\|R(u(t), v(t))\|_1 \leq C_1\|w(t)\|_{s_0-2}\|w(t)\|_3 \leq C_2\|w(t)\|_{s_0}\|w(t)\|_1 \leq C_3\|w(t)\|_1.
\]
From this and (5.27), we obtain
\[
(6.4) \quad \langle w(t), w'(t) \rangle_{1,u(t)} = \langle w(t), \mathcal{F}'(u(t))w(t) + R(u(t), v(t)) \rangle_{1,u(t)} \leq C\|w(t)\|_1^2.
\]
Furthermore, recalling (5.8), we have
\[
\|M'(u(t))\{u'(t)\}w(t)\|_1 \leq C_2\|u'(t)\|_{s_0-2}\|w(t)\|_1.
\]
Hence
\[
\|u'(t)\|_{s_0-2} = \|\mathcal{F}(u(t))\|_{s_0-2} \leq C
\]
gives
\[
(6.5) \quad \|M'(u(t))\{u'(t)\}w(t)\|_1 \leq C\|w(t)\|_1.
\]
Consequently, considering
\[
\frac{1}{2} \frac{d}{dt} \langle w(t), w(t) \rangle_{1,u(t)} = \langle w(t), w'(t) \rangle_{1,u(t)} + \langle M(u(t))w(t), M'(u(t))\{u'(t)\}w(t) \rangle_1,
\]
we obtain the desired estimate (6.1) from (6.4), (6.5). \(\square \)
We note a result on nonlinear interpolation, whose proof can be found in [2, Prop. A.1 and Rem. A.2]. It will be crucial in the proof of strong continuity of the solution in time.

Lemma 6.2. Let $\mathcal{U} \subseteq H^s(S, \mathbb{R}^m)$, $s \geq 1$, be an open set. Let $T_\alpha : \mathcal{U} \to H^1(S, \mathbb{R}^m)$ be mappings with $T_\alpha(\mathcal{U} \cap H^{s+1}) \subseteq H^{s+1}$; α runs through a certain index set I. Further, assume Lipschitz continuity of T_α in H^1 and boundedness of T_α in H^{s+1}:

$$
\|T_\alpha(u) - T_\alpha(v)\|_1 \leq C\|u - v\|_1 \text{ for all } u, v \in \mathcal{U},
$$

$$
\|T_\alpha(u)\|_{s+1} \leq C(1 + \|u\|_{s+1}) \text{ for all } u \in \mathcal{U} \cap H^{s+1}
$$

with a constant C independent of u, v and $\alpha \in I$. Then $T_\alpha(\mathcal{U} \cap H^s) \subseteq H^s$ and the mappings $T_\alpha : \mathcal{U} \subseteq H^s \to H^s$ are continuous, uniformly w.r.t. $\alpha \in I$.

Now we are prepared for the proof of our theorems. In many respects, it is parallel to the proof of the main results in [10].

Proof of Theorem 3.1.

Step 1. We show that for any given $\bar{u}_0 \in U_{s_0}$ and any integer $s \geq s_0$ there exist $T = T(\bar{u}_0, s) > 0$ and $\delta = \delta(\bar{u}_0, s) > 0$ such that the Cauchy problem (3.2) has a unique solution in the class

$$
u \in C_w([0, T], U_s) \cap C_w^1([0, T], H^{s-2})$$

for all initial values $u_0 \in H^s$ with $\|u_0 - \bar{u}_0\|_{s_0} \leq \delta$. The uniqueness of the solution follows immediately from Lemma 6.1. In order to prove the existence we use Theorem 3.4. With a fixed $s \geq s_0$ and an $\varepsilon \in (0, 1]$ which will be fixed below, we put

$$\begin{align*}
X &= H^{s+2}(S, \mathbb{R}^m), \quad \|v\|_X = \|v\|_{s_0+2} + \varepsilon\|v\|_{s+2}; \\
Y &= H^s(S, \mathbb{R}^m), \quad \|v\|_Y = \|v\|_{s_0} + \varepsilon\|v\|_s; \\
Z &= H^{s-2}(S, \mathbb{R}^m), \quad \|v\|_Z = \|v\|_{s_0-2} + \varepsilon\|v\|_{s-2}.
\end{align*}$$

Further, let \bar{U}_s be as in section 5 and assume that the given \bar{u}_0 is an interior point. Then, according to the results of section 5, for $u \in \bar{U}_s$ the bilinear forms $(\cdot, \cdot)_{s,u} : X \times Z \to \mathbb{R}$ satisfy the requirements (H) of section 3; note that the constants C, M in (H) can be chosen independently of ε. As in the proof of Theorem 3.3 we choose $w_0 \in C^\infty(S, \mathbb{R}^m)$ and $R > 0$ (both independent of ε) such that

$$\|w_0 - \bar{u}_0\|_{s_0} \leq R/(32C_5)^{1/2}, \quad \{w_0 + v \mid v \in B\} \subseteq \bar{U}_{s_0}$$

with the ball $B := \{v \in Y \mid \|v\|_Y < R\}$. We set

$$(v, w)_u := (v, w)_{s_0, u}, \quad \|v\|_u = (v, v)_{s_0 + v}, \quad \|v\|_w = (v, v)_{s_0 + w}$$

and define a map $\mathcal{H} : B \subseteq Y \to Z$ by

$$\mathcal{H}(v) := \mathcal{F}(v + w_0), \quad u \in B.$$

Further, the mapping $\mathcal{H} : B \subseteq Y \to Z$ is weakly sequentially continuous and

$$(w_0 + v, \mathcal{H}(v)) \leq C_1\|w_0 + v\|_Y^2 \leq C_2$$

by Proposition 5.6. Moreover we have

$$\|\mathcal{H}(v)\|_Z \leq C_3\|v + w_0\|_Y \leq C_4$$
and

\[|\langle w_0, \mathcal{H}(v) \rangle_v| \leq C_5 \|w_0\|_X \|\mathcal{H}(v)\|_Z \leq C_6. \]

These estimates hold for all \(v \in B \) with constants \(C_1, \ldots, C_6 \), which may depend on \(C, M, R, s \) and \(\bar{u}_0, w_0 \), but not on \(v \). Gathering them, we obtain the inequality

\[2\langle v, \mathcal{H}(v) \rangle_v + M\|\mathcal{H}(v)\|_Z \|v\| \leq C_7 \]

for all \(v \in B \cap X \).

Now, let \(u_0 \in H^s(S, \mathbb{R}^m) \) be given such that

\[\| u_0 - \bar{u}_0 \|_{s_0} \leq R/(32C^5)^{1/2}. \]

(6.6)

Hence, with \(r := R/(2C^3)^{1/2} \) we find

\[\| u_0 - w_0 \| \leq C(\| u_0 - \bar{u}_0 \|_{s_0} + \| \bar{u}_0 - w_0 \|_{s_0} + \varepsilon(\| u_0 \|_s + \| w_0 \|_s)) \leq r \]

if \(\varepsilon \) is chosen according to

\[\varepsilon := \min\{1, r/4C(\| u_0 \|_s + \| w_0 \|_s) \}. \]

(6.7)

By Theorem 3.4, applied to \(\mathcal{H} \), there exist \(T > 0 \), independent of \(u_0 \) with (6.6), and a solution

\[v \in C^w([0, T], B \cap H^s) \cap C^1_w([0, T], H^{s-2}) \]

of

\[dv(t)/dt = G(v(t)) \quad \text{for} \quad t \in [0, T], \quad v(0) = u_0 - w_0. \]

Then \(u := v + w_0 \) is a solution of (3.2) with initial value \(u(0) = u_0 \), and we have

\[\| u(t) \|_s \leq \| w_0 \|_s + \| v(t) \|_s \leq \| w_0 \|_s + \varepsilon^{-1}\| v(t) \|_Y, \]

which in view of (6.7) implies

\[\| u(t) \|_s \leq C(1 + \| u(0) \|_s). \]

(6.8)

\textbf{Step 2.} Let \(u, \tilde{u} \) be two solutions of (3.2) in \([0, T]\) according to Step 1 with initial values

\[u(0), \tilde{u}(0) \in \mathcal{U}, \quad \mathcal{U} := \{ v \in H^s \mid \| v - \bar{u}_0 \|_{s_0} \leq \delta \}, \]

\(\delta > 0 \) sufficiently small. Lemma 6.1 gives

\[\| u(t) - \tilde{u}(t) \|_1 \leq C\| u(0) - \tilde{u}(0) \|_1. \]

(6.9)

For fixed \(t \in [0, T] \) we consider the evolution operator

\[\mathcal{U} \ni u_0 \mapsto T_t(u_0) := u(t) \in H^s, \]

assigning to any initial value \(u_0 \) the value of the corresponding solution of (3.2) at time \(t \). By Step 1 with \(s \) replaced by \(s + 1 \) we obtain \(T_t(\mathcal{U} \cap H^{s+1}) \subseteq H^{s+1} \) and the estimate

\[\| T_t(u_0) \|_{s+1} \leq C(1 + \| u_0 \|_{s+1}). \]

(6.10)
Equations (6.9) and (6.10) together with the interpolation result from Lemma 6.2 show the continuity of the mapping

\[\mathcal{U} \cap H^s \ni u_0 \mapsto u(t) \in H^s \text{ for } s \geq s_0, \]

uniformly w.r.t. \(t \in [0, T] \).

Step 3. To complete the proof of Theorem 3.1 it remains to show that the solutions according to Step 1 actually belong to

(6.11) \[u \in C([0, T], H^s) \cap C^1([0, T], H^{s-2}). \]

To do this, we approximate the initial value \(u_0 = u(0) \) by a sequence \(u^n_0 \in H^{s+1} \) such that \(u^n_0 \to u_0 \) in \(H^s \). Then by Step 1, for \(n \) sufficiently large, there exist solutions \(u_n \) of (3.2) with \(u_n(0) = u^n_0 \) in the class

\[u_n \in C_w([0, T], H^{s+1}) \cap C^1([0, T], H^{s-1}), \]

which in particular implies

\[u_n \in C([0, T], H^s) \cap C^1([0, T], H^{s-2}). \]

On the other hand, by Step 2, we have \(u_n(t) \to u(t) \) in \(H^s \) uniformly w.r.t. \(t \in [0, T] \). Since the uniform limit of continuous functions is continuous again, this implies (6.11). \(\square \)

Proof of Theorem 3.2. Let a solution \(u \in C([0, T], U_s) \cap C^1([0, T], H^{s-2}) \) be given. The set \(\{ u(t) | t \in [0, T] \} \) is compact in \(H^s \) and can be covered by the open sets \(\{ v \in H^s | ||v - u(t)||_s < \delta(u(t), s + 1) \}, t \in [0, T] \), where \(\delta(u(t), s + 1) \) are the same as in the proof of Theorem 3.1. Choosing a finite subcover, we find from this theorem and the autonomous character of (3.2) that there is a \(T_0 > 0 \) such that for any \(t \in [0, T] \) with \(u(t) \in H^{s+1} \), we have

\[u|_{[t, T_1]} \in C([t, T_1], U_{s+1}) \cap C^1([t, T_1], H^{s-1}), \quad T_1 := \min\{ t + T_0, T \}. \]

Proceeding stepwise, we obtain (i).

A similar compactness argument together with Theorem 3.1 and its proof ensures the existence of \(T_2 > 0 \) such that the following is true for all \(t \in [0, T] \): Problem (3.2) is solvable on the time interval \([0, T_2] \) (in the class (3.13)) for all initial values \(z \) sufficiently near \(u(t) \), and the mapping which assigns to \(z \) its corresponding solution \(V(\cdot, z) \) is continuous with values in \(C([0, T_2], H^s) \). We choose \(t_i \in [0, T] \) such that \(0 = t_0 < \cdots < t_n = T, t_i - t_{i-1} < T_2 \), and open \(H^s \)-neighborhoods \(K_i \) of \(u(t_i) \) small enough to ensure that \(V \) is defined on \(K_i \) and \(V(t_i - t_{i-1}, K_{i-1}) \subset K_i, i = n - 1, \ldots, 1 \). Now (ii) follows from the continuity of the composition of continuous maps. \(\square \)

Appendix. Proof of Theorem 3.4. We will construct a solution of (3.19) by implicit time discretization, solving the nonlinear problems in each timestep by Galerkin approximations. For this purpose, we need the following lemma.

Lemma A.1. For any \(K \in (0, r^2) \) there is an \(\varepsilon_0 > 0 \) such that for any \(\varepsilon \in (0, \varepsilon_0] \) and any \(v \in \mathcal{Y} \) satisfying \(|||v|||^2 \leq K \) there is a \(u^\ast \in \mathcal{B} \) satisfying

(A.1) \[u^\ast = v + \varepsilon G(u^\ast) \]

and the estimate

(A.2) \[||u^\ast||^2 \leq ||v||^2 + \varepsilon \beta(||u^\ast||^2) \leq 2K. \]
Proof. For arbitrary $v \in Y$, $u \in X \cap B$ we have
\[\langle u, u - \varepsilon \mathcal{G}(u) - v \rangle_u = \|u\|^2 - \varepsilon \langle u, \mathcal{G}(u) \rangle_u - \langle u, v \rangle_u \]
\[\geq \|u\|^2 - \varepsilon \beta(\|u\|^2) + \frac{\varepsilon M}{2} \|\mathcal{G}(u)\|_Z \|u\|^2 - \|u\|\|v\|_u \]
\[\geq \frac{1}{2} \left(\|u\|^2 - \varepsilon \beta(\|u\|^2) - \|v\|^2_u + \varepsilon M \|\mathcal{G}(u)\|_Z \|u\|^2 \right). \]
(A.3)

Choose $\varepsilon_0 > 0$ such that for all $\varepsilon \in (0, \varepsilon_0)$ and for all $s \in [0, 2C^4 K]$
\[K - \varepsilon \beta(s) \geq 0, \]
(A.4)
\[1 - \varepsilon \beta'(s) \geq 0. \]
(A.5)

Assume now that $v \in B$, $\|v\|^2 \leq K$. Let
\[B := \{ u \in Y \mid \|u\|_Y^2 \leq 2KC^3 \} \]
and note that B is a closed convex subset of B. Assume $\|u\|_Y^2 = 2KC^3$. Then
\[2C^2 K = C^{-1} \|u\|_Y^2 \leq \|u\|_Y^2 \leq C\|u\|_Y^2 = 2C^4 K, \]
\[\|v\|_u^2 \leq C\|v\|_Y^2 \leq C^2 \|v\|^2 \leq C^2 K. \]

Therefore, for $\varepsilon \in (0, \varepsilon_0)$,
\[\langle u, u - \varepsilon \mathcal{G}(u) - v \rangle_u \geq \frac{1}{2} (C^2 K - \varepsilon \beta(\|u\|^2)) \geq 0. \]
(A.6)

Let $\{M_n\}$ be an increasing sequence of finite-dimensional subspaces of X whose union is dense in X. We fix n, choose a basis $\{e_1, \ldots, e_n\}$ of M_n, and show that the variational equality
\[\langle w, u_n - \varepsilon \mathcal{G}(u_n) - v \rangle_u = 0 \text{ for all } w \in M_n \]
has a solution $u_n \in M_n \cap B$. Note that (A.7) is equivalent to $g(u_n) = 0$, where $g : M_n \cap B \to M_n$ is defined by
\[g(u) := P_u(u - \varepsilon \mathcal{G}(u) - v) \text{ with } P_u(z) := \sum_{i=1}^{n} \langle e_i, z \rangle_u e_i. \]

Due to (H4), g is continuous. Assume now that $g(u) \neq 0$ for all $u \in M_n \cap B$. Then we define the continuous operator $f : M_n \cap B \to M_n$ by
\[f(u) := -\sqrt{2KC^3} g(u) / \|g(u)\|_Y. \]

As $\|f(u)\|_Y = 2KC^3$, f maps the closed convex set $M_n \cap B$ into itself. Therefore, by Brouwer’s fixed point theorem, there is a $\bar{u} \in M_n \cap B$ such that $\bar{u} = f(\bar{u})$. Consequently, $\|\bar{u}\|_Y^2 = 2KC^3$, and from (A.6) we obtain the contradictory inequality
\[0 < \|\bar{u}\|^2 = \langle \bar{u}, f(\bar{u}) \rangle_{\bar{u}} = -\sqrt{2KC^3} \frac{\|g(u)\|_Y}{\|g(u)\|_Y} \langle \bar{u}, g(\bar{u}) \rangle_{\bar{u}} \]
\[= -\frac{\sqrt{2KC^3}}{\|g(u)\|_Y} \langle \bar{u}, \bar{u} - \varepsilon \mathcal{G}(\bar{u}) - v \rangle_{\bar{u}} \leq 0. \]
Therefore, (A.7) is solvable for every \(n \), and as \(\{u_n\} \) is bounded in \(Y \), we can assume without loss of generality that \(u_n \to u^* \) in \(Y \) for some \(u^* \in B \). Passage to the limit in (A.7) yields by (H4)

\[
\langle w, u^* - \varepsilon G(u^*) - v \rangle_{u^*} = 0 \text{ for all } w \in M_n, n = 1, 2, \ldots,
\]

and consequently by the density assumption

\[
\langle w, u^* - \varepsilon G(u^*) - v \rangle_{u^*} = 0 \text{ for all } w \in X.
\]

The nondegeneracy of \(\langle \cdot, \cdot \rangle_{u^*} \) yields (A.1). To show the estimate (A.2), note first that

\[
\|u^*\|^2 \leq \lim_{n \to \infty} \|u_n\|^2 \leq 2C^4 K.
\]

Thus, the second inequality in (A.2) follows from (A.4). To show the first inequality we assume without loss of generality that \(\|v\| \leq \|\|u^*\| \) and use (A.5), (A.3), and (H4) to obtain

\[
\|u^*\|^2 - \varepsilon \beta(\|u^*\|^2) \leq \lim_{n \to \infty} \left(\|u_n\|^2 - \varepsilon \beta(\|u_n\|^2) \right)
\]

\[
\leq \lim_{n \to \infty} \left(\|v\|_Z^2 - M \varepsilon \|G(u_n)\|_Z \|u_n\|^2 \right) \leq \|v\|_Z^2 - M \varepsilon \|G(u^*)\|_Z \|u^*\|^2
\]

\[
= \|v\|_Z^2 - M \varepsilon \|G(u^*)\|_Z \|u^*\|^2 \leq \|v\|^2.
\]

As further preparation for the proof of Theorem 3.4 we need the following simple result on approximate solutions of the ordinary differential equation (3.18).

Lemma A.2. Assume \(u_0 \in B \) and let \(\rho \in C^1[0,T] \) be the solution of (3.18). There is an \(n_0 \in \mathbb{N} \) such that for \(n \geq n_0 \) and \(k = 1, \ldots, n \) there are \(\rho_n^k, r_n \in \mathbb{R} \) such that

\[
\rho_n^0 = \|u_0\|^2, \quad \rho_n^k + \delta_n \beta(\rho_n^{k+1}) \leq \rho_n^{k+1} \leq \rho((k+1)\delta_n) + r_n, \quad r_n \to 0,
\]

where \(\delta_n := T/n \).

Proof. If \(n_0 \) is sufficiently large, \(n \geq n_0 \), there exist solutions \(\rho_n \in C^1[0,T] \) to the initial value problems

\[
\rho'_n(t) = \beta(\rho_n(t)) + 1/\sqrt{n}, \quad \rho_n(0) = \|u_0\|^2.
\]

We set

\[
\rho_n^k := \rho_n(k\delta_n), \quad k = 0, \ldots, n.
\]

Then

\[
\rho_n^{k+1} - \rho_n^k = \delta_n \rho'_n(\xi) = \delta_n \beta(\rho_n(\xi)) + \delta_n n^{-1/2}
\]

for some \(\xi \in (k\delta_n, (k+1)\delta_n) \). Moreover,

\[
\left| \beta(\rho_n(\xi)) - \beta(\rho_n^{k+1}) \right| \leq S \|\rho_n(\xi) - \rho_n^{k+1}\| \leq S' n^{-1}
\]

with constants \(S, S' \) independent of \(n \). Thus

\[
\rho_n^{k+1} - \rho_n^k \geq \delta_n \beta(\rho_n^{k+1}) + \delta_n n^{-1/2} - S' \delta_n n^{-1} \geq \delta_n \beta(\rho_n^{k+1})
\]
for \(n \geq n_0 \), \(n_0 \) sufficiently large. Moreover, well-known results on the dependence of the solution of ordinary differential equation’s on their right-hand sides ensure

\[
r_n := \max_{t \in [0,T]} |\rho_n(t) - \rho(t)| \to 0, \quad n \to \infty,
\]

and hence

\[
\rho_n(t) \leq \rho(t) + r_n, \quad t \in [0, T].
\]

This proves the lemma. \(\square \)

Proof of Theorem 3.4. In a first step, we construct approximations \(u_n^k \) for the solution at time \(kT/n \). Choose \(K \in (\max_{t \in [0,T]} \rho(t), r^2) \) and choose \(\varepsilon_0 > 0 \) such that the assertions of Lemma A.1 and (A.5) hold. Let \(n_0 \in \mathbb{N} \) be at least as large as in Lemma A.2 and assume additionally that \(n_0 \geq T/\varepsilon_0 \) and

\[
\rho(t) + r_n \leq K \quad \text{for } n \geq n_0 \text{ and } t \in [0, T].
\]

Now we fix \(n \geq n_0 \) and show the existence of \(u_n^k \in B, k = 0, \ldots, n \), such that

\[
\begin{align*}
 u_n^{k+1} &= u_n^k + \delta_n \mathcal{G}(u_n^{k+1}), \quad k = 0, \ldots, n - 1, \\
 u_n^0 &= u_0, \\
 |||u_n^k|||^2 &\leq \rho_n^k,
\end{align*}
\]

where the \(\rho_n^k \) are given by Lemma A.2. For \(k = 0 \), existence and the estimate are clear. Assume now that \(u_0^0, \ldots, u_n^k \) are constructed according to these conditions for \(0 \leq k \leq n - 1 \). Our assumptions imply \(\delta_n \leq \varepsilon_0 \) and \(|||u_n^k|||^2 \leq K \); hence the existence of \(u_n^{k+1} \) follows from Lemma A.1. Moreover, by (A.2), \(|||u_n^{k+1}|||^2 \leq 2K \) and

\[
|||u_n^{k+1}|||^2 \leq |||u_n^k|||^2 + \delta_n \beta(|||u_n^{k+1}|||^2) \leq \rho_n^k + \delta_n \beta(|||u_n^{k+1}|||^2);
\]

hence

\[
|||u_n^{k+1}|||^2 - \delta_n \beta(|||u_n^{k+1}|||^2) \leq \rho_n^{k+1} - \delta_n \beta(\rho_n^{k+1}).
\]

Note that (A.5) implies that the mapping \(s \mapsto s - \delta_n \beta(s) \) is monotone increasing on \([0, 2K]\), and hence \(|||u_n^{k+1}|||^2 \leq \rho_n^{k+1} \).

In a second step, we approximate \(u \) on \([0, T]\) by piecewise linear functions \(u_n \) and piecewise constant functions \(\pi_n, n \geq n_0 \), given by

\[
\begin{align*}
 u_n(t) := u_n^k + \delta_n^{-1}(t - k\delta_n)(u_n^{k+1} - u_n^k) &\quad \text{for } k \delta_n \leq t \leq (k + 1)\delta_n, \\
 k = 0, \ldots, n - 1, \\
 \pi_n(t) := u_n^{k+1} &\quad \text{for } k \delta_n < t \leq (k + 1)\delta_n, \quad k = 0, \ldots, n - 1, \quad \pi_n(0) = u_n^0.
\end{align*}
\]

Then

\[
u_n(t) = u_0 + \int_0^t \mathcal{G}(\pi_n(\tau)) \, d\tau, \quad t \in [0, T],
\]

and with a suitable constant \(S \) independent of \(t \in [0, T] \) and \(n \geq n_0 \),

\[
|||u_n(t)|||, |||\pi_n(t)||| \leq S.
\]
Consequently, $\|G(\pi_n(t))\|_Z$ is bounded independently of n and thus

$$\|u_n(t) - u_n(t')\|_Z \leq L|t - t'|$$

with L independent of n. Hence, the sequence $\{u_n\}$ is bounded and equicontinuous with values in Z, and hence by Ascoli's theorem, we can assume without loss of generality that

$$u_n \to u \text{ in } C([0,T],Z).$$

Moreover,

$$(A.8) \quad u_n(t) \rightharpoonup u(t) \text{ in } Y, \quad t \in [0,T].$$

To show this, fix $t \in [0,T]$ and choose an arbitrary subsequence $\{u_{n'}(t)\}$. As it is bounded in Y, it has a weakly convergent subsequence $\{u_{n''}(t)\}$ for which $u_{n''}(t) \to u^*$ in Y, and hence also in Z, and thus $u^* = u(t)$. Now (A.8) follows from a standard argument. An analogous argument shows

$$u \in C_w([0,T],Y).$$

Furthermore, for $t \in (k\delta_n, (k+1)\delta_n]$ we have

$$\|\pi_n(t) - u_n(t)\|_Z = \|u_n((k+1)\delta_n) - u_n(t)\|_Z \leq L\delta_n,$$

hence also

$$\pi_n \to u \text{ in } C([0,T],Z),$$

and, by the same arguments as for u_n above,

$$\pi_n(t) \to u(t) \text{ in } Y, \quad t \in [0,T].$$

As G is weakly sequentially continuous,

$$G(\pi_n(t)) \to G(u(t)) \text{ in } Z, \quad t \in [0,T],$$

and $G \circ u \in C_w([0,T],Z)$. If f is any bounded linear functional on Z, it follows that

$$f\left(\int_0^t G(\pi_n(\tau)) \, d\tau\right) = \int_0^t f(G(\pi_n(\tau))) \, d\tau \to \int_0^t f(G(u(\tau))) \, d\tau, \quad n \to \infty,$$

and hence

$$f(u(t)) = f(u_0) + \int_0^t f(G(u(\tau))) \, d\tau, \quad t \in [0,T].$$

Consequently,

$$f\left(\frac{u(t+h) - u(t)}{h}\right) \to f(G(u(t))), \quad h \to 0,$$

i.e.,

$$\frac{u(t+h) - u(t)}{h} \rightharpoonup G(u(t)) \text{ in } Z, \quad h \to 0.$$
Therefore $u \in C^{1}_{u}(\{0, T\}, Z)$ and u satisfies (3.19). Finally, for $t \in (k\delta_n, (k+1)\delta_n)$ we get
\[\|\pi_n(t)\|^2 = \|u_{n}^{k+1}\|^2 \leq \rho((k + 1)\delta_n) + r_n, \]
and hence
\[\|\pi_n(t)\|^2 \leq \rho(t + \delta_n) + r_n \text{ for } 0 \leq t \leq T - \delta_n. \]
Thus
\[\|u(t)\|^2 \leq \lim_{n \to \infty} \|\pi_n(t)\|^2 \leq \rho(t), \quad t \in [0, T]. \]
For $t \to 0$ this implies, in particular,
\[\lim_{t \to 0} \|u(t)\|^2 \leq \lim_{t \to 0} \rho(t) = \|u(0)\|^2 \leq \lim_{t \to 0} \|u(t)\|^2; \]
hence $\|u(t)\| \to \|u(0)\|$ and consequently $u(t) \to u(0)$ in Y as $t \to 0$.

REFERENCES