A characterization of the spaces $S^{k/k+1}_{1/k+1}$ by means of holomorphic semigroups

Citation for published version (APA):

DOI:
10.1137/0514092

Document status and date:
Published: 01/01/1983

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A CHARACTERIZATION OF THE SPACES $S^{\alpha/(k+1)}_{k}$
BY MEANS OF HOLOMORPHIC SEMIGROUPS*

S. J. L. VAN EIJNDHOVEN,† J. DE GRAAF † AND R. S. PATHAK †

Abstract. The Gel'fand-Shilov spaces $S^{\alpha/(k+1)}_{k}$, $\alpha = 1/(k+1)$, $\beta = k/(k+1)$, are special cases of a general type of test function spaces introduced by de Graaf. We give a self-adjoint operator so that the test functions in those S_{α} spaces can be expanded in terms of the eigenfunctions of that self-adjoint operator.

AMS-MOS subject classification (1980). Primary 46F05, 35K15

1. Introduction. De Bruijn's theory of generalized functions based on a specific one-parameter semigroup of smoothing operators [1] was generalized considerably by de Graaf [4]. In brief this extended theory can be described as follows: In a Hilbert space \mathcal{H} consider the evolution equation

$$\frac{du}{dt} = -\mathbb{A} u$$

where \mathbb{A} is a positive, self-adjoint operator, which is unbounded in order that the semigroup $(e^{-t\mathbb{A}})_{t \geq 0}$ is smoothing. A solution u of (1.1) is called a trajectory if u satisfies

$$\forall t > 0 \, \forall \tau > 0: \quad e^{-t \mathbb{A}} u(t) = u(t + \tau),$$

$$\forall t > 0: \quad u(t) \in \mathcal{H}.$$

The limit $\lim_{t \to 0} u(t)$ does not necessarily exist in \mathcal{H}!

The complex vector space of all trajectories is denoted by $\mathcal{S}_{\mathcal{H}, \mathbb{A}}$. The elements of $\mathcal{S}_{\mathcal{H}, \mathbb{A}}$ are called generalized functions.

The test function space $\mathcal{S}_{\mathcal{H}, \mathbb{A}}$ is the dense linear subspace of \mathcal{H} consisting of smooth elements of the form $e^{-t \mathbb{A}} h$, where $h \in \mathcal{H}$ and $t > 0$; we have $\mathcal{S}_{\mathcal{H}, \mathbb{A}} = \bigcup_{t > 0} e^{-t \mathbb{A}}(\mathcal{H})$. The densely defined inverse of $e^{-t \mathbb{A}}$ is denoted by $e^{t \mathbb{A}}$. For each $\varphi \in \mathcal{S}_{\mathcal{H}, \mathbb{A}}$ there exists $t > 0$ such that $e^{t \mathbb{A}} \varphi$ makes sense. The pairing between $\mathcal{S}_{\mathcal{H}, \mathbb{A}}$ and $\mathcal{S}_{\mathcal{H}, \mathbb{A}}$ is defined by

$$\langle \varphi, F \rangle := (e^{t \mathbb{A}} \varphi, F(t)), \quad \varphi \in \mathcal{S}_{\mathcal{H}, \mathbb{A}}, \quad F \in \mathcal{S}_{\mathcal{H}, \mathbb{A}}.$$

Here (\cdot, \cdot) denotes the inner product in \mathcal{H}. Definition (1.3) makes sense for $\tau > 0$ sufficiently small, and due to the trajectory property (1.2i) it does not depend on the specific choice of τ. For further results concerning this theory we refer to [4].

The aim of the present paper is to show that for certain Gel'fand–Shilov spaces S^{α}_{β} [2] there exists an operator \mathbb{A} such that $S^{\alpha}_{\beta} = \mathcal{S}_{\mathcal{H}, \mathbb{A}}$. This leads to the result that the elements of the dual of S^{α}_{β} can be interpreted as trajectories. Furthermore, we find that a function in the studied S^{α}_{β}-spaces can be developed in a series of certain orthonormal functions.

*Received by the editors February 19, 1982.
†Department of Mathematics, Technological University, Eindhoven, the Netherlands. One of the authors (S.JLVE) was supported by a grant from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
2. Eigenfunction expansions of test functions in S^β_n. Let us consider the following eigenvalue problem in $L^2(\mathbb{R})$:

$$\frac{d^2}{dx^2} y + (\lambda - x^{2k}) y = 0,$$

where λ is a real number and k a positive integer. It is well-known that the operator $-d^2/dx^2 + x^{2k}$ has a point spectrum and the set of eigenvalues (λ_n) is real, positive and unbounded. In the sequel we shall regard it as ordered with $\lambda_{n+1} \geq \lambda_n$, $n = 0, 1, \ldots$. The corresponding normalized eigenfunctions $\{\psi_n\}$ form a complete orthonormal basis in $L^2(\mathbb{R})$. So by the Riesz–Fischer theorem every $f \in L^2(\mathbb{R})$ can be represented by

$$f = \sum_{n=0}^{\infty} a_n \psi_n,$$

where $a_n = (f, \psi_n)$ is an L^2-sequence.

First of all we gather some of the estimates for the eigenvalues λ_n and the eigenfunctions ψ_n of the problem (2.1), and then characterize $\{\psi_n\}$ as elements of certain S^β_n-spaces. We take $\psi_n(x) > 0$ for large positive values of x, cf. Titchmarsh [5, Chap. VIII].

From Titchmarsh [5, p. 144] we have

$$|\psi_n(x)| \leq \frac{2}{3} \frac{\lambda^{1/4+3/4k}}{n}, \quad n \in \mathbb{N} \quad [5, \text{p. 168}],$$

$$|\psi_n(x)| \leq \psi_n(x_0) \exp \left(- \int_{x_0}^{x} (\mu^{2k} - \lambda_n)^{1/2} \, d\mu \right) \quad \text{for } x \geq x_0 \geq \lambda_n^{1/2} \quad [5, \text{p. 165}].$$

We take $x_0 = (\frac{2}{3} \lambda_n)^{1/2k}$. From a straightforward calculation it follows that

$$|\psi_n(x)| \leq \frac{2}{3} \lambda_n^{1/4+3/4k} \exp \left(- \frac{1}{4} \frac{1}{k+1} |x|^{k+1} \right)$$

for $|x| \geq 2 \lambda_n^{1/2k}$. For any number a, $0 < a < 1/4(k+1)$, we have

$$|\psi_n(x)| \leq K_n \exp(-a|x|^{k+1}), \quad x \in \mathbb{R},$$

where

$$K_n = \frac{2}{3} \lambda_n^{1/4+3/4k} \exp(2^{k+1}a \lambda_n^{(k+1)/2k}).$$

The eigenfunction $\psi_n(x)$ can be extended to an entire function $\psi_n(z)$. We want to estimate $\psi_n(z)$ in the complex plane. First we produce an estimate for $|\psi_n'(0)|$. Let $\xi > 0$ denote a point at which ψ_n^2 reaches its absolute maximum. We have $0 \leq \xi \leq \lambda_n^{1/2k}$. Integrate the equality

$$- \frac{d}{dx} (\psi_n')^2 = (\lambda_n - x^{2k}) \frac{d}{dx} (\psi_n^2)$$
from 0 to ξ. A crude estimate yields
\[|\psi'(0)| \leq \frac{2}{3} \sqrt{1 + 2k} \lambda_n^{1/2 + 3/4k}. \]

Next, following the technique of Titchmarsh [5, p. 172] it can be shown that
\[\psi_n(z) = y^{(0)}(z) + \sum_{m=1}^{\infty} \{ y^{(m)}(z) - y^{(m-1)}(z) \}, \quad z \in \mathbb{C}. \]

Here $y^{(0)}(z) = \psi_n(0) + z \psi'_n(0)$ and $y^{(m)}(z)$, $m \geq 1$, can be obtained from
\[y^{(m)}(z) = y^{(0)}(z) + \int_0^z (s^{2k} - \lambda_n) y^{(m-1)}(s)(w-s) \, ds. \]

With
\[|y^{(m)}(z) - y^{(m-1)}(z)| \leq |y^{(0)}(z)| \left(|z|^{2k} + \lambda_n \right)^m \frac{|z|^{2m}}{(2m)!}, \]
we get the estimate
\[|\psi_n(z)| \leq K_n(|z|) \exp\left(|z|^{k+1} + \lambda_n^{1/2}|z|\right). \]

Here
\[K_n(|z|) = \frac{4}{3} \lambda_n^{1/2 + 3/4k} \left(1 + (1 + 2k)^{1/2} \lambda_n^{1/2} |z|\right) \geq |y^{(0)}(z)|. \]

Now let $d > 0$. Then
\[\exp(\lambda_n^{1/2}|z|) \leq \exp(d^{-k}|z|^{k+1}) \]
whenever $|z| \geq d \lambda_n^{1/2k}$ and
\[\exp(\lambda_n^{1/2}|z|) \leq \exp(d \lambda_n^{(k+1)/2k}) \]
whenever $|z| \leq d \lambda_n^{k/2}$. Thus we have
\[|\psi_n(z)| \leq K_n(|z|) \exp\left(d \lambda_n^{(k+1)/2k} \right) \exp(1 + d^{-k}) |z|^{k+1}. \]

Theorem 1. The eigenfunctions ψ_n of the eigenvalue problem (2.1) are elements of the space S_{α}^{β}, where $\alpha = 1/(k+1)$ and $\beta = k/(k+1)$.

Proof. Since ψ_n is an entire function and since it satisfies (2.6) and (2.7), in view of the criterion of Gel'fand and Shilov [2, p. 220], the result follows. \qed

Theorem 2. Let $f \in L_2(\mathbb{R})$,
\[f = \sum_{n=0}^{\infty} a_n \psi_n, \]
and suppose there is $\tau > 0$ such that
\[a_n = O\left(\exp\left(-\tau \lambda_n^{(k+1)/2k}\right)\right). \]

Then $f \in S_{1/k+1}^{1/k+1}$.

1182

S. J. L. VAN EIJNDHOVEN, J. DE GRAAF AND R. S. PATHAK
Proof. In (2.6) we can take $a>0$ so small that $\tau > a2^{k+1}$. Then for some $C>0$ and all $x \in \mathbb{R}$

$$|f(x)| \leq \sum_{n=0}^{\infty} |a_n| |\psi_n(x)|$$

$$\leq C \sum_{n=0}^{\infty} K_n \exp\left\{ - (\tau - a2^{k+1}) \lambda_n^{(k+1)/2k} \right\} \exp\left\{ -a|x|^{k+1} \right\}.$$

So $|f(x)| \leq C \exp\left(-a|x|^{k+1} \right)$ for some $C>0$. Further we can take $d>0$ and $d<\tau$, so that with the aid of (2.7)

$$|f(z)| \leq \sum_{n=0}^{\infty} |a_n| |\psi_n(z)|$$

$$\leq \exp\left((1+d^{-k})|z|^{k+1} \right) \sum_{n=0}^{\infty} K_n (|z|) \exp\left(- (\tau - d) \lambda_n^{(k+1)/2k} \right)$$

$$\leq C'' \exp\left((1+d^{-k})|z|^{k+1} \right)$$

for some $C''>0$. By the criterion of Gel'fand and Shilov as used in the proof of Theorem 1, $f \in \mathcal{S}_{1/k+1}$. □

Let \mathcal{A}_k be the self-adjoint operator in $\mathcal{L}_2(\mathbb{R})$ defined by

$$(2.8) \quad \mathcal{A}_k = -\frac{d^2}{dx^2} + x^{2k}.$$

Then as a corollary of Theorem 2 we have

Corollary 1. The test function space $\mathcal{S}_{1/k+1}$ is included in $\mathcal{S}_{k/k+1}^{1/k+1}$. Here $\mathcal{A}_k = (\mathcal{A}_k)^{(k+1)/2k}$.

Proof. The functions ψ_n are the eigenfunctions of the positive self-adjoint operator \mathcal{A}_k with eigenvalues $\lambda_n^{(k+1)/2k}$. Let $f \in \mathcal{S}_{1/k+1}$. Then there exists $h \in \mathcal{L}_2(\mathbb{R})$ and $\tau>0$ such that

$$f = e^{-\tau \mathcal{A}_k} h.$$

This provides $(f, \psi_n) = \exp(-\tau \lambda_n^{(k+1)/2k}) (h, \psi_n)$. So the coefficients (f, ψ_n) are of the order $\exp(-\tau \lambda_n^{(k+1)/2k})$. By Theorem 2 we have $f \in \mathcal{S}_{k/k+1}^{1/k+1}$. □

We want to prove the converse of Corollary 1:

Theorem 3.

$$\mathcal{S}_{1/k+1} \subseteq \mathcal{S}_{k/k+1}.$$

In the proof of this theorem we need some lemmas.

Lemma 1. Let i, j, k be nonnegative integers for $r=1, 2, \cdots, n$. Then

$$\mathbf{D}^{i_1} x^{j_1} \mathbf{D}^{i_2} x^{j_2} \cdots \mathbf{D}^{i_r} x^{j_r} = \sum_{l \in \mathbb{N}^n} c_{ij}(l) x^{l-j} (\mathbf{D}^{i-j}),$$

where \mathbf{D} is the differential operator d/dx and where the coefficients $c_{ij}(l)$ satisfy

$$|c_{ij}(l)| \leq \frac{1}{l!} \frac{j!}{(j-l)!} \frac{|l|!}{|i-l|!}$$

($c_{ij}(l) = 0$ if $l > \min(i, j)$).
We use multi-indices, and $|i| = i_1 + i_2 + \cdots + i_n$, $i! = i_1! i_2! \cdots i_n!$, etc.

Proof. See Goodman [3, p. 67]. \hfill \Box

Lemma 2. Let f be an infinitely differentiable function which satisfies the following inequalities for fixed $A, B, C > 0$ and $\alpha, \beta > 0$, $\alpha + \beta \geq 1$:

\[(x^k D^l f)(x) \leq C A^k B^l \alpha^k \beta^l, \quad k, l = 0, 1, 2, \ldots.
\]

Then for each $n \in \mathbb{N}$ and $i, j \in \mathbb{N}^n$

\[
|\left(D^{i_1} x^{j_1} \cdots D^{i_n} x^{j_n} f \right)(x) | \leq C_1 A_1^j B_1^j |i|^\alpha |j|^\beta
\]

where $C_1 = C, A_1 = 2^{\alpha + \beta + 1} \alpha \alpha A, B_1 = 2^{\alpha + \beta} \beta B$ and $\sigma = (\alpha + \beta)^{-1}$.

Proof. Let $n \in \mathbb{N}$ and $i, j \in \mathbb{N}^n$. Then by Lemma 1

\[
|\left(D^{i_1} x^{j_1} \cdots D^{i_n} x^{j_n} f \right)(x) | \leq \sum_i |c_{ij}(l)| \left| (x^{j-l} D^{i-l} f)(x) \right|
\]

With the assumption (2.9) we estimate this series as follows:

\[
\sum_{i \leq \min(i, j)} |c_{ij}(l)| \left| (x^{j-l} D^{i-l} f)(x) \right|
\leq C \sum_i \frac{1}{i!} \frac{1}{(j-l)!} |i|! \frac{|i|!}{|j|!} A_1^{j-l} B_1^{j-l} |j-l|^\alpha |l|^\beta
\]

\[
\leq C A_1^{j-l} B_1^{j-l} \sum_i \frac{1}{i!} \frac{1}{(j-l)!} |i|! \frac{|i|!}{|j|!} |j-l|^\alpha |l|^\beta.
\]

The latter series can be treated as follows:

\[
\sum_{i \leq \min(i, j)} \frac{1}{i!} \frac{1}{(j-l)!} \frac{|i|!}{|j|!} |j-l|^\alpha |i-l|^\beta
\]

\[
\leq \sup_{|i| = |i|} \frac{|i|!}{|l|!} |l|^\beta |l-\alpha \alpha\sup_{|i| = |i|} \frac{|i|!}{|j-\alpha\alpha|} \frac{|i|!}{(|i|)!} |l|^\beta
\]

\[
\sum_{i \leq j} \frac{j!}{l!} \frac{|j|!}{|l|!} \left(\frac{|j|!}{|l|!} \right)^{-1}.
\]

We have

\[
\sum_{i \leq j} \frac{j!}{l!} \frac{|j|!}{|l|!} \left(\frac{|j|!}{|l|!} \right)^{-1} \leq \sum_{i \leq j} \frac{j!}{l!} = 2^{l}.\]

With the aid of the inequality $n! < n^n < n!e^n$:

\[
\left(\frac{|i|!}{|l|!} |l-\alpha \alpha\right) \leq \left(\frac{|i|!}{|l|!} \right)^\alpha (|l|)^\alpha (|l-\alpha \alpha\right) \leq 2^{\alpha \alpha |l|} \leq 2^{\alpha \alpha |l|} \leq 2^{\alpha |l|} \leq 2^{|l|}.
\]

and similarly

\[
\left(\frac{|j!|}{|l|!} |l-\alpha \alpha\right) \leq 2^{\alpha |l|}.
\]
Combining these results, we derive

$$\left| \left(D^i x^j \cdots D^i x^j f \right)(x) \right| \leq CA_i^i B_i^i \| j \|^i \| i \|^i,$$

where $A_i = 2^{q+1} e^q A$, $B_i = 2^{q+1} e^q B$. □

Lemma 3. For $f \in S_{k/(k+1)}$ we have

$$\left| \left(D^2 - x^{2k} \right)^p f(x) \right| \leq KN^p p^{2pk/(k+1)}, \quad p = 0, 1, 2, \cdots,$$

where K and N are fixed positive constants depending on f.

Proof. Let $\alpha = 1/(k+1), \beta = k/(k+1)$. Let $f \in S_{\alpha}$. Then there are positive constants A, B, C such that for all $x \in \mathbb{R}$

$$\left| (x^i D^q f)(x) \right| \leq CA^{q} B^{q} \| j \|^q \| i \|^q,$$

with $l, q = 0, 1, 2, \cdots$.

Now let $p \in \mathbb{N}$. Then

$$\left(D^2 - x^{2k} \right)^p = \sum_{s=0}^{p} V_s(D^2, x^{2k}),$$

where $V_s(D^2, x^{2k})$ consists of a sum of (s) combinations of the form

$$\left(D^2 \right)^i (x^{2k})^i \cdots \left(D^2 \right)^n (x^{2k})^n$$

where $i_1 + \cdots + i_n = s$ and $j_1 + \cdots + j_n = p-s$. With the aid of Lemma 2 we have

$$\left| V_s(D^2, x^{2k}) f(x) \right| \leq \left(\begin{array}{c} p \\ s \end{array} \right) C A_i^{2k(p-s)} B_i^{2s} (2k(p-s))^{2ak(p-s)} (2s)^{2\beta s},$$

with $A_i = 2^{q+1} e^q A$ and $B_i = 2^{q+1} e^q B$. So

$$\left| \left(D^2 - x^{2k} \right)^p f(x) \right| \leq C \sum_{s=0}^{p} \left(\begin{array}{c} p \\ s \end{array} \right) A_i^{2k(p-s)} B_i^{2s} (p-s)^{2ak(p-s)} s^{2\beta s}$$

$$\leq C \sum_{s=0}^{p} \left(\begin{array}{c} p \\ s \end{array} \right) A_i^{2k(p-s)} B_i^{2s} (p^{2ak})^{p-s} (p^{2\beta})^s$$

$$= C \left(A_i^{2k(p-s)} B_i^{2s} (p^{2ak})^p \right).$$

Substituting the values of α and β it follows that

$$\left| \left(D^2 - x^{2k} \right)^p f(x) \right| \leq C \left(A_2 + B_2 \right)^p p^{2pk/(k+1)}$$

where $A_2 = (2k)^{q+1} A_i^{2k}$ and $B_2 = 2^{q+1} B_i$. □

Proof of Theorem 3. Because of Corollary 1 we only have to prove the inclusion

$$S_{k/(k+1)} \subseteq S_{\gamma}(\mathbb{R}) \subseteq \mathbb{B}.$$

So let $f \in S_{k/(k+1)}$. Put $a_n = (f, \psi_n)$, $n \in \mathbb{N}$. Then for each $p \in \mathbb{N}$ fixed

$$a_n = (f, \psi_n) = \lambda_n^{-p} \left(-D^2 + x^{2k} \right)^p f, \psi_n).$$

With the aid of Lemma 3 we get positive constants K_f and N_f such that

$$\left\| \left(-D^2 + x^{2k} \right)^p f \right\|_\infty \leq K_f N_f p^{2pk/(k+1)}.$$
And
\[|a_n| \leq \lambda_n^{-p} \left\| \left(-D^2 + x^{2k} \right)^p \right\|_\infty \| \psi_n \|_1, \quad n = 0, 1, 2, \ldots. \]

By (2.4) and (2.5)
\[\| \psi_n \|_1 = \int_{-\infty}^{\infty} |\psi_n(x)| \, dx = \left(\int_{|x| \leq 2\lambda_n^{k/2}} + \int_{|x| > 2\lambda_n^{k/2}} \right) |\psi_n(x)| \, dx \]
\[\leq \frac{8}{3} \lambda_n^{1+5/4k} + c_k \lambda_n^{1+3/4k} \]
where \(c_k \) only depends on \(k \). Therefore
\[|a_n| \leq c_k' \lambda_n^{1+5/4k} \lambda_n^{-p} K_F N_f p^{2 p k / (k+1)}. \]

Finally taking the infimum of the right-hand side with respect to \(p \) we arrive at
\[|a_n| \leq c_k' K_F \lambda_n^{1+5/4k} \exp \left\{ 2 \beta e^{-1} N_f^{-1/2} \right\} \lambda_n^{1/2} \]
with \(\beta = k / (k + 1) \). From this the assertion follows. \(\square \)

By taking Fourier transforms in Theorem 3 we derive easily

Theorem 4.
\[S_{k+1}^{1/k+1} \equiv S_{\hat{\xi}_k}(R), \hat{\xi}_k, \]

where \(\hat{\xi}_k = \left\{ (\frac{-d^2}{dx^2})^k + x^2 \right\}^{(k+1)/2k} \).

REFERENCES