Experimental demonstration of cascaded transmission and all-optical label swapping of orthogonal IM/FSK labelled signal

Chi, N.; Zhang, J.; Van Holm-Nielsen, P.; Xu, L.; Tafur Monroy, I.; Peucheret, C.; Yvind, K.; Christiansen, L.J.; Jeppesen, P.

Published in:
Electronics Letters

DOI:
10.1049/el:20030425

Published: 01/01/2003

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Experimental demonstration of cascaded transmission and all-optical label swapping of orthogonal IM/FSK labelled signal

A network node is demonstrated with two-hop transmission and all-optical label swapping based on a Mach-Zehnder semiconductor optical amplifier interferometer and electroabsorption modulator of a two-level optically labelled signal using an orthogonal IM/FSK modulation format with an overall power penalty of less than 2 dB.

Introduction: All-optical label swapping is an attractive technique for implementing packet routing and forwarding functions independently of IP packet length and payload bit rate [1]. Combined intensity modulation/frequency-shift keying (IM/FSK) or intensity modulation/phase-shift keying (IM/DPSK) optical labelling has been proposed as a competing scheme to sub-carrier multiplexed optical labelling due to its compact spectrum, simple label swapping and remarkable scalability to high bit rates [2-4]. Although we have earlier demonstrated successful single hop transmission of an IM/FSK labelled signal generated by a distributed feedback (DFB) laser with an integrated electroabsorption modulator (EAM) [3], the feasibility of all-optical label swapping and multi-hop transmission of this IM/FSK labelling scheme needs to be verified.

In this Letter, we present the latest experimental investigation of the complete functionality of a real network node with two-hop transmission and all-optical label swapping of an optically IM/FSK labelled signal. Simultaneous FSK label erasure and 2R regeneration are successfully achieved in a monolithically integrated Mach-Zehnder semiconductor optical amplifier (MZ-SOA). We also demonstrate for the first time FSK label insertion based on an EAM through all-optical conversion of the 10 Gbit/s intensity modulated payload to a new wavelength. Propagation over two transmission spans (50 and 44 km SMF) separated by a network node including label removal, 2R regeneration, and label reinsertion functionalities, is shown to result in less than 2 dB power penalty for both the 10 Gbit/s IM payload and the 312 Mbit/s FSK modulated label.

Architecture of all-optical packet switched network based on orthogonal IM/FSK labelling: At the ingress edge router the incoming IP packets are assigned two-level optical labels, i.e. the wavelength of the signal carrier (λ label) and the FSK label, orthogonally modulated at the ingress edge router the incoming IP packets are assigned two-level optical labels, i.e. the wavelength of the signal carrier (λ label) and the FSK label, orthogonally modulated. The core nodes perform routing and forwarding operations based on the information retrieved from the optical label. They also perform label swapping with wavelength conversion to ensure that packets reach their destination. To perform label swapping, a fraction of the incoming signal is tapped for opto-electronic label processing. The remaining part of the signal is input to an MZ-SOA for label removal and 2R regeneration. Replacing the label is easy because the FSK label information is lost during the wavelength conversion in the MZ-SOA. Therefore only the payload information will be copied onto the output wavelength of the MZ-SOA, which will then be used as the pump signal to the EAM. After setting the new 2 label by accordingly setting the...
wavelength of the tunable laser and inserting the new FSK label, the FSK modulated signal is injected into the EAM as the probe signal for frequency-modulation maintaining wavelength conversion. After these cascaded processes, both the label and the FSK label are swapped and the packet is ready for the next hop transmission.

Experimental setup and results: The experimental setup is shown in Fig. 2. The optical FSK modulation can be achieved simply by directly modulating the electrical current of a DFB laser (1549.2 nm). However, the drive current variation always results in a simultaneous intensity modulation of the emitted light, which will obviously cause a detrimental effect on the IM payload. To remove the intensity variation at the output of the laser, the inverse electrical data is injected into the integrated EA modulator with appropriate time delay and modulation voltage. In this way, a constant amplitude optical FSK signal at 312 Mbit/s (PRBS 2^n-1) is generated. The payload information integrated EA modulator with appropriate time delay and modulation voltage. The converted signal is input to the MZ-SOA (Alcatel 19011CM) for the label erasure and 2R regeneration. A tunable external cavity laser is used as the pump signal for the label insertion process, where the extinction ratio of the label-renewed signal will be adapted to the required value. Therefore in our experiment a compromise value of 4.3 dB is selected for the extinction ratio of the IM payload.

The first hop consists of 50 km singlemode fibre (SMF) with matching length of dispersion compensating fibre (DCF). The dispersion of the SMF and the DCF is 16.9 ps/nm/km and -100 ps/nm/km, respectively. Our simulation results and experimental investigation identically reveal that a pre-compensation scheme has better performance than a post-compensation scheme. Hence pre-compensated fibre spans are chosen for both fibre links. After this first stage transmission, the converted signal is input to the MZ-SOA for label erasure and 2R regeneration. A tunable external cavity laser at 1555.8 nm is used as the pump signal for the MZ-SOA. Very good label erasure and 2R regeneration can be achieved by the MZ-SOA. Owing to its nonlinear transfer function, the extinction ratio of the converted signal is greatly improved to 12.9 dB, which leads to a 2 dB enhancement for the non-linear absorption and saturable absorption of the EAM. As evidence a very clear eye diagram with negligible distortion was obtained when carrying out cascaded conversion of a pure IM signal. It should be noted that the noise imposed onto the EAM output eye diagram (see Fig. 2) is due to the non-optimal FSK intensity. As mentioned earlier, a limited extinction ratio is obligatory in the orthogonal labelling scheme. This relatively low extinction ratio can be easily accomplished by adjusting the reverse bias of the EAM. The output signal of the label swapper has an extinction ratio of 4.9 dB. The second hop includes 44 km SMF and 6 km DCF. At the receiver, the frequency demodulation for FSK demodulation is achieved by two optical filter stages providing more than 15 dB suppression ratio between the two FSK tones. Clearly some payload information is superimposed onto the label after the FSK demodulation, however the eye is still open and allows error-free detection. The cascaded transmission and label swapping result in 1.9 dB power penalty for the payload and 1.8 dB penalty for the label.

Conclusion: We have experimentally demonstrated the full functionality of a network node performing all-optical label swapping of a two-level optically labelled signal using orthogonal IM/FSK modulation format, two-hop transmission and 2R regeneration. The power penalty of the cascaded transmission and label swapping was shown to be below 2 dB.

Acknowledgment: This work is performed within the framework of the IST STOLAS (Switching Technologies for Optically Labeled Signals) project supported by the EU Commission.

References

Mitigation of optical crosstalk penalty in photonic cross-connects using forward error correction

V. Kaman, X. Zheng, C. Pusara, A.J. Keating, R.J. Helkey and J.E. Bowers

The use of forward error correction in all-optical networks for reducing the impact of dynamic crosstalk in photonic cross-connects based on three-dimensional micro-electromechanical systems (3D-MEMS) is described. Error-free operation is achieved for coherent crosstalk levels up to -16 dB, which corresponds to a 13.5 dB coherent input signal dynamic range, using a RS(255,239) Reed-Solomon error correcting code with a coding gain of 6 dB in a 288-port non-blocking 3D-MEMS switch.

Introduction: Dense wavelength division-multiplexed photonic networks with all-optical (OOO) nodes for metro and long-haul applications have recently been demonstrated for network efficiency and significant cost savings by the removal of optical-electrical-optical transponders at each switching node [1]. With their potential for realising large-scale and compact photonic cross-connects (PXC), free-space three-dimensional micro-electromechanical systems (3D-MEMS) based optical switches have been proven as the leading technology for these OOO switching nodes, with switch sizes exceeding 200 ports [2, 3]. Photonic networks based on OOO switching nodes can, however, suffer from the addition of leakage crosstalk from adjacent wavelengths in a cascade of wavelength multipliers [4] as well as possible dynamic crosstalk arising as an input mirror scans instantaneously over an unintended output mirror in 3D-MEMS switches [5].

Several transmission impairments, such as noise accumulation in optically amplified long-haul systems [6] and polarisation mode dispersion [7], have been alleviated by using forward error correction (FEC). More recently, the use of FEC has been proposed for in-band coherent crosstalk [8]. In this Letter, we investigate the benefit of using FEC against instantaneous dynamic crosstalk in photonic networks based on 3D-MEMS optical switching nodes. Our results simulate levels beyond expected worst-case optical crosstalk and can be extended to other sources of crosstalk such as in a cascade of wavelength multipliers or filters [1, 4].

Photonic cross-connect characteristics: The 288-port PXC system consists of a 3D-MEMS based optical core switch and auxiliary input and output 2 x 2 optical switches for 1:1 protection as well as optical taps for power monitoring and mirror control. The light from an input fibre is collimated and incident on a MEMS mirror which can deflect light onto any of the output MEMS mirrors. The output mirror then aligns the optical beam onto a particular output collimator, and the path loss is minimised by optimising the mirror angles. The measured non-blocking core switch and PXC system median losses are 1.4 and 4.3 dB at 1310 nm, respectively. The extra loss in the PXC is mainly due to the 2 x 2 protection switches and the optical tap couplers. The PXC also has a wide transparent optical bandwidth from 1260 to 1625 nm with a maximum loss variation of 1.5 dB. Static channel isolation, given by the ratio of output power to input power for two ports not in a connection, is below -60 dB for input and output ports adjacent to the signal path. Isolation for non-adjacent ports is typically better than -80 dB, so the total crosstalk from a fully loaded system is dominated by adjacent ports. Dynamic crosstalk occurs when an input mirror X_in and output mirror X_out are in a connection, and an adjacent input mirror X_adj is pointed to output mirror X_out when moving X_in from X_out to X_adj, as shown in Fig. 1. By manually pointing X_in to X_out while X_out is optimised to X_in, the channel isolation was measured to be -35 dB, although typical isolation is better than -40 dB.

Results: The experimental setup is shown in Fig. 1. The two 9.95328 Gbit/s complementary outputs from a bit error rate tester (BERT) with pattern length of 2^27-1 were synchronously fed into the RS(255,239) FEC encoder. A 155.3 nm optical signal was then modulated with the FEC-encoded 10.66 Gbit/s data stream using a Mach-Zehnder modulator (MOD). A 3 dB coupler split the output signal and one arm, with 0.5 dBm of power, was directly connected to the main optical signal path in the PXC (mirror X_in to X_out) with a loss of 5.5 dB. The other arm of the splitter was fed into an erbium-doped optical amplifier (EDFA), which was followed by a variable optical attenuator (VOA) and a polarisation controller (PC) before it was input to the adjacent port (mirror X_out) of the main optical signal path. An optically amplified receiver was used at the output of the PXC before the 10.66 Gbit/s signal was FEC-decoded to 9.95328 Gbit/s for bit error rate (BER) measurements.

Fig. 1 10 Gbit/s experimental setup for dynamic crosstalk experiment

Fig. 2 Bit error rate curves at 10 Gbit/s with no, -22.5, -20 and -17.5 dB crosstalk

Filled and croppy symbols denote with and without FEC operation, respectively

- One crosstalk
- -22.5 dB crosstalk
- -20 dB crosstalk
- -17.5 dB crosstalk

Fig. 2 shows the BER results with and without FEC encoding. In these measurements, the channel isolation was held statically at the worst-case value of -35 dB experienced during switching while the crosstalk channel input power was set to various levels (no power, 7.5, 10, and 12.5 dBm). The signal input power was 0.5 dBm resulting in -5 dBm output power and a crosstalk X_out/X_in of -22.5, -20, and -17.5 dB, respectively. The PC was used to align the polarisations of the two signals for maximum errors. Without crosstalk, a BER of 10^-12 was obtained for an average received power of ~30.5 dBm without FEC and ~36.5 dBm with FEC. As the interfering signal level was increased to 12.5 dBm to cause a coherent crosstalk level of ~17.5 dB, the power penalty incurred by no FEC is more than 10 dB while FEC enables the same receiver sensitivity of ~30.5 dBm that was achieved without crosstalk and without FEC.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 30, 2009 at 04:28 from IEEE Xplore. Restrictions apply.