Solution to Problem 63-6: Asymptotic distribution of lattice points in a random rectangle

Citation for published version (APA):

Document status and date:
Published: 01/01/1965

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Mar. 2019
PROBLEMS AND SOLUTIONS

EDITED BY MURRAY S. KLAMKIN

All problems and solutions should be sent to Murray S. Klamkin, Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, and should be submitted in accordance with the instructions given on the inside front cover. An asterisk placed beside a problem number indicates that the problem was submitted without solution. Proposers and solvers whose solution is published will receive 10 reprints of the corresponding problem section. Other solvers will receive just one reprint.

SOLUTIONS†

Late solutions:

Problems 62-12, 63-1, and 63-3 were also solved by Sidney Spital (California State Polytechnic College).

Problem 62-7 was also solved by J. K. Mackenzie (Chemical Research Laboratories, Melbourne, Victoria), who gives the more complete numerical result

\[P(r)/2\pi = 1.275659 - 0.12500 |r| - 0.039306r^2 + 0.003906 |r|^3 + 0.000914r^4 - 0.000072 |r|^5 - \cdots, \]

for \(|r| < 2\).

Problem 63-6, Asymptotic Distribution of Lattice Points in a Random Rectangle, by Walter Weissblum (AVCO Corporation).

An \(n \times n^{-1}\) rectangle is thrown at random on the plane with angle uniformly distributed in \(0 \leq \theta \leq 2\pi\) and center of rectangle also uniformly distributed in \(0 \leq x \leq 1, 0 \leq y \leq 1\). Find the limit as \(n \to \infty\) of the distribution of the number of lattice points contained in the rectangle.

Solution by N. G. de Bruijn (Technological University, Eindhoven, Netherlands).

Let \(p_j(n)\) be the probability of catching \(j\) lattice points; \(p_j\) denotes its limit as \(n \to \infty\). We have

\[\sum_{j=0}^{\infty} p_j(n) = 1, \quad \sum_{j=0}^{\infty} j p_j(n) = 1, \]

since the expectation of \(j\) equals the area of the rectangle. We shall show that

\[p_j = 3\pi^{-2}((j - 1)^{-2} - 2j^{-2} + (j + 1)^{-2}), \quad j = 2, 3, \cdots, \]

and then (1) produces the values of \(p_0\) and \(p_1\):

\[p_0 = 3\pi^{-2}, \quad p_1 = 1 - 21/(4\pi^2). \]

If three lattice points form a proper triangle, then its area is \(\geq \frac{1}{2}\). So if our rectangle catches all three, two of them lie in vertices of the triangle. As this

† In order to decrease the large backlog of solutions, this issue only contains solutions. Proposals will be resumed in the next issue.
happens with probability zero, we may assume that if more than two lattice points are caught, then they are all on a line.

Let \(\mathbf{v} \) be a nonzero vector with integral components. To each lattice point \(P \) we let correspond a "needle", viz., the line segment \((P, P + \mathbf{v})\). The probability that our rectangle catches a needle is easily shown to be \(K(|\mathbf{v}|) \), where \(|\mathbf{v}|\) is the length of \(\mathbf{v} \), and

\[
K(d) = 0 \quad \text{if} \quad d > n, \\
K(d) = 2\pi^{-1} \int_0^{\text{arc sin}(1/nd)} (n^{-1} - d \sin \phi) \, (n - d \cos \phi) \, d\phi \quad \text{if} \quad 0 < d \leq n.
\]

Let \(t_j(n; \mathbf{v}) \) be the probability that the rectangle catches exactly \(j \) lattice points \((j \geq 2)\) with difference vector \(\mathbf{v} \) (that is, the probability that there exists a lattice point \(P \) such that \(P + \mathbf{v}, \ldots, P + j\mathbf{v} \) are inside, but \(P \) and \(P + (j + 1)\mathbf{v} \) outside). The probability for catching a needle corresponding to a vector \(\mathbf{k} \) can now be expressed as follows:

\[
K(k|\mathbf{v}|) = t_{k+1}(n, \mathbf{v}) + 2t_{k+2}(n, \mathbf{v}) + 3t_{k+3}(n, \mathbf{v}) + \cdots,
\]
whence, for \(j = 2, 3, \ldots, \)

\[
t_j(n, \mathbf{v}) = K((j + 1)|\mathbf{v}|) - 2K(j|\mathbf{v}|) + K((j - 1)|\mathbf{v}|).
\]

So for \(j = 2, 3, \ldots \), we have \(p_j(n) = s_{j+1}(n) - 2s_j(n) + s_{j-1}(n) \), where for \(k = 1, 2, \ldots, \)

\[
s_k(n) = \frac{1}{2} \sum \mathbf{v} K(k|\mathbf{v}|),
\]
where * denotes that the summation is taken over all primitive vectors with integral components ("primitive" means that the components have g.c.d. 1; in other words, that the vector is not a multiple of a smaller integral vector). The factor \(\frac{1}{2} \) arises from the fact that if a sequence of lattice points can be described by a vector \(\mathbf{v} \), then it can also be described by \(-\mathbf{v}\).

It remains to show that \(s_k(n) \to 3\pi^{-2}k^{-2} \) as \(n \to \infty \). We easily evaluate

\[
K(\rho) = \pi^{-1}n^{-2}\rho^{-1}\{n - \rho + O((\rho + 1)^{-1})\}.
\]

Taking into account that the probability of a lattice vector being primitive equals \(6\pi^{-2} \), we obtain

\[
\frac{1}{2} \sum \mathbf{v} K(k|\mathbf{v}|) \sim \frac{1}{2} \cdot 6\pi^{-2} \int_0^{2\pi} \int_0^{\sin^2 k} \rho K(k\rho) \, dp \, d\phi \sim \frac{1}{2} \cdot 6\pi^{-2} \cdot 2\pi \cdot \pi^{-1} n^{-2} \cdot \frac{1}{2} n^2 k^{-2} = 3\pi^{-2} k^{-2}.
\]

We remark that it follows from \(2\) that \(\sum j(j - 1)p_j = 1 \), whence the expectation of the square of the number of lattice points in the rectangle equals \(2 \).

Also, if \(b \) is a constant, \(0 < b \leq 1 \), and if we throw a rectangle \(n \times bn^{-1} \), then we obtain \(p_1 = 1 - b + 3b^2/\pi^2, p_1 = b - 21b^2/4\pi^2, p_1 = 3\pi^{-2}b^{-2}(j - 1)^{-2} - 2j^{-2} + (j + 1)^{-2} \). If \(b > 1 \), however, the problem gets more difficult, for then there is a positive probability to catch nontrivial triangles.
Also solved by the proposer.

Problem 63-7, On Commutative Rotations, by Joel Brenner (Stanford Research Institute).

Show that if two nontrivial proper rotations in E_3 are commutative, then they are rotations about the same axis or else rotations through 180° about two mutually perpendicular axes.

Solution by Theodore Katsanis (NASA, Lewis Research Center).

Let A and B denote two nontrivial commutative rotations, and let x_A and x_B denote their respective axes. Let P be a plane containing x_A and parallel to x_B. If x_A is parallel to x_B, let O be any point on x_A; otherwise, let O be the intersection of the projection on P of x_B with x_A. In either case $A(O) = O$, so that $B(O) = BA(O) = AB(O)$. Since $B(O)$ is left fixed by A, it must lie on x_A. But if x_B does not intersect x_A, $B(O)$ cannot lie on x_A. Hence x_B intersects x_A, $B(O) = 0$.

Consider now a point S on x_A, $S \neq O$. Then $A(S) = S$, so that $B(S) = BA(S) = AB(S)$, and $B(S)$ is left fixed by A. Hence $B(S)$ lies on x_A. This means that either $x_A = x_B$, or else x_B is perpendicular to x_A, in which case B must also be a 180° rotation.

Solution by K. A. Post (Technological University, Eindhoven, Netherlands). Suppose A has the matrix

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & c & s \\
0 & -s & c
\end{pmatrix}
$$

where c and s stand for $\cos \phi$ and $\sin \phi$ respectively, i.e., A represents a rotation about the x-axis through an angle ϕ. Let $B = (b_{ij})$ represent a rotation such that $AB = BA$. Equating both sides we get six equations

\begin{align*}
(1 - c)b_{12} + sb_{13} &= 0, \\
 sb_{12} + (c - 1)b_{13} &= 0, \\
 s(b_{22} + b_{33}) &= 0.
\end{align*}

As $s^2 + (c - 1)^2 = 2 - 2c \neq 0$ (A is nontrivial), we obtain $b_{12} = b_{13} = b_{21} = b_{31} = 0$. Now there are two cases.

(1) \hspace{1cm} b_{22} = b_{33} = c', \hspace{1cm} b_{22} = -b_{23} = s', \hspace{1cm} b_{11} = 1.

(Rotations about the same axis).

(2) \hspace{1cm} s = 0, c = -1, \hspace{1cm} b_{11} = -1, \hspace{1cm} b_{22} = -b_{23} = c', \hspace{1cm} b_{22} = b_{23} = s'.

(Rotations through 180° about mutually perpendicular axes).

Also solved by W. F. Eberlein (University of Rochester) by means of a coordinate free spinor analysis, A. Mayer (Reeves Instrument Corp.) in two ways and by the proposer in two ways.