Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow

Citation for published version (APA):

DOI:
10.1063/1.2152115

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
https://www.tue.nl/index.php?id=71870

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Highly efficient microcrystalline silicon solar cells deposited from a pure SiH$_4$ flow

M. N. van den Donker,a B. Rech, and F. Finger
Institute of Photovoltaics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

W. M. M. Kessels and M. C. M. van de Sandenb
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands

(Received 20 June 2005; accepted 27 October 2005; published online 22 December 2005)

A time-resolved optical emission spectroscopic study identified transient behavior of the excited SiH emission in a parallel plate SiH$_4$/H$_2$ plasma. The transient behavior could be prevented by filling the background gas with H$_2$ prior to plasma ignition. Applying this condition, state-of-the-art microcrystalline silicon (µc-Si:H) could be deposited irrespective of the applied H$_2$ flow, ultimately demonstrated by a 9.5% efficient solar cell deposited from pure SiH$_4$. The results are discussed in terms of SiH$_4$ back diffusion: an initial diffusion flux of SiH$_4$ from the reactor’s dead volume back into the plasma. © 2005 American Institute of Physics. [DOI: 10.1063/1.2152115]

Plasma deposition of the intrinsic microcrystalline silicon (µc-Si:H) film is a key process in the fabrication of highly efficient thin-film solar cells. High-quality µc-Si:H is deposited in a narrow regime close to the phase transition to amorphous growth, generally tuned by the feed gas dilution ratio $R=[\text{H}_2]/[\text{SiH}_4]$. Commonly applied dilution ratios (R) range between approximately 10 and 300. These high values reflect the important role of H in the growth process. Nonetheless, recent studies revealed that it is possible to deposit µc-Si:H at much lower R by using the H that is created upon dissociation of SiH$_4$. However, solar cells prepared under these conditions showed poor performance. Roschek et al. tried to solve this by grading the process flows during deposition, but still could not achieve state-of-the-art devices. These studies indicated that high R is an essential prerequisite for obtaining high-quality material.

In this letter, we will demonstrate that state-of-the-art µc-Si:H solar cells can be deposited from a pure SiH$_4$ flow. We will make plausible that the previously reported drop of performance at low R was in fact caused by an initial diffusion flux of SiH$_4$ from the reactor’s dead volume back into the plasma. Our findings are important from a fundamental point of view, demonstrating that the common belief that a transition to amorphous growth, is an essential prerequisite for obtaining high-quality µc-Si:H needs reinterpretation. Moreover, the newly developed process makes ultimate effective use of the SiH$_4$ and strongly reduces the need for H$_2$ as additional process gas, with obvious cost reduction promises for industry.

We conducted our study in the 13.56-MHz high pressure deplition regime, which has been developed recently for parallel plate plasma reactors to allow deposition of high-quality material at high rates. The reactor used for intrinsic µc-Si:H deposition, described in more detail elsewhere, encompassed a showerhead electrode for gas injection, and consisted of a volume of 11 liter, an interelectrode distance of 1.0 cm, and an electrode area of 150 cm2. We applied a power of 0.5 W/cm2, a pressure of 10 Torr (1.3 × 105 Pa), a SiH$_4$ flow of up to 3.3 sccm (1.0 standard cm3 min$^{-1}$, or sccm, equals 7.4 × 10$^{-7}$ mol s$^{-1}$), and an H$_2$ flow of up to 1000 sccm. The substrate was kept at 196±12 °C. These parameters, in particular the SiH$_4$ flow, were optimized beforehand in a deposition series in order to make sure that the conditions were close to the phase transition to amorphous growth. A spectrometer equipped with a charge-coupled device (CCD) camera was used to measure the time resolved emission intensities of certain spectral lines.

Figure 1(a) shows the recorded emission intensity at 414.3 nm, originating from SiH$^+$ created by electron impact dissociation of SiH$_4$, during the first minute after plasma ignition for various values of R. We also measured the emis-

FIG. 1. Recorded SiH$^+$ emission as function of time for various values of the H$_2$ dilution ratio R. In (a) the standard process and (b) the H$_2$ background gas condition that prevents SiH$_4$ back diffusion. Data is shown for $R=0$ with total flow ~2 sccm (closed circles), $R=50$ with total flow ~50 sccm (open circles), $R=90$ with total flow ~130 sccm (closed triangles), $R=150$ with total flow ~360 sccm (open triangles), and $R=300$ with total flow ~1000 sccm (closed stars). In (a), the $R=0$ case could not be recorded because the plasma did not ignite.
sion at 390.5 nm, originating from SiH^+, which showed the same behavior in all cases. One clearly observes a transient behavior; the initial SiH^+ emission intensity is higher than the stable one. This effect is particularly large for low R, and it occurs on a typical timescale of ~60 s. Figure 1(b) shows the time-resolved optical emission intensity for a special case that will be discussed later.

We explain the transient behavior in terms of a transformation of the gas composition, as sketched in Fig. 2. Before plasma ignition [Fig. 2(a)] the entire reactor is filled with the SiH^4/H2 gas mixture, whereas in the stable situation after plasma ignition [Fig. 2(e)] the SiH^4 is heavily depleted^8–11 and the reactor is predominantly filled with H2. During the transformation, the SiH^4 depletion in the plasma zone [Fig. 2(b)] drives a diffusion flux of SiH^4 from the reactor’s dead volume back into the plasma^14 [Fig. 2(c)]. A high R limits the time scale on which this SiH^4 back diffusion may take place by purging [Fig. 2(d)]: For the R=0 condition at ~2 sccm total flow we roughly estimate the gas residence time (via gas density at room temperature × reactor volume/gas flow) to be as long as 4 × 10^3 s. For the R=300 condition at ~1000 sccm total flow, we estimate it to be only 8 s. The SiH^4 diffusion flux should be proportional to the initial SiH^4 density, so this effect should be largest for low R. Thus, it is our tentative view that the SiH^4 back diffusion is responsible for the initial enhancement and subsequent relaxation of the SiH^+ emission.

Sorokin et al. ^14 already discussed the effect of the SiH^4 back diffusion on the dust formation process in the plasma. Since our conditions are very close to the phase transition to amorphous growth, the SiH^4 back diffusion mainly affects film crystallinity: Either the first minute of deposition occurs on the amorphous side of the transition, or the deposition after the first minute occurs too far inwards on the microcrystalline side of the transition. Both cases lead to poor film quality; the former because of thick amorphous incubation layers^1,7 and the latter because of the too-high crystallinity.1

A background gas consisting predominantly of H2 would prevent the SiH^4 back diffusion from happening. We realized this experimentally by first filling the entire reactor with H2. Then, after flushing the reactor for a short time period with the process flows of dilution R, the plasma was ignited. The flushing time was crucial to this method. If it was too short, a pure H2 plasma would be ignited. In this case, the SiH^+ emission would gradually increase to its stable value. If it was too long, the SiH^4 back diffusion process would be observed again to some degree. The time-resolved optical emission spectroscopy was used in this matter as a process control tool to determine the correct flushing times: Using values varying from 2 s at R=300 to 30 s at R=0, we obtained the stable SiH^+ emission signals of Fig. 1(b). It shows only the first 60 s after plasma ignition, in which initial SiH^+ emission enhancements of more than a factor of 2 were prevented. On longer time scales, the SiH^+ emission intensity decreased further by about 20%. We compensated for this by proportionally increasing the SiH^4 flow during deposition.

Note that in the R=0 case the reactor consisted almost completely of H2 upon plasma ignition, since the flushing time was negligible compared to the gas residence time. The SiH^+ emission, hence SiH^4 density, remained stable at this low value after ignition notwithstanding the applied pure SiH^4 flow. This confirms our previous statement about the heavy SiH^4 depletion.

Solar cells are very sensitive to changes in structure or optoelectronic properties of the µc-Si:H film and its interfaces. Therefore, to test the H2 background condition deposited material, intrinsic µc-Si:H layers were incorporated in p-i-n solar cell structures with an i-layer thickness of 1.0±0.1 µm. Texture-etched ZnO:Al-coated glass substrates^15 served as transparent front contacts, while several 1 × 1 cm^2 Ag back contacts defined the solar cell area. We applied the same deposition conditions as were used in the recording of Fig. 1(a) (the standard process) and Fig. 1(b) (the H2 background gas condition).

Figure 3 shows the solar cell properties obtained at various H2 dilution ratios R. For the standard process, solar cells deposited at R<100 showed poor performance, mainly due to lower fill factor and open circuit voltage, consistent with previous observations.8 In contrast, high-quality solar cells could be deposited at all H2 dilutions, down to R=0, when the H2 background gas condition was applied. We provided one sample, deposited at 0.4 nm/s, R=0, and a total gas flow of only 2.0 sccm, with a ZnO/Ag back contact for better light trapping. The cell showed excellent electronic performance with an open circuit voltage of 564 mV and a fill factor of 74.8%. Together with the short circuit current of 22.5 mA/cm^2, the solar energy conversion efficiency was 9.5%. Depth-profiled Raman spectroscopy measurements^3
revealed a homogeneously structured film crystallinity around 70%.

In summary, the aforementioned results lead to a reinterpretation of the role of H$_2$ dilution: The high H$_2$ flow generally applied during deposition of μc-Si:H is needed to suppress SiH$_4$ back diffusion. When it is suppressed in other ways, e.g., by applying a H$_2$ background prior to plasma ignition, high-quality μc-Si:H can be deposited irrespective of the applied H$_2$ flow.

The authors thank R. Schmitz, J. Klomfass, Y. Mai, and Dr. R. Carius for experimental support and fruitful discussions. Akzo Nobel NV is acknowledged for their financial support. The research of W.M.M.K was made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW).