Asymptotic expansion of a class of Fermi-Dirac integrals

Citation for published version (APA):

DOI:
10.1137/0522051

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
ASYMPTOTIC EXPANSION OF A CLASS OF FERMI–DIRAC INTEGRALS*

J. BOERSMA† AND M. L. GLASSER‡

Abstract. A procedure is presented for obtaining the complete asymptotic expansion of a class of fractional integrals (of Riemann–Liouville type), in which the integrand contains the product of two derivatives of the Fermi–Dirac integral. The procedure uses two-sided Laplace transforms and Abelian asymptotics of the inverse Laplace transform. The fractional integrals considered arise in various problems from statistical mechanics and solid state physics.

Key words. Fermi–Dirac integral, asymptotic expansion, Riemann–Liouville fractional integral, Laplace transform, Abelian asymptotics

AMS(MOS) subject classifications. 41A60, 33A70, 44A10, 26A33, 82

1. Introduction. This paper is concerned with the asymptotic expansion, as \(\eta \to \infty \), of the class of integrals

\[
G^{(m,n)}_{\mu,p}(\eta) = \frac{1}{\Gamma(\mu)} \int_{-\infty}^{\infty} (\eta - t)^{\mu-1} F_p^{(m)}(t) F_p^{(n)}(t) \, dt \quad (\mu > 0).
\]

Here, \(m \) and \(n \) are nonnegative integers, and \(F_p^{(m)}(t) \) denotes the \(m \)th derivative of the Fermi–Dirac integral \(F_p(t) \) defined by [1]

\[
F_p(t) = \frac{1}{\Gamma(p+1)} \int_0^\infty x^p e^{-x} \, dx \quad (p > -1).
\]

The class of Riemann–Liouville fractional integrals (1.1) is important in a number of areas of statistical mechanics and solid state physics. Two examples are the exchange energy of a \(d \)-dimensional electron gas [6] (\(\mu = (d-1)/2 \), \(p = -\frac{1}{2} \), \(m = n = 0 \)) and the temperature-dependent gradient expansion coefficients for the interaction functional of an inhomogeneous electron gas [5] (\(\mu = 2 \), \(p = -\frac{1}{2} \), \(m = n = 2 \)).

In the special case \(p = -\frac{1}{2} \), \(m = n = 0 \), the asymptotics of the integral (1.1) has been treated by Glasser and Boersma [6]. Their procedure, which uses the two-sided Laplace transform, is generalized in the present paper to accommodate the additional parameters \(p, m, \) and \(n \). The Laplace transform method is explained in § 2, where it is also shown that the asymptotic analysis may be restricted to the case \(m = n \). Let the Laplace transform of \([F_p^{(m)}(t)]^2 \) be denoted by \(g(s) \) (with transform variable \(s \)), then the asymptotic expansion of \(G(\eta) \) as \(\eta \to \infty \) can be found by applying Abelian asymptotics to the series expansion of \(g(s) \) around \(s = 0 \). By starting from a suitable integral representation for \(g(s) \) as derived in § 3, the expansion of \(g(s) \) around \(s = 0 \) is determined in §§ 4 and 5. In the final section, § 6, the corresponding complete asymptotic expansion of \(G(\eta) \), as given by (1.1), is presented.

2. Laplace transform method. Following the procedure of § 3 of [6], we first determine the two-sided Laplace transform of (1.1):

\[
\mathcal{G}^{(m,n)}_{\mu,p}(s) = \int_{-\infty}^{\infty} e^{-\eta s} G^{(m,n)}_{\mu,p}(\eta) \, d\eta = s^{-\mu} G^{(m,n)}_{\mu,p}(s)
\]

* Received by the editors February 26, 1990; accepted for publication May 1, 1990.
† Department of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven, the Netherlands.
‡ School of Science, Clarkson University, Potsdam, New York 13676.
where

\[g_p^{(m,n)}(s) = \int_{-\infty}^{\infty} e^{-st} F_p^{(m)}(t) F_p^{(n)}(t) \, dt. \]

From the known asymptotic behaviour [1]

\[F_p(t) = O(e^t), \quad t \to -\infty, \quad F_p(t) = O(t^{p+1}), \quad t \to \infty, \]

it follows that the Laplace transforms \(G_{\mu,p}^{(m,n)}(s) \) and \(g_p^{(m,n)}(s) \) are defined in the strip \(0 < \text{Re} \, s < 2. \)

Assuming that \(m \leq n \) in (2.2) and integrating by parts, we establish the recurrence relations

\[g_p^{(m,m+1)}(s) = \frac{1}{2} s g_p^{(m,m)}(s), \]

\[g_p^{(m,n)}(s) = s g_p^{(m,n-1)}(s) - g_p^{(m+1,n-1)}(s), \quad n \geq m + 2. \]

By repeated application of these relations we are led to

\[g_p^{(m,m+2)}(s) = \frac{1}{2} s^2 g_p^{(m,m)}(s) - g_p^{(m+1,m+1)}(s), \]

\[g_p^{(m,m+3)}(s) = \frac{1}{2} s^3 g_p^{(m,m)}(s) - \frac{3}{2} s g_p^{(m+1,m+1)}(s), \]

\[g_p^{(m+4)}(s) = \frac{1}{2} s^4 g_p^{(m,m)}(s) - 2 s^2 g_p^{(m+1,m+1)}(s) + g_p^{(m+2,m+2)}(s). \]

The coefficients in (2.4) and (2.6) are now used to form the polynomials

\[p_0(s) = 1, \quad p_1(s) = \frac{1}{2} s, \quad p_2(s) = \frac{1}{2} s^2 - 1, \]

\[p_3(s) = \frac{1}{2} s^3 - \frac{3}{2} s, \quad p_4(s) = \frac{1}{2} s^4 - 2 s^2 + 1, \ldots, \]

which, by (2.5), satisfy the recurrence relation

\[p_k(s) = s p_{k-1}(s) - p_{k-2}(s), \quad k \geq 2. \]

The latter recurrence relation is identical to that of the Chebyshev polynomials \(T_k(s/2) \) (cf. [3, § 10.11]). Thus we find

\[p_k(s) = T_k \left(\frac{s}{2} \right) = \frac{1}{2} \frac{k}{\Sigma_{i=0}^{[k/2]} (-1)^i (k-l-1)!}{l!(k-2l)!} \frac{s^{k-2l}}{s} \]

whereupon the results in (2.6) generalize to

\[g_p^{(m,m+k)}(s) = \frac{1}{2} \frac{k}{\Sigma_{i=0}^{[k/2]} (-1)^i (k-l-1)!}{l!(k-2l)!} s^{k-2l} g_p^{(m+l,m+l)}(s), \quad k \geq 1. \]

Consequently, without loss of generality we can restrict our further asymptotic analysis to the case \(m = n \). Accordingly, we simplify the notation by setting \(G_{\mu,p}^{(m,m)}(\eta) = G_{\mu,p}^{(m)}(\eta) \) and \(g_p^{(m,m)}(s) \equiv g_p^{(m)}(s) \).

In the Laplace transform method the asymptotic expansion of \(G_{\mu,p}^{(m,m)}(\eta) \) as \(\eta \to \infty \) is obtained by applying Abelian asymptotics [2, Kap. 7] to the series expansion of \(g_p^{(m)}(s) \) around \(s = 0 \). To determine the latter expansion, we rewrite the integral (2.2) in a more convenient form by means of Parseval’s formula:

\[g_p^{(m)}(s) = \int_{-\infty}^{\infty} e^{-st} [F_p^{(m)}(t)]^2 \, dt = \int_{-\infty}^{\infty} f(u) f(-u) \, du \]

where

\[f(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-st/2} F_p^{(m)}(t) e^{iu t} \, dt = \frac{(s/2 - iu)^m}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-st/2} F_p(t) e^{iu t} \, dt. \]
The second integral in (2.12) is evaluated by inserting the integral representation (1.2) for \(F_p(t) \), interchanging the order of integration, and applying the substitution \(y = e^{x-t} \) in the \(t \)-integral:

\[
\int_{-\infty}^{\infty} e^{-it/2} F_p(t) e^{iut} dt = \frac{1}{\Gamma(p+1)} \int_0^\infty x^p e^{-(s/2-it)x} dx \int_0^\infty \frac{y^{s/2-it-1}}{1+y} dy
\]

(2.13)

The result for \(f(u) \) thus found is inserted into (2.11), and we have

\[
g_p^{(m)}(s) = \pi \int_{-\infty}^{\infty} \frac{(s^2/4+u^2)^{m-p-1}}{\cosh (2\pi u) - \cos (\pi s)} du.
\]

(2.14)

Obviously, \(g_p^{(m)}(s) \) depends only on the difference \(m - p \); this was to be expected from the basic recursion formula \(F'_p(t) = F_{p-1}(t) \). Finally, for brevity we introduce

\[
\nu = m - p - \frac{1}{2}, \quad g_\nu(s) = g_p^{(m)}(s);
\]

then the representation (2.14) becomes

\[
g_\nu(s) = \pi \int_{-\infty}^{\infty} \frac{(s^2/4+u^2)^{\nu-1/2}}{\cosh (2\pi u) - \cos (\pi s)} du.
\]

(2.16)

3. Integral representation for \(g_\nu(s) \). The representation (2.16) for \(g_\nu(s) \) is further reduced by another application of Parseval's formula. It is convenient to distinguish three cases.

Case i. \(\nu < \frac{1}{2} \). From \([4, Formulas 1.9(6), 1.3(7)]\) we quote the Fourier cosine transforms

\[
\int_0^\infty \frac{\cos (xu)}{\cosh (2\pi u) - \cos (\pi s)} du = \frac{1}{2 \sin (\pi s)} \frac{\sinh [(1-s)x/2]}{\sinh (x/2)}
\]

(3.1)

\[
\int_0^\infty \left(\frac{s^2}{4} + u^2 \right)^{\nu-1/2} \cos (xu) du = \frac{\pi^{1/2}}{\Gamma(\frac{1}{2} - \nu)} \left(\frac{x}{s} \right)^{\nu} K_\nu \left(\frac{sx}{2} \right)
\]

(3.2)

where we used that \(K_\nu(z) = K_\nu(z) \) by \([7, Formula 3.71(8)]\). Next, by means of Parseval’s formula applied to (2.16) we are led to

\[
g_\nu(s) = 2\pi^{1/2} \frac{s^\nu}{\Gamma(\frac{1}{2} - \nu)} \sin (\pi s) \int_0^\infty \frac{\sinh [(1-s)x/2]}{\sinh (x/2)} x^{-\nu} K_\nu \left(\frac{sx}{2} \right) dx.
\]

(3.3)

It is easily seen that the integral (3.3) is convergent if \(\nu < \frac{1}{2} \).

Case ii. \(\nu > \frac{1}{2}, \nu - \frac{1}{2} \in \mathbb{N} \). Let \(k \) be the smallest integer greater than or equal to \(\nu \); then we set \(\nu = k - q \), where \(0 \leq q < 1 \) and \(q \neq \frac{1}{2} \). To apply Parseval’s formula in (2.16), we need the Fourier cosine transform

\[
\int_0^\infty \frac{(s^2/4+u^2)^k}{\cosh (2\pi u) - \cos (\pi s)} \cos (xu) du = \frac{1}{2 \sin (\pi s)} \left(\frac{s^2 - d^2}{4} \right)^k \left\{ \frac{\sinh [(1-s)x/2]}{\sinh (x/2)} \right\}
\]

obtainable from (3.1), and the transform (3.2) with \(\nu \) replaced by \(-q\). As a result it is found that the representation (2.16) passes into

\[
g_\nu(s) = 2\pi^{1/2} \frac{s^{-q}}{\Gamma(q + \frac{1}{2})} \sin (\pi s) \int_0^\infty \left(\frac{s^2 - d^2}{4} \right)^k \left\{ \frac{\sinh [(1-s)x/2]}{\sinh (x/2)} \right\} x^q K_{q-q} \left(\frac{sx}{2} \right) dx.
\]

(3.5)
To further reduce (3.5), we would like to integrate by parts so that the differential operator acts on $x^qK^{-q}_q(sx/2)$. Here a difficulty comes up, since the resulting integral is divergent at the lower limit $x = 0$ and the intermediate endpoint contributions at $x = 0$ become infinite. To overcome this, we introduce the “finite part” (in the sense of Hadamard) of the resulting integral and end point contributions, defined as follows.

For $\delta \geq 0$, let $f(\delta)$ have an asymptotic expansion as $\delta \downarrow 0$, that consists of terms $\delta^r(\log \delta)^j$ with real r and integer j. Suppose the expansion contains a finite number of singular terms (i.e., terms with $r < 0$ or with $r = 0, j \geq 1$), and let $f_\infty(\delta)$ denote the sum of the singular terms. Then we define the finite part of $f(\delta)$ as $\delta \downarrow 0$ by

$$\lim_{\delta \downarrow 0} [f(\delta) - f_\infty(\delta)].$$

Likewise, if $\int_0^\infty h(x) \, dx$ is divergent or convergent at $x = 0$, we define the finite part of the integral as

$$\int_0^\infty h(x) \, dx = \lim_{\delta \downarrow 0} \int_\delta^\infty h(x) \, dx.$$

When integrating by parts in (3.5), the finite part of a typical endpoint contribution looks like

$$\left. \left(\begin{array}{c} (x) \sinh \left(\frac{1-s}{2} \right) \sinh \left(\frac{x}{2} \right) \\ \end{array} \right) \right|_{x=\delta} \left(x^qK^{-q}_q \left(\frac{sx}{2} \right) \right).$$

where j and l are nonnegative integers with $j + l$ odd. We expand this in a power series in powers of $x = \delta$. Then the expansion is found to contain terms δ^{2n-j-l}, $\delta^{2n+2q-j-l}$ and, if $q = 0$, also $\delta^{2n-j-l} \log \delta$, whereby $n = 0, 1, 2, \cdots$. Because $q \neq \frac{1}{2}$ and $j + l$ is odd, none of the exponents $2n-j-l$ or $2n+2q-j-l$ is zero and the finite part (3.8) vanishes. In this way we find, through integration by parts in (3.5), that

$$g_\nu(s) = \frac{2\pi^{1/2}}{\Gamma(q+\frac{1}{2})} \frac{s^{-q}}{\sin(\pi s)} \int_0^\infty \sinh \left(\frac{(1-s)x/2}{\sinh (x/2)} \right) \left(\frac{s^2 - d^2}{4 - dx^2} \right)^k \left\{ x^qK^{-q}_q \left(\frac{sx}{2} \right) \right\} \, dx.$$
Case iii. \(\nu = n + \frac{1}{2}, n = 0, 1, 2, \cdots \). In this case the integral (2.16) can be evaluated by means of (3.4), viz.

\[
\begin{align*}
\int_{-\infty}^{\infty} \frac{(s^2/4 + u^2)^n}{\cosh (2\pi u) - \cos (\pi s)} \, du = \frac{\pi}{\sin (\pi s)} \left(\frac{s^2}{4} - \frac{d^2}{dx^2} \right)^n \left\{ \frac{\sinh \left[(1-s)x/2 \right]}{\sinh (x/2)} \right\} \bigg|_{x=0}.
\end{align*}
\]

Thus for \(n = 0, \nu = \frac{1}{2} \), we have

\[
g_{1/2}(s) = \frac{\pi}{\sin (\pi s)} (1-s).
\]

To evaluate the derivative in (3.13), we substitute

\[
\sinh \left[(1-s)x/2 \right] = (1-s) e^{sx/2} - e^{-sx/2}
\]

where \(B_{2k+1}(s/2) \) is the Bernoulli polynomial [3, §1.13]. Then we find

\[
g_{n+1/2}(s) = 2\pi \left[2 \right] \sum_{k=0}^{n} (-1)^k \binom{n}{k} \left(\frac{s^3}{4} \right)^{n-k} \frac{B_{2k+1}(s/2)}{2k+1}.
\]

4. Expansion of \(g_{\nu}(s) \) if \(2\nu \in \mathbb{Z} \). To determine the series expansion of \(g_{\nu}(s) \) around \(s = 0 \), we start from the integral representation (3.12) which includes the representation (3.3) as a special case. For convenience it is assumed that \(2\nu \) is not integral. By substitution of

\[
\sinh \left[(1-s)x/2 \right] = (1-s) e^{sx/2} - e^{-sx/2}
\]

the representation (3.12) is rewritten as

\[
g_{\nu}(s) = \frac{2\pi^{1/2}}{\Gamma \left(\frac{1}{2} - \nu \right) \sin (\pi s)} \int_{0}^{\infty} e^{-sx/2} x^{-\nu} K_{\nu} \left(\frac{sx}{2} \right) \, dx
\]

From [4, Formula 6.8(28)] we have

\[
\int_{0}^{\infty} e^{-sx/2} x^{-\nu} K_{\nu} \left(\frac{sx}{2} \right) \, dx = \frac{\pi^{1/2} \Gamma(1-2\nu)}{\Gamma \left(\frac{3}{2} - \nu \right)} s^{\nu-1},
\]

valid for \(\text{Re} \nu < \frac{1}{2} \). By analytic continuation the result (4.3) also holds for \(\text{Re} \nu \geq \frac{1}{2}, 2\nu \in \mathbb{N}, \) provided that the finite part of the integral is taken as in (4.2). To evaluate the second integral in (4.2), we expand the product \(\sinh (sx/2) K_{\nu}(sx/2) \) in a power series. Starting from the definition

\[
K_{\nu}(z) = \frac{\pi}{2 \sin (\nu \pi)} \left[I_{-\nu}(z) - I_{\nu}(z) \right] \quad (\nu \notin \mathbb{Z})
\]

we employ Watson’s expansion [7, Formula 5.41(1)] for the products \(J_{\mu}(z) J_{\nu}(z) \) with \(\mu = \frac{1}{2}, z = isx/2 \). As a result, we obtain

\[
\sinh \left(\frac{sx}{2} \right) K_{\nu} \left(\frac{sx}{2} \right) = \frac{\pi^{1/2}}{2 \sin (\nu \pi)} \left[\sum_{k=0}^{\infty} \frac{\Gamma(2k - \nu + \frac{3}{2})}{(2k+1)! \Gamma(2k-2\nu+2)} (sx)^{2k-\nu+1} \right]
\]

\[
- \sum_{k=0}^{\infty} \frac{\Gamma(2k + \nu + \frac{3}{2})}{(2k+1)! \Gamma(2k+2\nu+2)} (sx)^{2k+\nu+1}.
\]
The latter expansion is inserted into the second integral in (4.2) and we apply a term-by-term integration using the auxiliary integral

\[\int_0^\infty x^\alpha \frac{e^{-x}}{1-e^{-x}} \, dx = \Gamma(\alpha+1)\zeta(\alpha+1) \quad (\text{Re } \alpha > 0) \]

where \(\zeta(\alpha+1) \) denotes Riemann’s zeta function [3, § 1.12]. By analytic continuation the result (4.6) also holds for \(\text{Re } \alpha \leq 0, \alpha \notin \mathbb{Z} \), provided that the finite part of the integral is taken.

Finally, by compiling the previous results we are led to the desired expansion

\[g(s) = \sum_{k=0}^{\infty} \frac{\Gamma(2k+2\nu+2)}{(2k+1)!} s^{2k} \zeta(2k-2\nu+2) \]

valid if \(2\nu \notin \mathbb{Z} \). It is readily seen that the expansion (4.7) is convergent for \(0 < |s| < 1 \).

5. Expansion of \(g_\nu(s) \) if \(2\nu \notin \mathbb{Z} \). Since \(g_\nu(s) \) is a continuous function of the parameter \(\nu \), the series expansion of \(g_\nu(s) \) when \(2\nu = N \in \mathbb{Z} \) can be found by taking limits in (4.7) as \(\nu \to N/2 \). We distinguish four cases.

Case i. \(\nu = n, n = 1, 2, 3, \cdots \). Rewrite the expansion (4.7) as

\[g_\nu(s) = \frac{2\pi}{\Gamma(\nu) \sin(\pi \nu)} \frac{s}{\Gamma(2\nu + 1)} \left(-\sum_{k=0}^{\infty} \frac{\Gamma(2k+2\nu+2)}{(2k+1)!} \zeta(2k-2\nu+2) \right) \]

valid for \(n = 1, 2, 3, \cdots \); here, \(\psi(z) \) denotes the logarithmic derivative of the \(\Gamma \)-function, i.e., \(\psi(z) = \Gamma'(z)/\Gamma(z) \). By means of [3, Formula 1.12(23)] we have

\[\zeta'(2k-2n+2) = (-1)^{n-k-1} \frac{(2n-2k-2)!}{2(2\pi)^{2n-2k-2}} \zeta(2n-2k-1) \]

\((k = 0, 1, \cdots, n-2) \),

which is used in the finite sum in (5.2).
Case ii. \(\nu = -n, n = 0, 1, 2, \cdots \). Rewrite the expansion (4.7) as
\[
g_\nu(s) = \frac{2\pi}{\Gamma(\frac{1}{2} - \nu)} \frac{s}{\sin(\pi s) \sin(\nu \pi)}
\cdot \left[\sum_{k=0}^{n} \frac{\Gamma(2k + \nu + \frac{1}{2})}{\Gamma(2k + 2\nu)} \zeta(2k)s^{2k+2\nu-2}
\right.
\left. + \sum_{k=0}^{\infty} \frac{\Gamma(2k + 2n + \nu + \frac{3}{2})}{\Gamma(2k + 2n + 2\nu + 2)} \zeta(2k + 2n + 2)s^{2k+2n+2\nu}
\right]
\left[\frac{\Gamma(2k - \nu + \frac{3}{2})}{(2k + 1)!} \zeta(2k - 2\nu + 2)s^{2k} \right]\] (5.4)
and take limits as \(\nu \to -n \). Then, as in Case i, we are led to the expansion
\[
g_{-n}(s) = \frac{4(-1)^n}{\Gamma(n + \frac{1}{2}) \sin(\pi s)} \left[\sum_{k=0}^{n} \Gamma\left(2k - n - \frac{1}{2}\right)(2n - 2k)! \zeta(2k)s^{2k-2n-2}
\right.
\left. + \sum_{k=0}^{\infty} \frac{\Gamma(2k + n + \frac{3}{2})}{(2k + 1)!} \zeta(2k + 2n + 2)s^{2k}
\right]
\left. \cdot \left\{ \log s + \psi\left(2k + n + \frac{3}{2}\right) - \psi(2k + 2) + \frac{\zeta'(2k + 2n + 2)}{\zeta(2k + 2n + 2)} \right\} \right],\] (5.5)
valid for \(n = 0, 1, 2, \cdots \). For \(n = 0 \), the expansion (5.5) agrees with \([6, \text{Formula (33)}]\). Note that the expansion of \(g_\nu(s) \) contains logarithmic terms in the case where \(\nu \) is integral.

Case iii. \(\nu = n + \frac{1}{2}, n = 0, 1, 2, \cdots \). When taking limits in (4.7) as \(\nu \to n + \frac{1}{2} \), proper care should be taken because some of the \(\Gamma \)- and \(\zeta \)-functions become singular. First consider the case \(\nu = \frac{1}{2} \); then we find
\[
g_{1/2}(s) = \frac{2\pi s}{\sin(\pi s)} \lim_{\nu \to 1/2} \frac{1}{\Gamma(\frac{1}{2} - \nu)} \left[\frac{\Gamma(\nu - \frac{1}{2})}{\Gamma(2\nu)} \zeta(0)s^{2\nu-2} - \Gamma\left(\frac{3}{2} - \nu\right)\zeta(2 - 2\nu) \right] \] (5.6)
\[
in accordance with (3.14). Generally, for \(\nu = n + \frac{1}{2}, n \geq 1 \), the expansion (4.7) passes into
\[
g_{n+1/2}(s) = (-1)^n \frac{2\pi s}{\sin(\pi s)}
\cdot \lim_{\nu \to n+1/2} \frac{1}{\Gamma(\frac{1}{2} - \nu)} \left[- \sum_{k=0}^{[(n-1)/2]} \frac{\Gamma(2k - n + \frac{1}{2})}{(2k + 1)!} \zeta(2k - 2\nu + 2)s^{2k}
\right]
\left. - \frac{\Gamma(2n - n + \frac{3}{2})}{(2n + 1)!} \zeta(2n - 2\nu + 2)s^{2n} \right]
\] (5.7)
\[
= \frac{2\pi s}{\sin(\pi s)} \left[(-1)^n \sum_{k=0}^{(n-1)/2} \left(\frac{n}{2k + 1} \right) \zeta(2k - 2n + 1)s^{2k} - \frac{(n!)^2}{2(2n + 1)!} s^{2n} \right],\] valid for \(n = 1, 2, 3, \cdots \). In the final line of (5.7) we may set, by \([3, \text{Formula 1.12}(22)]\),
\[
\zeta(2k - 2n + 1) = \frac{B_{2n-2k}}{2(n-k)} \quad (k = 0, 1, \cdots, n - 1) \] (5.8)
where \(B_{2n-2k} \) is the Bernoulli number. It can be shown that the expansion (5.7) agrees with (3.16).
Case iv. \(\nu = -n - \frac{1}{2}, \) \(n = 0, 1, 2, \cdots \). In this case the expansion (4.7) remains valid, provided that the ratio \(\Gamma(2k + \nu - \frac{1}{2})/\Gamma(2k + 2\nu) \) is handled with proper care. Thus by means of

\[
\lim_{\nu \to -n - \frac{1}{2}} \frac{\Gamma(2k + \nu - \frac{1}{2})}{\Gamma(2k + 2\nu)} = \begin{cases}
2(2k - 2n - 1)_n, & k \leq n, \\
(2k - 2n - 1)_n, & k \geq n + 1
\end{cases}
\]

we obtain the expansion

\[
g_{-n - \frac{1}{2}}(s) = \frac{(-1)^n}{n!} \frac{2\pi s}{\sin(\pi s)} \left[-2 \sum_{k=0}^{n} (2k - 2n - 1)_n \xi(2k) s^{2k - 2n - 3} \right.
\]

\[
+ \sum_{k=1}^{\infty} (-1)^k (k)_n \xi(k + 2n + 1) s^{k - 2},
\]

valid for \(n = 0, 1, 2, \cdots \). In the special case \(n = 0, \nu = -\frac{1}{2} \), the expansion (5.10) reduces to

\[
g_{-\frac{1}{2}}(s) = \frac{2\pi s}{\sin(\pi s)} \left[s^{-3} + \sum_{k=1}^{\infty} (-1)^k \xi(k + 1) s^{k - 2} \right]
\]

(5.11)

by use of [3, Formula 1.17(5)]. The same result can also be found by a direct evaluation of the integral (3.3) with \(\nu = -\frac{1}{2} \).

Finally, it is pointed out that the infinite series expansions of \(g_n(s) \), as presented in (5.2), (5.5), and (5.10), are convergent for \(0 < |s| < 1 \). In Case iii the infinite series reduces to a finite sum; see (5.6) and (5.7).

6. Asymptotic expansion of \(G^{(m)}_{\mu, \rho}(\eta) \). The asymptotic expansion of \(G^{(m)}_{\mu, \rho}(\eta) \) as \(\eta \to \infty \) is determined through a term-by-term conversion, based on theorems of Abelian asymptotics [2, Kap. 7], of the series expansion of \(s^{-\mu} g_{\nu}(s) \) around \(s = 0 \). The conversion is most easily carried out by use of the “dictionary” in Table 1. The left column of the table shows a specific term of the expansion around \(s = 0 \); the right column shows the corresponding term of the asymptotic expansion as \(\eta \to \infty \).

In the expansions of \(g_{\nu}(s) \) as determined in §§ 4 and 5, replace \(\pi s / \sin(\pi s) \) by

\[
\frac{\pi s}{\sin(\pi s)} = 2 \sum_{k=0}^{\infty} (1 - 2^{1-2k}) \xi(2k) s^{2k}, \quad |s| < 1
\]

Table 1

Inverse Laplace transforms.

<table>
<thead>
<tr>
<th>(f(s))</th>
<th>((1/2\pi i) \int_{c-i\infty}^{c+i\infty} f(s) e^{ns} ds)</th>
</tr>
</thead>
</table>
| \(s^\lambda \) | \begin{cases}
[1/\Gamma(-\lambda)] \eta^{-\lambda-1}, & \lambda \neq 0, 1, 2, \cdots \\
0, & \lambda = 0, 1, 2, \cdots
\end{cases} |
| \(s^\lambda \log s \) | \begin{cases}
-1/\Gamma(-\lambda) \eta^{-\lambda-1}[\log \eta - \psi(-\lambda)], & \lambda \neq 0, 1, 2, \cdots \\
(-1)^{\lambda+1} \lambda! \eta^{-\lambda-1}, & \lambda = 0, 1, 2, \cdots
\end{cases} |
and multiply the series involved. Then for $2\nu \not\in \mathbb{Z}$, the expansion (4.7) of $g_{\nu}(s)$ takes the form

$$g_{\nu}(s) = \sum_{k=0}^{\infty} A_{k} s^{2k+2\nu-2} + \sum_{k=0}^{\infty} B_{k} s^{2k}, \quad 0 < |s| < 1$$

with coefficients

$$A_{k} = \frac{4}{\Gamma\left(\frac{1}{2} - \nu\right) \sin(\nu\pi)} \sum_{l=0}^{k} \frac{\Gamma(2l+\nu-\frac{1}{2})}{\Gamma(2l+2\nu)} \xi(2l)(1-2^{1-2k+2l})\xi(2k-2l),$$

$$B_{k} = -\frac{4}{\Gamma\left(\frac{1}{2} - \nu\right) \sin(\nu\pi)} \sum_{l=0}^{k} \frac{\Gamma(2l-\nu+\frac{3}{2})}{(2l+1)!} \xi(2l-2\nu+2)(1-2^{1-2k+2l})\xi(2k-2l).$$

Similar expansions hold in the case where $2\nu \in \mathbb{Z}$. From (5.2) and (5.5) it follows that the expansion of $g_{\nu}(s)$ contains logarithmic terms if ν is integral.

Starting from (6.2) multiplied by $s^{-\nu}$, we find by use of Table 1 the desired asymptotic expansion

$$G_{\nu,p}^{(m)}(\eta) \sim \sum_{k=0}^{\infty} \frac{A_{k}}{\Gamma(\mu-2\nu-2k+2)} \eta^{-2\nu-2k+2}$$

$$+ \sum_{k=0}^{\infty} \frac{B_{k}}{\Gamma(\mu-2k)} \eta^{-2k-1} \log \eta, \quad (\eta \to \infty),$$

valid if $2\nu \not\in \mathbb{Z}$. It is pointed out that the first (second) asymptotic series in (6.4) terminates to a finite sum if $\mu-2\nu-2k+2$ is an integer. Similar asymptotic expansions hold in the case where $2\nu \in \mathbb{Z}$. If ν is an integer, it is found from (5.2) and (5.5) that the asymptotic expansion of $G_{\nu,p}^{(m)}(\eta)$ contains logarithmic terms $[1/\Gamma(\mu-2k)] \times \eta^{-2k-1} \log \eta$, with $k \geq \max (\nu+1, 0)$.

As an example, we determine the asymptotic expansion of the integral [5]

$$G_{2,1/2}^{(2)}(\eta) = \int_{-\infty}^{\eta} (\eta - t)[F_{\nu,1/2}(t)]^{2} dt,$$

for which $\nu = 2$. In the expansion (5.2) with $n = 2$, replace $\pi s / \sin(\pi s)$ by (6.1), and multiply the series involved. Then the expansion of $g_{2}(s)$ takes the form

$$g_{2}(s) = \sum_{k=1}^{\infty} c_{k} s^{2k} \log s + \sum_{k=0}^{\infty} d_{k} s^{2k}, \quad |s| < 1$$

with coefficients

$$c_{k} = 6\pi^{-3/2} \sum_{l=1}^{k} \frac{\Gamma(2l-\frac{1}{2})}{(2l+1)!} \xi(2l-2)(1-2^{1-2k+2l})\xi(2k-2l),$$

$$d_{k} = 6\pi^{-3/2} \sum_{l=0}^{k} \frac{\Gamma(2l-\frac{1}{2})}{(2l+1)!} \xi(2l-2) \left[\psi \left(2l-\frac{1}{2}\right) - \psi(2l+2) + \frac{\xi'(2l-2)}{\xi(2l-2)} \right] \cdot (1-2^{1-2k+2l})\xi(2k-2l).$$

Next, by use of Table 1 in a term-by-term conversion of the expansion of $s^{-2}g_{2}(s)$, we are led to the asymptotic expansion

$$G_{2,1/2}^{(2)}(\eta) \sim d_{0} \eta - \sum_{k=1}^{\infty} (2k-2)! c_{k} \eta^{-2k+1} \quad (\eta \to \infty).$$
By evaluating the leading terms in (6.8), we find
\[G_{2,-1/2}^{(2)}(\eta) = \frac{3\zeta(3)}{2\pi^3} \eta + \frac{1}{8\pi} \eta^{-1} + \frac{5\pi}{192} \eta^{-3} + \frac{43\pi^3}{1920} \eta^{-5} + \frac{323\pi^5}{7168} \eta^{-7} + O(\eta^{-9}) \quad (\eta \to \infty). \]

The asymptotic expansion (6.8) can also be derived in a more elementary manner. To that end we start from the two-sided Laplace transform
\[\int_{-\infty}^{\infty} e^{-st} F_{-1/2}^{(s)}(t) \, dt = \frac{\pi s^{3/2}}{\sin(\pi s)}, \tag{6.10} \]
obtainable from (2.12) and (2.13). Using (6.1) and Table 1, we expand (6.10) in a power series around \(s = 0 \), whereupon a term-by-term conversion yields the asymptotic expansion
\[F_{-1/2}^{(s)}(t) \sim -\frac{2}{\pi} \sum_{k=0}^{\infty} (1 - 2^{1-2k}) \Gamma \left(2k + \frac{3}{2} \right) \xi(2k) t^{-2k-3/2} \quad (t \to \infty). \tag{6.11} \]
By squaring (6.11) we find
\[[F_{-1/2}^{(s)}(t)]^2 \sim \sum_{k=0}^{\infty} b_k t^{-2k-3} \quad (t \to \infty) \tag{6.12} \]
with coefficients
\[b_k = \frac{4}{\pi^2} \sum_{l=0}^{k} (1 - 2^{1-2l}) \Gamma \left(2l + \frac{3}{2} \right) \xi(2l) \cdot (1 - 2^{1-2k+2l}) \Gamma \left(2k - 2l + \frac{3}{2} \right) \xi(2k - 2l). \tag{6.13} \]
Next it is observed from (6.5) that \(G_{2,-1/2}^{(2)}(\eta) \) is the repeated integral of order 2, of \([F_{-1/2}^{(s)}(t)]^2\). As it has been shown in the Appendix of [6], the asymptotic expansion of \(G_{2,-1/2}^{(2)}(\eta) \) can now be derived by a twice repeated termwise integration of the expansion (6.12). Thus we find
\[G_{2,-1/2}^{(2)}(\eta) \sim C_1 \eta + C_0 + \sum_{k=0}^{\infty} \frac{b_k}{(2k+1)(2k+2)} \eta^{-2k-1} \quad (\eta \to \infty) \tag{6.14} \]
where the constants \(C_0 \) and \(C_1 \) are yet to be determined. By dividing (6.14) by \(\eta \) and taking limits as \(\eta \to \infty \), it readily follows that
\[C_1 = \int_{-\infty}^{\infty} [F_{-1/2}^{(s)}(t)]^2 \, dt = g_2(0) = \frac{3\zeta(3)}{2\pi^3} \tag{6.15} \]
where \(g_2(0) \) has been evaluated by means of (2.16) and [4, Formula 6.6(4)]. In a similar manner it is found that
\[C_0 = -\int_{-\infty}^{\infty} t[F_{-1/2}^{(s)}(t)]^2 \, dt = g_2'(0) = 0. \tag{6.16} \]
The asymptotic expansion (6.14) does agree with (6.8) provided that
\[-(2k)! c_{k+1} = \frac{b_k}{(2k+1)(2k+2)}, \quad k = 0, 1, 2, \ldots \tag{6.17} \]
The latter identity can be proved by a generating function technique.
REFERENCES

