Reactions and phase relations in the Ti-Al-O system

Citation for published version (APA):

DOI:
10.1016/0956-7151(92)90478-W

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.

Download date: 08. Feb. 2019
REACTIONS AND PHASE RELATIONS IN THE Ti–Al–O SYSTEM

X. L. LI, R. HILLEL, F. TEYSSANDIER, S. K. CHOI and F. J. J. VAN LOO

1Laboratoire de Physicochimie minérale 1, CNRS-URA 116, Université Claude Bernard, F-69622 Villeurbanne Cedex, France, 2IMP-CNRS, Université de Perpignan, F-66860 Perpignan, France and 3Laboratory of Solid State Chemistry and Material Science, University of Technology, 5600 MB Eindhoven, The Netherlands

(Received 9 December 1991; in revised form 6 February 1992)

Abstract—Reactions between titanium and alumina were studied experimentally for Al2O3 substrates with a titanium-based coating and for planar Ti–Al2O3 diffusion couples in the temperature range between 800 and 1100°C. Isothermal sections through the phase diagram were determined by using these results as well as by investigating equilibrated alloys. These experimental sections agree with those calculated from thermodynamic data. The morphology and layer thickness of the observed reaction zones have been explained on the basis of these phase relations, making use of diffusion data from the binary systems Ti–O and Ti–Al. The important role of the initial Ti thickness on the type of reaction products has been demonstrated.

Résumé—Les réactions entre titane et alumine sont étudiées expérimentalement à partir de substrats d'alumine recouverts d'une couche à base de titane par CVD réactive, ou à partir de couples de diffusion plans Ti–Al2O3 recuits dans la gamme de température 800–1100°C. Des sections isothermes de ces diagrammes de phase sont déterminées à partir de ces résultats de même qu'en utilisant des mélanges de poudres à l'équilibre après traitement thermique. Ces résultats sont en bon accord avec les résultats du calcul thermodynamique. Les morphologies ainsi que les épaisseurs des domaines d'interaction sont expliquées à partir des relations entre les phases à l'équilibre et grâce aux données concernant la diffusion de systèmes binaires Ti–O et Ti–Al. L'importance de l'épaisseur initiale de titane sur la nature des phases formées est également démontrée.

1. INTRODUCTION

Because of the increasing importance of ceramic–metal combinations for high temperature applications, like in composites or in the joining and coating technology, a better understanding of their mutual interaction is necessary. It would especially be fruitful if these interactions could be predicted from the more or less easily accessible data on the relevant phase diagrams and on the diffusivities in the binary systems which are involved.

For a number of relatively simple metal–ceramic combinations with Cell-defined stoichiometric compounds such predictions turned out to be possible by using a model developed by Van Loo et al. [1, 2]. The principle is shown in Fig. 1. The key idea is the impossibility for atoms or ions to intrinsically diffuse into a direction where its own chemical activity is increased. It might be worthwhile to stress at this point the word “intrinsically”. The equations for the interdiffusional fluxes in a ternary diffusion couple are dependent on the chemical potential gradients of two components. The intrinsic flux of a component, measured in the Kirkendall frame of reference, depends only upon its own potential gradient as shown by Lane and Kirkaldy [3]. Since the relative values of the chemical activities in simple ternary systems can be found from the slopes of the lines, important conclusions can be drawn a priori concerning the sequence of the compounds formed during the reaction in a diffusion couple.

For the case of Fig. 1(b), for example, the layer sequence A[AX]B[BX] is excluded because of the fact, that species X then should diffuse from BX through the phase B towards the phase AX where its chemical activity is higher than in BX. This process is thermo-
Fig. 1. (a,b) Phase relations in the A-B-X system in a rectangular configuration. (c,d) The activity of X as a function of the metal mole ratio. The dots represent the activity of X in a saturated solid solution (A,B). (e,f,g) Basic morphologies for the reaction zone in the displacement reaction A + BX → B + AX (see Refs [1, 4]).

dynamically not allowed. In the case of Fig. 1(a), no sequence is excluded on thermodynamic grounds. The diffusion kinetics determine the morphology of the reaction layer. Using Rapp's criterion [4] one may predict whether two single-phase layers or one two-phase layer is formed.

It seemed interesting to us to verify, whether such a simple model also can be applied to systems in which the phase diagram is more complicated, especially in systems where large regions of solid solutions are formed instead of stoichiometric line-compounds. We chose a study into the Ti-Al-O system, reported here, and the Ti-Si-O system on which we will report separately. Both systems are interesting from a technological point of view, especially in composite materials [5, 6] and in metal-ceramic joining [7, 8]. A literature search into the reaction between Ti and Al2O3 and into the Ti-Al-O phase diagram revealed a number of often conflicting results [9–17]. For instance, using infinite or finite diffusion couples, various sequences of layers were proposed:

\[
\begin{align*}
\text{Ti/α-Ti(O)/Ti}_2\text{Al}_2\text{O}_3 \quad [11]; \\
\text{Ti/Ti}_2\text{Al/TiO/Al}_2\text{O}_3 \quad [12]; \quad \\
\text{α-Ti(O,Al)/TiAl(O)/Al}_2\text{O}_3 \quad [13]; \\
\text{Ti/Ti}_2\text{Al(O)/TiAl(O)/Al}_2\text{O}_3 \quad [14]; \quad \\
\text{α-Ti(O)/Ti}_2\text{Al(O)/Al}_2\text{O}_3 \quad [17].
\end{align*}
\]

It is shown in this paper that these differences partly originate from the different thicknesses of the titanium end member (thin coatings or thick slices) and that the actual phenomena can readily be explained (and predicted) from the isothermal section through the ternary phase diagram.
2. EXPERIMENTAL

2.1. Diffusion couple preparation

Ti–Al$_2$O$_3$ diffusion couples were prepared in two ways, viz. by applying titanium-based coatings on sintered alumina or single-crystalline sapphire by gaseous cementation and by hot-pressing polished slices of titanium and alumina in a vacuum furnace.

In the first method, plane alumina substrates [sintered alumina 99.7 wt% or (1 T02) cleaved sapphire crystals, dimensions 10:10:1 mm] were treated by reactive CVD in closed silica capsules, filled with thin titanium foils and HCl. The HCl concentration was equal to 1.07 × 10^{-3} mol·cm^{-3} and the quantity of titanium corresponded to an atomic ratio Ti/Cl = 100. The capsules were sealed and annealed in the range of 600–800°C during 0.25–200 h. We have shown [6] that at these temperatures the gaseous phase consisted of a mixture of TiCl$_4$, TiCl$_3$, and H$_2$. In this way titanium was transported to the alumina substrate and reacted to a coating with two distinct layers, arranged as α-Ti(O,A1)/Ti$_3$Al(O)/Al$_2$O$_3$. The thickness and exact composition of these layers depended on the experimental conditions [5, 6].

For the hot pressed diffusion couples, 10 mm diameter discs of sintered alumina (99.9 wt%) and titanium (99.8 wt%) were pressed together using a uniaxial pressure of 4 MPa in the centre of a hot chamber which was evacuated to 10^{-3} Pa. They were heated during 1/2 h at 900°C, and then wrapped in Ta-foil, annealed in an evacuated silica capsule in a tube furnace at 1100°C and quenched after 72 or 140 h. Parallel with these methods, a direct joint was made in a vacuum furnace (10^{-4} Pa vacuum, uniaxial pressure 0.2 MPa) at 100°C for 50 and 100 h. The thickness of the alumina disc was 1 mm, the thickness of the titanium disc varied between 0.025 mm (for making a completely finite equilibrated couple) and 4 mm (for making semi-infinite couples). For further experimental details see Ref. [8].

2.2. Determination of isothermal sections of the phase diagram

Homogeneous alloys were made in two ways, viz. by sintering powder mixtures of titanium and alumina or aluminium and TiO$_2$. The Ta-wrapped pellets were placed in an alumina crucible, which was annealed in an evacuated silica capsule at 800 and 1000°C until equilibrium was reached. The same was done in the binary Ti–O system by mixing six powder samples consisting of different amounts of Ti and Ti$_2$O$_3$ and for the Ti–Al system by mixing Ti and Al powders at four compositions between 10 and 35 at.% Al. For more experimental details see Ref. [6].

The powder metallurgy method has the serious disadvantage of containing an unknown amount of extra oxygen which adsorbs at the large powder surface. Therefore, arc-melting of mixtures composed of titanium lumps and alloys of the starting composition Ti$_2$O$_3$, Ti$_3$Al or TiAl was also carried out. The alloys were then homogenised at 1100°C. The analyses of the annealed diffusion couples were also used for the determination of the phase diagram.

2.3. Analyses of alloys and diffusion couples

Both the alloys and the diffusion couples have been analysed by light microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and by X-ray diffraction.

By light microscopy and SEM, the various phases of importance for our investigation (α-Ti(O,A1), β- Ti(O,Al), Ti$_3$Al(O), TiAl, TiO and Al$_2$O$_3$) were readily distinguished after etching with a 2% HF, 2% HNO$_3$ aqueous solution. The quantitative analysis by EPMA, however, turned out to be very intricate and time-consuming because of the unavoidable presence of thin oxide surface films on the alloys which tend to higher apparent oxygen contents.

In order to take this thin film into account, the EPMA measurements were performed at various excitation voltages from 2 to 20 kV with a beam current of 10 nA, using Ti-L_2 radiation below 7 kV. The standards were pure titanium and aluminium and Fe$_2$O$_3$ for oxygen. Using the PROZA and the thin-film programs of Bastin [18, 19] we were able to measure the actual bulk composition of the alloys and in the diffusion couple cross sections as well as the thickness and composition of the surface films. In the composition range of interest, the Ti/Al molar ratio was not affected by the presence of the oxide film.

We made use of this fact by developing a combined X-ray diffraction and SEM equipped with energy dispersive spectroscopy (EDS) analysis to determine the composition of especially, the α-Ti(O,A1) and Ti$_3$Al(O) solid solutions. Using literature data [20, 21] and our own X-ray measurements on binary Ti–O and Ti–Al alloys [6], we constructed a set of calibration curves for the volume of the lattice cell vs the amount of oxygen or aluminium, assuming that the interstitially dissolved oxygen and the substitutionally dissolved Al do not influence their individual effect on the cell volume (Fig. 2).

To check this procedure, ternary alloys made by the powder method were analysed in this way. The weighed-in and estimated composition are in good agreement for the aluminium-poor alloys (Table 1).

3. RESULTS

The isothermal sections determined at 1000 and 1100°C were in quite close agreement. They show, as the one determined at 1100°C (Fig. 3), tie-lines radiating from Al$_2$O$_3$ to all other phases present in the diagram, except for the β-Ti solid solution which is in equilibrium with α-Ti(O,Al).

The diffusion paths (average composition measured in a diffusion couple from one end member to the other) shown in Fig. 3 for couples with thin
titanium foils all show the layer sequence Al_2O_3/
$\text{Ti}_3\text{Al}(\text{O})/\text{Ti}_2\text{O}$, where Ti_2O stands for the saturated
solid solution of oxygen in α-Ti. A small amount
(maximum about 5 at. % Al) was found in Ti_2O very
close to the Ti_3Al layer. This sequence was found in
all gaseous cemented Al_2O_3 substrates as well as in
sandwich hot-pressed diffusion couples Al_2O_3/
Al_2O_3 with 0.025 mm thick titanium discs as shown in
Fig. 4. In infinite diffusion couples one of the end
members is still pure β-Ti. The layer sequence is then
found to be Al_2O_3/$\text{Ti}_3\text{Al}(\text{O})$/$\text{Ti}_2\text{O}$(//$\alpha$-$\text{Ti}(\text{O},\text{Al})$)/$\beta$-Ti
as indicated by the diffusion path in Fig. 3. In Fig. 5,
two micrographs are shown of such a couple.

4. DISCUSSION

The isothermal sections found by us differ from
the diagrams published by Tressler [12] (Fig. 6),
especially in the phase equilibria between TiAl, Ti_3Al,
α-$\text{Ti}(\text{O},\text{Al})$, TiO and Al_2O_3. In order to verify whether
our results were consistent with the published
thermodynamic properties of the Ti–O and Ti–Al
alloys we determined the phase relations at 1373 K
by Gibbs free energy minimisation of the total sys-
tem. Calculations were performed with the Solgasmix
program taking into account the line compounds
given in Table 2 and the solid solution α-$\text{Ti}(\text{O})$.
Due to the low solubility of oxygen in β-Ti, the
β-$\text{Ti}(\text{O})$ solid solution was not considered for the
calculation.

Table 1. Comparison between the prepared and estimated com-
position of the α-$\text{Ti}(\text{O},\text{Al})$ phase

<table>
<thead>
<tr>
<th>Weighted-in composition</th>
<th>Measured volume of the cell (nm3)</th>
<th>Estimated composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Ti}_2\text{O}_3\text{O}0\text{Al}{0.13}$</td>
<td>0.03351 ± 0.00002</td>
<td>$\text{Ti}2\text{O}3\text{O}{0.11}\text{Al}{0.12}$</td>
</tr>
<tr>
<td>$\text{Ti}_2\text{O}_3\text{O}0\text{Al}{0.20}$</td>
<td>0.03550 ± 0.00009</td>
<td>$\text{Ti}2\text{O}3\text{O}{0.19}\text{Al}{0.21}$</td>
</tr>
<tr>
<td>$\text{Ti}_2\text{O}_3\text{O}0\text{Al}{0.22}$</td>
<td>0.03549 ± 0.00009</td>
<td>$\text{Ti}2\text{O}3\text{O}{0.18}\text{Al}{0.23}$</td>
</tr>
<tr>
<td>$\text{Ti}_2\text{O}_3\text{O}0\text{Al}{0.25}$</td>
<td>0.03559 ± 0.0001</td>
<td>$\text{Ti}2\text{O}3\text{O}{0.17}\text{Al}{0.24}$</td>
</tr>
<tr>
<td>$\text{Ti}_2\text{O}_3\text{O}0\text{Al}{0.22}$</td>
<td>0.03628 ± 0.00004</td>
<td>$\text{Ti}2\text{O}3\text{O}{0.15}\text{Al}{0.25}$</td>
</tr>
</tbody>
</table>

4.1. Ti–O binary phase diagram

The Gibbs free energies of formation of the Ti–O
stoichiometric compounds came from Chase et al. [22]
and are consistent with JANAF [23] and Pankratz
[24]. The variation of the Gibbs free energies of the
solid solution α-$\text{Ti}(\text{O})$ as a function of the com-
position at 1373 K was obtained in the following way.
The information we have about the α-$\text{Ti}(\text{O})$ phase is

--- According to the assessed Ti–O Murray [20]
phasediagram, the upper and lower phase
boundary compositions of α-$\text{Ti}(\text{O})$ are
$\text{Ti}_{0.667}\text{O}_{0.333}$ and $\text{Ti}_{0.915}\text{O}_{0.085}$.
--- The corresponding free energy of formation
based on the data given by Kubaschewski
and Alcock [29] on the Ti–O system is
$\Delta G_{1373}^{1373} \text{Ti}_{0.915}\text{O}_{0.085} = -44,272 \text{J/mol}$
$\Delta G_{1373}^{1373} \text{Ti}_{0.667}\text{O}_{0.333} = -152,000 \text{J/mol}$.
--- As a result of this boundary composition we
know that the tangent to the ΔG α-$\text{Ti}(\text{O})$
curve for the composition $X_0 = 0.33$ includes
the point corresponding to $\Delta G_{1373}^{1373} \text{Ti}_{0.667}\text{O}_{0.33}$.

Fig. 3. Isothermal section of the Ti–Al–O phase diagram
experimentally determined at 1100°C.
Fig. 4. Finite diffusion couple Al₂O₃/TiAl₂O₃ welded at 1100°C, 100 h in vac. (10⁻⁶ torr). Thickness ratio: Ti₂O₃/Ti₃Al(O) = 1:1.46 ± 0.13.

Five conditions are then obtained which allow the determination of five parameters: the two coefficients of the tangent, the lattice stability of oxygen between the h.c.p. and gas state (which is not given in the literature) and two parameters (A and B) for the equation of ΔG α-Ti(O)

$$\Delta G_{\text{Ti}_{1-x}O_x} \text{(ref. Ti h.c.p., O h.c.p.)} = X(1 - X)(AX + B).$$

Taking into account the lattice stability of titanium determined by Kaufman [26] ($G_{\text{Ti h.c.p.}} - G_{\text{Ti b.c.c.}} = -4351 + 3.766 \cdot T$ J/mol), the calculation gives $A = -848.533$, $B = -678.039$, ΔG_{TiO} h.c.p. = 201,456 J/mol. The corresponding Gibbs diagram is presented in Fig. 7.

4.2. Ti–Al binary phase diagram

The Ti–Al system was first investigated by Kaufman [26] who determined the Gibbs free energy of formation of Ti₃Al, TiAl and TiAl₃ described as line compounds. The α- and β-Ti(Al) solid solutions were modeled as regular solutions. More recently, Murray [27] did the same calculation but included the homogeneity range of Ti₃Al and TiAl as well as order parameters, with a model which combines the sub-lattice description and the Bragg-Williams approximation. The Ti–Al system has also been studied by Gros et al. [28] but the calculation involves only the Ti-rich corner which includes liquid, b.c.c., h.c.p. and Ti₃Al phases.

The calculation of Murray is one of the most recent and complete but does not take into account TiAl₂, whose existence seems now to be well established. We have thus undertaken a new calculation based on the data of Murray [27] for TiAl₃ and the α- and β-Ti(Al) solid solutions and including TiAl₁. We were not able to use the Gibbs free energy of TiAl₂ established by Kaufman [26] which is too high according to the data of Murray. Our own estimation of this value at 1373 K is: ΔG^{1373} Ti₀.₃₃Al₀.₆₇ = -26,000 J/mol.

Fig. 5. Infinite diffusion couples. (a) Ti/Al₂O₃ annealed at 1100°C, 140 h in silica tube. (b) Ti/Al₂O₃ welded at 1100°C, 50 h in vac. (10⁻⁶ torr).

Fig. 6. The two possible phase diagrams at 870°C according to Tressler et al. [12].
Table 2. Gibbs free energy of formation of the line compounds, taken into account in our calculations

<table>
<thead>
<tr>
<th>Line compounds</th>
<th>ΔG (J/mol)</th>
<th>1373 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2} \text{TiO}$</td>
<td>$-205,907$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{5} \text{Ti}_2\text{O}_3$</td>
<td>$-229,223$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{8} \text{Ti}_3\text{O}_5$</td>
<td>$-232,032$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{11} \text{Ti}_4\text{O}_7$</td>
<td>$-231,664$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{3} \text{TiO}_2$</td>
<td>$-18,377$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2} \text{TiAl}$</td>
<td>$-26,165$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{3} \text{TiAl}_2$</td>
<td>$-26,000$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{4} \text{TiAl}_3$</td>
<td>$-23,007$</td>
<td></td>
</tr>
</tbody>
</table>

We used a polynomial expansion for the excess Gibbs free energy of Ti_3Al and TiAl in their homogeneity range

$$
\Delta G = X_{\text{Al}} \cdot (1 - X_{\text{Al}}) \cdot (C \cdot X_{\text{Al}} + D)
$$

Ti_3Al (Ref. Ti h.c.p., Al h.c.p.)

TiAl (Ref. Ti f.c.c., Al f.c.c.)

$$
\Delta G = X_{\text{Al}} \cdot (1 - X_{\text{Al}}) \cdot (L \cdot X_{\text{Al}}^2 + M \cdot X_{\text{Al}} + N)
$$

The results of the calculation have to be in accordance with the phase boundaries of the assessed binary Ti-Al phase diagram at 1373 K. Eight conditions can then be determined which allow the determination of the five parameters of the excess Gibbs free energy of Ti_3Al and TiAl, as well as the equations of the common tangents to α-Ti(Al) and Ti_3Al, and TiAl and TiAl_2. The following lattice stability of titanium and aluminium established by Kaufman [26] was used:

$$
G_{\text{Ti h.c.p.}} - G_{\text{Ti f.c.c.}} = -4351 + 3.766 \cdot T \text{ J/mol}
$$

$$
G_{\text{Al h.c.p.}} - G_{\text{Al f.c.c.}} = -1004 + 3.766 \cdot T \text{ J/mol}
$$

$$
G_{\text{Ti h.c.p.}} - G_{\text{Al h.c.p.}} = -5230 + 9.707 \cdot T \text{ J/mol}
$$

$$
G_{\text{Al h.c.p.}} - G_{\text{Al f.c.c.}} = -10,740 + 11.506 \cdot T \text{ J/mol}
$$

The resulting free energy diagram at 1373 K is given in Fig. 8.

The solubility of oxygen is described by a quasi-binary approximation between Ti_3Al or TiAl and O

$$
G^\text{b.c.p.} = (1 - X_O)G_{\text{Ti0.67Al0.33}} + X_OG_O + RT[X_O \ln X_O + (1 - X_O) \ln (1 - X_O)] + \chi_SG^\text{b.c.p.}
$$

where

$$
\chi_SG^\text{b.c.p.} = \lambda X_O(1 - X_O)
$$

λ is the excess parameter of the solid solution described with a regular model. The lattice stability of
oxygen between the h.c.p. and the gas state is that
determined for the Ti-O system
\[\Delta G_{1/2O_2}^{h.c.p.} = G_{1/2O_2}^{g.s.} = 201,456 \text{ J/mol.} \]
The lattice stability of oxygen between the f.c.c. and
the gas state as well as the regular parameters were
adjusted to represent satisfactorily the experimentally
determined limit of solubility
\[\begin{align*}
T_{i3}Al-O: & \quad \text{limit } X_0^0 = 0.11 \quad \lambda = -720,000 \text{ J} \\
T_{iAl}-O: & \quad \text{limit } X_0^0 = 0.03 \quad \lambda = -630,000 \text{ J} \\
G_{1/2O_2}^{f.c.c.} - G_{1/2O_2}^{g.s.} = 230,120 \text{ J/mol.}
\end{align*} \]
The calculated isothermal ternary section at 1373 K
is given in Fig. 9. If we exclude the Ti rich corner
where the \(\alpha \)- or \(\beta \)-Ti(O,Al) solid solutions were not
taken into account, this diagram agrees very well with
the experimental one. These results emphasize the
fact that a strong variation of the free energy is
induced by the solubility of oxygen
\[\begin{align*}
T_{i5.75}Al_{0.25}: & \quad \Delta G = -18,377 \text{ J/mol} \\
T_{i6.68}Al_{0.322}O_{0.68}: & \quad \Delta G = -68,272 \text{ J/mol} \\
T_{i5.95}Al_{0.05}: & \quad \Delta G = -26,165 \text{ J/mol} \\
T_{i9.455}Al_{0.455}O_{0.545}: & \quad \Delta G = -39,837 \text{ J/mol.}
\end{align*} \]
In the case of TiAl–O this variation represents an
increase of more than 50% of \(\Delta G \) for only 3% oxygen
dissolved. For TiAl(O) the free energy value at 11% oxygen
is more than three times the initial value.

If we accept the experimentally determined isothermal
section to be correct, we can construct from
them the rectangular sections shown in Fig. 10(a) and
(b), and we can estimate the corresponding plots of
\(\ln a_O \) and \(\ln a_{Al} \) shown in Fig. 10(c).

These estimates are based on the thermodynamic
data in Table 2, on the data given by Kubaschewski
[29] on the Ti–O system which takes into consideration
the solid solubility range of TiO and on the data
of the above mentioned thermodynamic calculation.
We now use Fig. 10 (c) and (d) as a starting point for
our prediction of the diffusion path in a semi-infinite
Ti–Al_2O_3 couple.

Figure 10(d), for instance, forbids a layer sequence
\(Al_2O_3/TiO/Ti_{i3}Al/\alpha/\beta-Ti \), suggested by Tressler[12],
since then Al has to diffuse from Al_2O_3 through a
minimum activity in TiO to a higher activity in Ti_iAl,
which is thermodynamically impossible.

Figure 10(c) forbids a diffusion path of the type
\(Al_2O_3/TiAl_i/Ti_{i3}Al/Ti_{i3}Al/\alpha-Ti(O,Al)/\beta-Ti \). The
reason is that since the activity of oxygen has to decrease going from the Al_2O_3/TiAl_i boundary (in \(a_O \approx -75 \)) towards the \(\alpha \)-solid solution. Such a low activity of oxygen in \(\alpha \) means a negligible concentration of oxygen and that is in conflict with the mass
balance, since the oxygen amount which diffuses
away from Al_2O_3 must be 3/2 times the amount of aluminium atoms. The sequence Al_2O_3/\(\alpha/Ti_{i3}Al/\alpha/\beta-Ti \)
is, from Fig. 10(c) and (d) not necessarily for-
bidden, but very unlikely since between very small
limits in the activities of oxygen and aluminium
the path would then enter, leave and re-enter the
\(\alpha \)-phase. No problem is offered with a sequence of the type
\[\begin{align*}
& Al_2O_3/TiAl/Ti_{i3}Al/\alpha/\beta-Ti \\
& \text{or} \\
& Al_2O_3/Ti_{i3}Al/\alpha/\beta-Ti
\end{align*} \]
indicated in Fig. 3. Which of these paths will be
followed depends, in fact, on the relative ratio of the
diffusivities in the TiAl, Ti_iAl and \(\alpha-Ti(O,Al) \) phases.
The diffusion of oxygen in \(\alpha-Ti \) is fast [30], that of Al
in Ti_{i3}Al or \(\alpha-Ti \) is low [31]. In order to let oxygen
diffuse freely into \(\alpha-Ti \) and to cope with the mass
balance, the formation of TiAl has to be expected and
is indeed found. If, on the other hand, the initial Ti
thickness is small, then the amount of oxygen which
enters Ti is small and the titanium becomes rapidly
saturated in oxygen, consequently leading to a change
in diffusion path. This path no longer starts at the
pure titanium, but at a more or less saturated solid
solution \(\alpha-Ti(O) \). During this process, TiAl formed
in the beginning of the process, will react with
the unsaturated \(\alpha-Ti(O) \) solution of e.g. composi-
tion Ti_{i8.3}O according to a reaction scheme of the type
\[\begin{align*}
12 \text{ Ti} + Al_2O_3 \rightarrow 3 Ti_{i8.3}O + Ti_{i3}Al(O) + TiAl(O) & \quad (1) \\
3 Ti_{i8.3}O + TiAl(O) \rightarrow 3 TiO + Ti_{i3}Al(O) & \quad (2) \\
12 \text{ Ti} + Al_2O_3 \rightarrow 2 Ti_{i3}Al(O) + 3 TiO & \quad (3)
\end{align*} \]
The limited thickness of the Ti_{i3}Al layer permits its
formation from a diffusion point of view. If the
reaction given above is represented according to the
actual measured average compositions for the thin-
foiled Ti–Al_2O_3 couple, one gets
\[\begin{align*}
10.2 \text{ Ti} + Al_2O_3 \rightarrow 7.9 \ Ti_{i6.68}Al_{0.32}O_{0.082} & + 7.29 \ Ti_{i9.45}Al_{0.455}O_{0.545}. \quad (4)
\end{align*} \]
The cell volumes (per atom) of the Ti₃Al(O) and α-Ti(O) phases are calculated from Fig. 2 as shown in Table 3. That means, that according to reaction (4) the thickness ratio of the two layers has to be

$$\text{Ti}_3\text{Al(O)}:\alpha - \text{Ti(O)} = (0.0156 \times 7.9)/(0.0124 \times 7.29) = 1.36:1$$

which is in excellent agreement with the value of 1.39 ± 0.12, experimentally found as shown in Fig. 4. This, in fact, is also an independent confirmation of the composition measurements by EPMA.

5. CONCLUSION

By different experimental techniques a consistent isothermal section of the Ti-Al-O phase diagram has been established in the range 1000–1100°C. From this section, together with estimated thermodynamic data, it is possible to explain in detail the layer sequence and morphology in diffusion couples Al₂O₃-Ti. The same method can, therefore, fruitfully be used to predict the diffusion processes and layer morphologies in this type of system. This will be shown in a future paper dealing with the interaction between SiO₂ and Ti.

Table 3. The number of atoms per unit cell is equal to the number of Ti + Al atoms (which is 2) plus the number of interstitially dissolved oxygen atoms [which e.g. for the composition $\text{TiO}_{0.680}\text{Al}_{0.232}\text{O}_{0.002}$ is equal to $2 \cdot (0.082)/(1-0.082)$]

<table>
<thead>
<tr>
<th>Composition</th>
<th>Unit cell volume (nm²) (Fig. 2)</th>
<th>Number of at./cell</th>
<th>Volume per atom nm³/at.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{TiO}{0.680}\text{Al}{0.232}\text{O}_{0.002}$</td>
<td>0.0341</td>
<td>2.179</td>
<td>0.0341/2.179 = 0.016</td>
</tr>
<tr>
<td>$\text{TiO}{0.322}\text{Al}{0.322}$</td>
<td>0.0366</td>
<td>2.949</td>
<td>0.0366/2.949 = 0.0124</td>
</tr>
</tbody>
</table>
REFERENCES

