On a property of the Fourier-cosine transform

Citation for published version (APA):

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 18. Sep. 2020
RANA 88-06
May 1988
ON A PROPERTY
OF
THE FOURIER-COSINE TRANSFORM
by
C.A.M. van Berkel
and
J. de Graaf

Reports on Applied and Numerical Analysis
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
On a property of the Fourier-cosine transform

by
C.A.M. van Berkel
and
J. de Graaf
Eindhoven University of Technology
(AMS Classifications 33A65 30D15 42A38)

SUMMARY

It is shown that the Fourier-cosine transform maps functions of the form

\[t \mapsto \phi(1 - 2 \tanh^2 t) \cosh^{-1} t, \]

with \(\phi \) an entire analytic function and \(\Re \nu > 0 \), bijectively onto the functions

\[x \mapsto \Gamma(\frac{1}{2} (\nu + ix)) \Gamma(\frac{1}{2} (\nu - ix)) \psi(x). \]

Here \(\psi \) is an even and entire analytic function of sub-exponential growth, i.e.

\[\forall \nu > 0 : \sup_{z \in \mathbb{C}} e^{-\epsilon |z|} |\psi(z)| < \infty. \]
1. Introduction

The Fourier-Jacobi transform $f \mapsto g$ is defined by

$$ g(\lambda) = \int_0^\infty f(t) \phi^{(\alpha, \beta)}_h(t) \Delta_{\alpha, \beta}(t) \, dt, \quad \alpha > -1, \beta \in \mathbb{R} $$

with

$$ \phi^{(\alpha, \beta)}_h(t) = 2F_1 \left(\frac{1}{2} (\alpha + \beta + 1 + i\lambda), \frac{1}{2} (\alpha + \beta + 1 - i\lambda); \alpha + 1; -\sinh^2 t \right), \quad t > 0 $$

and

$$ \Delta_{\alpha, \beta}(t) = (2\sinh t)^{2\alpha+1} (2\cosh t)^{2\beta+1}. $$

If we take

$$ f(t) = (\cosh t)^{\delta+i\mu-2} P_{\alpha}^{(\alpha, \beta)} (1 - 2 \tanh^2 t), \quad \alpha, \delta > -1, \beta, \lambda, \mu \in \mathbb{R}, $$

then, following Koornwinder, [K],

$$ g(\lambda) = c_{\alpha, \beta, \mu} \left(\frac{1}{2} (\delta + i\mu + 1 - i\lambda)) \Gamma(\frac{1}{2} (\delta + i\mu + 1 - i\lambda)) \right). $$

Here the $P_{\alpha}^{(\alpha, \beta)}$ are Jacobi polynomials and the W_α are Wilson polynomials. For the constant $c_{\alpha, \beta, \mu}$ see [K]. If we abandon the factor between $\{ \}$ and if we keep the parameters $\alpha, \beta, \delta, \mu$ fixed, then it is clear that, via the Fourier-Jacobi transform, the space of polynomials is mapped linearly and bijectively on the space of even polynomials.

Let us denote this linear mapping by $F_{\alpha, \beta, \mu}$. Now we are in a position to put the following problems.

(i) Extend $F_{\alpha, \beta, \mu}$ bijectively to suitable spaces of analytic functions (entire functions, analytic functions on $[-1, 1]$, germs of analytic functions at 0, etc.).

(ii) Determine growth classes of analytic functions (as in [EG1], [EG2]) which are put in bijective correspondence by the extended $F_{\alpha, \beta, \mu}$.

In the present paper we work out a part of this program for the Fourier cosine transform, $\alpha = \beta = -\frac{1}{2}$. Even in this very special case the results seem to be new. The authors expect that the case with general parameters can be dealt with in the same spirit. We emphasize that our treatment is inspired by Koornwinders formula but does not use it.
2. A special infinite upper triangular matrix

In the sequel we take $v \in \mathbb{C}$, $\text{Re } v > 0$, fixed. We denote $\mathcal{N}_0 = \mathbb{N} \cup \{0\}$.

Lemma 2.1.

(i) For each $n \in \mathcal{N}_0$ there exist complex numbers $c_{j,n}, 0 \leq j \leq n$, such that

$$(2\tanh^2 t - 1)^n \cosh^{
u} t = \sum_{j=0}^{n} c_{j,n} \frac{d^{2j}}{dt^{2j}} \left[\cosh^{
u} t \right], \quad t \in \mathbb{R}. $$

(ii) The numbers $c_{j,n}, 0 \leq j \leq n < \infty$, satisfy the recurrence relation

$$(n + \frac{1}{2}(1 + v)) (2n + v) c_{j,n+1} = c_{j-1,n} + (2n^2 + \frac{1}{2} v (1-v)) c_{j,n} +$$

$$+ n (2n-1+2v) c_{j,n-1} - 2n (n-1) c_{j,n-2}, \quad 0 \leq j \leq n + 1$$

with boundary conditions

$$c_{0,0} = 1, \quad c_{j,n} = 0 \quad \text{if } j < 0 \text{ or } j > n.$$

Proof.

It is obvious that (i) is true for $n = 0$, then $c_{0,0} = 1$. Now suppose, induitively, that (i) is true for $n = 0, 1, \cdots, N$.

Differentiating the expression in (i) twice according to t and evaluating the derivatives using the induction hypothesis, leads to both assertions (i) and (ii) at once.

In the following theorem we gather some properties of the numbers $c_{j,n}, 0 \leq j \leq n < \infty$.

Theorem 2.2.

(i) $c_{j,j} = \frac{2^{j}}{\Gamma(v)} \left(\frac{\Gamma(v)}{\Gamma(v+2j)} \right)$, $j \in \mathcal{N}_0$.

(ii) $\left| \frac{c_{j,n}}{c_{j,j}} \right| \leq 4^n, \quad 0 \leq j \leq n < \infty$.

(iii) $\lim_{j \to \infty} c_{j,j} \left(\frac{e^{(2-\log 2)j}}{j^{2j} j^{-1}} \right)^{-1} = \frac{\sqrt{n} \ 2^v}{\Gamma(v)}$.

Proof.

(i) Take $n = j - 1$ in the recurrence relation, then $(v + 2j - 1)(v + 2j - 2) c_{j,j} = 2 c_{j-1,j-1}$, hence the result.
(ii) Put $d_{j,n} = \frac{c_{j,n}}{c_{i,j}}$, $0 \leq j \leq n < \infty$. Then from the recurrence relation, using $\text{Re}(\nu) > 0$,

$$\lim_{n \to \infty} \left| d_{j+1,n+1} \right| = \left| \frac{(2j+1+\nu)(2j+\nu)}{2(n+\frac{1}{2})(1+\nu)(2n+\nu)} d_{j,n} + \frac{2n^2 + \frac{1}{2} \nu(1-\nu)}{(n+\frac{1}{2})(1+\nu)(2n+\nu)} d_{j+1,n} + \right.$$

$$+ \frac{n(2n-1+2\nu)}{(n+\frac{1}{2})(1+\nu)(2n+\nu)} d_{j+1,n-1} - \frac{2n(n-1)}{(n+\frac{1}{2})(1+\nu)(2n+\nu)} d_{j+1,n-2} \right| \leq$$

$$\leq \left| d_{j,n} \right| + 2 \left| d_{j+1,n} \right| + 2 \left| d_{j+1,n-1} \right| \leq \left| d_{j,n} \right| + 2 \left| d_{j+1,n} \right| + 2 \left| d_{j+1,n-1} \right| + \left| d_{j+1,n-2} \right| .$$

Now apply induction.

(iii) Follows from Stirling's formula.

We gather the constants $c_{j,n}$ in an upper triangular matrix $C = [c_{j,n}]_{j=0}^{\infty}$. The next theorem gives some results on the inverse C^{-1} of C which is also an upper triangular matrix. The proof does not differ much from the preceding proofs.

Theorem 2.3.

(i) The elements $a_{k,j}$, $0 \leq k \leq j < \infty$ of C^{-1} satisfy

$$\frac{d^j}{dt^j} \left[\cosh^{-1} t \right] = (\cosh^{-1} t) \cdot \sum_{k=0}^{j} a_{k,j} (2 \tanh^2 t - 1)^k, \quad t \in \mathbb{R} .$$

(ii) The numbers $a_{1,m}$, $0 \leq l \leq m$, satisfy the recurrence relation

$$a_{k,j+1} = (k-\frac{1}{2})(1-\nu)(2k-2+\nu) a_{k-1,j} + (-2k^2 - \frac{1}{2} \nu(1-\nu)) a_{k,j} +$$

$$- (k+1)(2k+1+2\nu) a_{k+1,j} + (2k+4)(k+1) a_{k+2,j} ,$$

with boundary conditions

$$a_{0,0} = 1, \quad a_{k,j} = 0 \text{ if } k < 0 \text{ or } k > j .$$

(iii) $|c_{j,k} \cdot a_{k,j}| \leq (11)^j$, $0 \leq k \leq j < \infty$.

3. The growth behaviour of the Fourier transform of a class of analytic functions.

For $\alpha = \beta = -\frac{1}{2}$ the Fourier-Jacobi transform reduces to the Fourier-cosine transform.
We take \(f(t) = \phi(1 - 2\tanh^2 t) \cdot \cosh^{-\nu} t \) with \(\phi(z) = \sum_{n=0}^{\infty} a_n z^n \) an arbitrary entire analytic function.

Consider the following formal computation

\[
g(u) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(t) \cos(ut) \, dt = \sqrt{\frac{2}{\pi}} \int_0^{\infty} (\cosh^{-\nu} t) \left[\sum_{n=0}^{\infty} a_n (1 - 2\tanh^2 t)^n \right] \cos(ut) \, dt = \\
= \sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} a_n \int_0^{\infty} (\cosh^{-\nu} t) \left(1 - 2\tanh^2 t \right)^n \cos(ut) \, dt \\
= \sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} (-1)^n a_n \sum_{j=0}^{n} \left[\frac{d^{2j}}{dt^{2j}} (\cosh^{-\nu} t) \right] \cos(ut) \, dt \\
= \sqrt{\frac{2}{\pi}} \sum_{j=0}^{\infty} \sum_{n=j}^{\infty} (-1)^{n+j} c_{j,n} a_n u^{2j} \int_0^{\infty} (\cosh^{-\nu} t) \cos(ut) \, dt \\
= \sqrt{\frac{2}{\pi}} \sum_{j=0}^{\infty} \sum_{n=j}^{\infty} (-1)^{n+j} c_{j,n} a_n u^{2j} \\
= \sqrt{\frac{2}{\pi}} \frac{2^{\nu-2}}{\Gamma(\nu)} \Gamma\left(\frac{1}{2} \right) \Gamma\left(\frac{1}{2} \right) \psi(u) \\
\psi(u) = \sum_{n=0}^{\infty} b_n u^{2n}, \quad b_n = \sum_{n=j}^{\infty} (-1)^{n+j} c_{j,n} a_n.
\]

For the Fourier integral in this calculation see e.g. [O], p. 35.

Note that, at \(\nu \), we used the results of lemma 2.1. In order to justify the remaining part of the calculation we proceed as follows.

Introduce the vectors

\[a = \text{column } (a_0, a_1, a_2, ...) \]
\[b = \text{column } (b_0, b_1, b_2, ...) \]

and the infinite diagonal matrix

\[\tilde{I} = \text{diag } (1, -1, 1, -1, \cdots, (-1)^* \cdots). \]

Now the relation between the, supposed, Taylor coefficients of the functions \(\phi \) and \(\psi \) can be written as
The proof of the following characterization is elementary.

Characterization 3.1.

(i) Consider the Taylor series
\[\phi(z) = \sum_{n=0}^{\infty} a_n z^n. \]
\(\phi \) is an entire analytic function iff
\[\forall r > 0 : (a_n e^{nr})_{n=0} \in l_2. \]

(ii) Consider the Taylor series
\[\psi(z) = \sum_{n=0}^{\infty} b_n z^{2n}. \]
\(\psi \) is even entire and sub-exponential, i.e.
\[\forall r > 0 : \sup_{t \in \mathbb{R}} |\psi(t)| e^{-rt} < \infty, \]
iff
\[\forall r > 0 : (n^{2n} e^{nr} b_n)_{n=0} \in l_2. \]

In the next theorem we derive some fundamental estimates for the matrices \(C \) and \(C^{-1} \).

Theorem 3.2.

For each \(t > 0 \) there exists \(\tau > 0 \) such that the infinite matrices
\[\Theta(t, \tau) := \text{diag}(n^{2n} e^{nr}) i C i \text{diag}(e^{-nr}) \]
\[\Xi(t, \tau) := \text{diag}(e^{nr}) i C^{-1} i \text{diag}(e^{-nr} n^{-2n}) \]
are bounded as \(l_2 \)-operators.

Proof.

We have
\[|\Theta_{j,n}(t, \tau)| = j^{2j} e^{\tau^2} |c_{j,j}| \left| \frac{c_{j,n}}{c_{j,j}} \right| e^{-\tau r} \]
\[|\Xi_{k,j}(t, \tau)| = e^{\tau r} |c_{j,j} a_{k,j}| \frac{1}{|c_{j,j}|} j^{2j} e^{-\tau r}. \]

If we take \(\tau > t + 3 \), the wanted result follows with the aid of theorems 2.2, 2.3 and the estimate
\[\|K\| \leq \sum_{k=1}^{\infty} \sup_{n \geq j} |K_{jk}| \]
for the \(l_2 \)-operator norm \(\|K\| \) of an infinite matrix \(K \).

Finally, our main result.
Theorem 3.3.
The mapping \(F_{-\frac{1}{2}, -\frac{1}{2}, A, \rho} \) which maps the space of polynomials bijectively on the space of even polynomials can be extended to a bijective continuous linear mapping between the space of entire functions and the space of even entire functions of subexponential growth.

Proof.
Let \(\tau > 0 \). Consider
\[
\text{diag}(n^2 e^{\tau t}) b = \text{diag}(n^2 e^{\tau t}) \tilde{C} \tilde{I} a = \\
= \{ \text{diag}(n^2 e^{\tau t}) \tilde{C} \tilde{I} \text{diag}(e^{-\tau t}) \} \text{diag}(e^{\tau t}) a.
\]
For \(\tau > \tau + 3 \) the operator between \{ \} is bounded in \(L_2 \) (Theorem 3.2), further \(\text{diag}(e^{\tau t}) a \in L_2 \) for all \(\tau > 0 \) (characterization 3.1 (i)). So \(\text{diag}(n^2 e^{\tau t}) b \in L_2 \).

Therefore \(\psi \) is entire and of subexponential growth (characterization 3.1 (ii)).

The inverse \(F_{-\frac{1}{2}, -\frac{1}{2}, A, \rho} \), which corresponds to the equality \(a = \tilde{C}^{-1} \tilde{I} b \), can be dealt with in a similar way.

Thus all formal calculations at the beginning of this section become justified.

Corollary 3.4.
The Fourier transform of \(\phi(1-2 \tanh^2 t) \cosh^{-1} t \), \(\phi \) entire, has the form
\[
\Gamma \left(\frac{1}{2} (v+iz) \right) \Gamma \left(\frac{1}{2} (v-iz) \right) \psi(z), \ \psi \text{ entire, even, of sub-exponential growth and vice versa.}
\]

Corollary 3.5.
Comparison with the general formula in section 1 shows
\[
W_N \left(\frac{1}{4}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, -i \mu \right) = \\
= \frac{N! (v)^{2N}}{(-4)^N} \sum_{j=0}^{N} \sum_{\alpha \in \mathbb{N}} (-1)^{\alpha j} c_{j, \alpha} a_{\alpha} \ x^{2j}
\]
with
\[
(v)^{2N} = (v+2N-1)(v+2N-2) \cdots (v) = \frac{\Gamma(v+2N)}{\Gamma(v)}
\]
and \(a_{\alpha} \) such that
\[
P_{N\frac{1}{4}, \frac{1}{2}}(z) = \sum_{k=0}^{N} a_{\alpha_k} z^k.
\]
References

PREVIOUS PUBLICATIONS IN THIS SERIES:

<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-17</td>
<td>A.J.E.M. Janssen/</td>
<td>Spaces of type w, growth of Hermite coefficients, Wigner distribution and Bargmann transform</td>
<td>April '87</td>
</tr>
<tr>
<td></td>
<td>S.J.L. van Eijndhoven</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-18</td>
<td>L. Dortmans/ A. Sauren/ A.A.F. van de Ven</td>
<td>A note on the reduced creep function corresponding to the quasi-linear visco-elastic model proposed by Fung</td>
<td>April '87</td>
</tr>
<tr>
<td>88-01</td>
<td>G.A. Kluitenberg/ L. Restuccia</td>
<td>On some generalizations of the Debye equation for dielectric relaxation</td>
<td>Feb. '88</td>
</tr>
<tr>
<td>88-02</td>
<td>R.M.M. Mattheij</td>
<td>Direct Solution of Certain Sparse Linear Systems</td>
<td>Feb. '88</td>
</tr>
<tr>
<td>88-03</td>
<td>F.R. de Hoog/ R.M.M. Mattheij</td>
<td>On the conditioning of multipoint and integral boundary value problems</td>
<td>March '88</td>
</tr>
<tr>
<td>88-04</td>
<td>A.F.M. ter Elst/ S.J.L. van Eijndhoven</td>
<td>A Gevrey space characterization of certain gelfand-shilov spaces S^p</td>
<td>April '88</td>
</tr>
<tr>
<td>88-05</td>
<td>H.G. ter Morsche</td>
<td>On the dimension of bivariate periodic spline spaces type-1 triangulation</td>
<td>April '88</td>
</tr>
<tr>
<td>88-06</td>
<td>C.A.M. van Berkel/ J. de Graaf</td>
<td>On a property of the Fourier-cosine transform</td>
<td>May '88</td>
</tr>
</tbody>
</table>