Diffusion process for superconducting YBa2Cu3Ox-thin layers

Citation for published version (APA):

DOI:
10.1016/S0921-4534(88)80091-1

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 10. Sep. 2020
DIFFUSION PROCESS FOR SUPERCONDUCTING YBa$_2$Cu$_3$O$_x$-THIN LAYERS

J.W. Severin, G. de With*, T.S. Baller and G.N.A. van Veen

Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands
* Also affiliated with Eindhoven University of Technology

In this paper a method is described by which superconducting thin YBa$_2$Cu$_3$O$_x$-layers are formed by a solid state diffusion reaction between a substrate and a thin layer, both of non-superconducting starting compounds.

1. INTRODUCTION

Thin superconducting YBa$_2$Cu$_3$O$_x$ (123)-layers can be made by e.g. plasma-spraying, laser-ablation and sputtering (e.g. 1,2,3). Examination of the phase diagram (4,5), led us to a new method for the fabrication of superconducting thin 123-layers. This method is based on the formation of a superconducting thin layer by a solid state diffusion reaction at the interface between a non-superconducting substrate and a non-superconducting coating.

2. EXPERIMENTAL PROCEDURE AND RESULTS

BaCuO$_2$ layers of about 3 μm thickness were deposited on hot-pressed Y$_2$Cu$_2$O$_5$ substrates by laser-ablation (substrate temperature 400°C) from sintered targets. The samples were annealed for two hours at 850°C in O$_2$. The resistance of such samples was measured as a function of temperature by a standard d.c. four-probe technique. A broad superconductive transition was observed. Repeating the annealing gave better results. The T_c of this sample was 80 K and a relatively high room-temperature resistance of 120 Ωm was measured. The X-ray diffraction (XRD)-pattern of this sample showed the orthorhombic 123-compound as the main phase. In fig. 1 an R-T curve of the sample with the highest T_c is shown. On the SEM fractograph of this sample, shown in fig. 2, cracks through the layers can be observed. These cracks might be due to a difference in thermal expansion coefficients and phase transformations in the layers.

Superconducting 123-thin films were also formed by a solid state diffusion reaction between a sintered CuO substrate and an Y$_2$Ba$_4$O$_7$·CO$_2$ thin layer. In fig. 3 an R-T curve is shown of a sample which was heat-treated for 4 hours at 850°C in O$_2$. The Y$_2$Ba$_4$O$_7$·CO$_2$-layer was deposited by plasma-spraying. In ref. 6 results are described which were obtained by using the laser-ablation technique for the Y$_2$Ba$_4$O$_7$·CO$_2$-layers as well as more experimental details for both types of samples.

3. DISCUSSION

In capped Y$_2$Cu$_2$O$_5$ / BaCuO$_2$ samples after annealing, two regions in which Y, Ba and Cu prevail have been detected by EDAX, (fig. 2.) In the samples without capping, only one such layer can be formed at the interface between the deposited layer and the substrate. In the XRD-patterns a clear difference is observed between the samples without an Y$_2$Cu$_2$O$_5$ capping on top of the BaCuO$_2$ layer and those with such a capping on the other hand. From the samples without capping only very weak 123-lines, originating from the underlying 123-interface, were detected. In contrast strong 123-lines, apparently originating from the 123-top layer, appeared in the XRD-patterns of the capped samples. In none of the layers any preferential orientation was detected by XRD. Annealing for two hours at 850°C
appeared to be an optimal treatment for the capped Y$_2$Cu$_2$O$_5$ / BaCuO$_2$ samples so far.

In contrast to what was aimed at, the whole capping layer was converted to the 123-compound. Therefore in order to obtain a real interface layer, a thicker capping layer should be applied. This not only prevents chemical degradation but it also gives a better illustration of the idea to form a superconducting thin layer within a solid body.

4. CONCLUSIONS

It is shown that it is possible to form superconducting thin 123-layers by a solid state diffusion reaction between two non-superconducting starting materials. After annealing a CuO sub-strate with an Y$_2$Ba$_4$O$_7$CO$_2$ layer a rather broad superconducting transition is obtained. A better result is obtained by using an Y$_2$Cu$_2$O$_5$ substrate covered with a BaCuO$_2$ layer and provided with a Y$_2$Cu$_2$O$_5$ capping. For the latter samples a superconducting layer on top of the BaCuO$_2$ layer was found. This indicates that it is worth considering to make a superconducting 123-layer on other polycrystalline substrates by depositing a sequence of layers and applying a heat treatment.

5. REFERENCES

(4) D.M. de Leeuw, C.A.H.A. Mutsaers, C. Langereis, H.C.A. Smoorenburg and P.J. Rommers, accepted for publication in Physica C.