Structural Petri net equivalence

Citation for published version (APA):

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Structural Petri Net Equivalence

by

M. Voorhoeve

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse
prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

Computing Science Report 96/07
Eindhoven, March 1996
Structural Petri Net Equivalence

M. Voorhoeve (email: wsinmarc@win.tue.nl)
Eindhoven University of Technology

Abstract

An equivalence relation, called structural bisimilarity, is given for labeled Place-Transition nets. In contrast to behavioral bisimilarity of nets, this equivalence only depends upon the structure of the nets considered, that is, their places and transitions and the way these are connected. It does not involve any conversion to transition systems. Algorithms are given for reducing a net to its normal form and deciding whether two given nets are bisimilar. The paper concludes by giving a behavioral characterization of structural net bisimilarity. A given net induces an ordered process space by considering markings as states, steps as transitions and bag inclusion as the partial ordering. Structural bisimilarity of nets is equivalent to order-preserving (noninterleaving) bisimilarity of their induced process spaces.

Keywords: Petri Nets, Concurrency, Bisimulation, Graph algorithms.

1 Introduction

A Petri net is a bipartite directed graph. The nodes of a net are divided into passive nodes, called places and active ones, called transitions. The edges are divided into consumption edges leading from places to transitions and production edges leading from transitions to places. Places that have a consumption (production) edge leading to (from) a transition are called input (output) places of that transition. A Petri net can be marked with tokens in its places.

Marked Petri nets can model the behavior of concurrent dynamic systems. The state of such a system is represented by the marking of the net. A step of the system consists of the concurrent firing of one or more transitions. The step can occur if the transitions in it are enabled, i.e. they all can consume enough tokens from their input places. If the step occurs, the enabling tokens are consumed from the input places and new tokens are produced for the output places. This leads to a new marking (state).

Marked Petri nets are widely used in concurrency theory. They can be represented graphically and their behavior can be easily understood. Constructions exist for operators in languages like ACP and CCS: sequential composition, choice, interleaved merge and concurrent merge (c.f. [GIVa87]). Causal subtleties like confusion, disjunctive causality and resolved conflict (see [Gla95]) that cannot be expressed in ACP and CCS are expressible in the behavior of Petri nets. Since the constructions for sequential composition and choice are somewhat cumbersome, Petri nets are being regarded as a kind of “assembly language” of concurrency, providing models for “higher” alge-

1The term “transition” in Petri net theory deviates from common usage. Petri transitions can bring about state changes (ordinary transitions). We call state changes “steps” as much as possible to avoid confusion.
braic languages. As a consequence, the states of nets are abstracted from and reduced to mere “causes” for future actions. An exponent of this approach is the Petri Box Calculus [BeDH92]. However, this use of Petri nets does not fully exploit its potential. High-level Petri nets are being used to describe large-scale systems in a concise and accessible way. With tools like Design/CPN ([Jen92]) and ExSpect ([HeSV91]), Petri nets have become a specification language as well! Advantages of such a direct Petri net based modeling are the graphical representation and accessibility for non-specialists.

Another advantage is the possibility to describe an externally visible state. In fact, states (bags of places) are the dual of steps (bags of transitions). Many concurrent systems possess a state that can be observed by its environment and is used to base decisions upon. However, what can be observed from the state is in general only a projection of the actual system’s state, just like what is observed from a step is a projection of the actual step taking place within the system. An ACP-based approach that incorporates states in a similar way can be found in [BaBe95].

Making the distinction between observable and actual states and steps can be done by labeling places and transitions. The labels constitute the observable part of a state or step. Places and transitions with the same label may cause different states or steps to be observed as the same. By relabeling the net, thus identifying some states and steps, one obtains projection or abstraction. Often, one wants to verify that some projection of a complex system (the implementation) is equivalent to some simple system (the specification).

In this respect, Petri net based modeling suffers from a major drawback when compared to algebraic languages. These languages possess operators for renaming and abstraction, with a rich and powerful equivalence theory. Such a theory is less well developed for Petri nets, possibly because of its assembly language status. One way of catching up is to convert nets into algebraic process terms, like in [BaVo95]. However, this approach amounts to computing the occurrence graph, so equivalence relations stemming from it may be undecidable, even for finite nets. Note that finite nets can have infinite behavior. Also the state of a net is disregarded. Other approaches, viz. [PoRS92] have similar drawbacks.

In this paper, the more ambitious approach is taken of developing a purely Petri net oriented equivalence theory, that does not require any translation from the net to a transition system. A bisimulation oriented equivalence relation for Petri nets is defined that is decidable for finite nets. Algorithms are given for normalizing a net and deciding bisimilarity of nets. It is proved that this structural bisimilarity corresponds to order preserving bisimilarity for the (ordered) process spaces induced by the net. The relation thus preserves behavioral properties, like liveness and boundedness. We assert that it also preserves many structural properties.

The advantages of this novel approach for Petri net analysis are manifold. Instead of analyzing a given net, its (smaller) normal form can be taken as a starting point for analysis. Most important, however, is the theoretical foundation of an equivalence theory that takes both actions and states into account.

The paper starts with a notation section. In a section on Petri nets we give our structural equivalence relation and establish some basic properties. A next section is devoted to an algorithm that normalizes a given net. The following sections give the promised behavioral characterization of structural net bisimulation and a small example. The final section discusses the practical meaning
of structural net bisimilarity.

The author wishes to acknowledge Andries Brouwer for sharing his insights in graph algorithms and Twan Basten for many fruitful discussions and suggestions for improvement.

2 Basic notions

Let A, B, C be sets. $A \times B$ is the set of ordered pairs (a, b) with $a \in A$ and $b \in B$. $\mathcal{P}(A \times B)$ is the set of relations between A and B. Let $R \in \mathcal{P}(A \times B)$ be such a relation. For $a \in A; b \in B$ we write $a R b$ iff $(a, b) \in R$. The domain $\text{dom}(R)$ of R is defined as the set $\{a \in A \mid \exists b \in B : a R b\}$. The inverse R^{-1} of R is defined by $b R^{-1} a \iff a R b$. R is total iff $\text{dom}(R) = A$ and functional iff $\forall a \in A; b, b' \in B : a R b \land a R b' \implies b = b'$. R is injective iff R^{-1} is functional and surjective iff R^{-1} is total. Functional relations are called functions. The set of total functions within $\mathcal{P}(A \times B)$ is denoted $A \rightarrow B$. For $f \in A \rightarrow B; a \in A$, the unique element b such that $a f b$ is named $f(a)$.

A bijective relation or bijection is functional, total, injective and surjective. The composition $R \circ S$ of relations $R \in \mathcal{P}(A \times B)$ and $S \in \mathcal{P}(B \times C)$ is defined by $\forall a \in A; c \in C : a R \circ S c \iff \exists b \in B : (a R b \land b S c)$. The transitive closure R^+ of a relation $R \in \mathcal{P}(A \times A)$ is the relation $R \cup (R \circ R) \cup (R \circ (R \circ R)) \cup \ldots$.

The set $\mathcal{B}(A)$ of bags with elements from A is the set of total functions in $A \rightarrow \mathbb{N}$. For $\beta \in \mathcal{B}(A); a \in A$, $\beta(a)$ is called the multiplicity of a in β. We write $a \beta \in \beta$ iff $\beta(a) > 0$. β is called finite iff the set $\{a \in A \mid a \beta \}$ is finite. A finite bag β is denoted by juxtaposing the elements $a \in \beta$, superscripted with their multiplicity like a^1 (a singleton bag) or $a^2 b^1 c^3$. The empty bag is denoted \emptyset. The size of a finite bag $a^1_i \ldots a^n_k$ is $k_1 + \ldots + k_n$. For $\alpha, \beta \in \mathcal{B}(A)$, bag addition and subtraction is defined by $\forall a \in A : (\alpha + \beta)(a) = \alpha(a) + \beta(a)$ and $\forall a \in A : (\alpha - \beta)(a) = \max(0, \alpha(a) - \beta(a))$. For $n > 0; \alpha \in \mathcal{B}(A)$, we write $n \alpha$ for $\alpha + \ldots + \alpha$ iterated n times. By definition, $0 \alpha = 0$. If $I = \{i_1, \ldots, i_n\}$ is a finite set and $\alpha_i \in \mathcal{B}(A)$ for $i \in I$, then we write $\Sigma_{i \in I} \alpha_i$ for $\alpha_{i_1} + \ldots + \alpha_{i_n}$. $\Sigma_{i \in I} \alpha_i$ equals 0 by definition. If $I = i_1 \ldots i_n$ is a finite bag and $\alpha_i \in \mathcal{B}(A)$ for $i \in \text{dom}(I)$, then we write $\Sigma_{i \in I} \alpha_i$ for $k_1 \alpha_{i_1} + \ldots + k_n \alpha_{i_n}$. $\Sigma_{i \in I} \alpha_i$ equals 0 by definition. The partial order \leq on bags is defined by $\alpha \leq \beta \iff \alpha - \beta = 0$. This is called bag inclusion. We set $\alpha < \beta \iff \alpha \leq \beta \land \alpha \neq \beta$ (strict bag inclusion).

For $R \in \mathcal{P}(A \times B)$, the relation $\hat{R} \in \mathcal{P}(\mathcal{B}(A) \times \mathcal{B}(B))$ relates bags iff the elements of these bags can be related by R. \hat{R} is defined as the minimal (w.r.t. set inclusion) relation satisfying $0 \hat{R} 0, a^1 \hat{R} b^1 \iff a R b$ and $\alpha_1 \hat{R} \beta_1 \land \alpha_2 \hat{R} \beta_2 \implies \alpha_1 + \alpha_2 \hat{R} \beta_1 + \beta_2$. If R is a function, so is \hat{R}.

3 Labeled P/T nets

We presuppose an alphabet \mathcal{L} of labels. A labeled place-transition net (or LPT net) is a bipartite directed graph (with multiple edges allowed) having labeled nodes.

Definition 1 An LPT net N is a four-tuple (S, T, F, ℓ), where S, T are disjoint sets (of places and transitions respectively); $F \in \mathcal{B}((T \times S) \cup (S \times T))$ is the weighted flow relation and $\ell \in (T \cup S) \rightarrow \mathcal{L}$ is the labeling function. The pairs (d, e) in $\text{dom}(F)$ with $F(d, e) > 0$ are called
arcs and $F(d, e)$ is the weight of such an arc. Given a net N, its components are denoted by subscripting them with N.

For a given net, the cause and effect functions $C, E \in T \to \mathbb{B}(S)$ are defined as follows. For $t \in T$, $C(t) = \Sigma_{p \in S} F(p, t) . p^1$ and $E(t) = \Sigma_{t \in S} F(t, p) . p^1$.

In many cases the weights in the flow relation are 1. For this class of LPT nets, the definitions of F, C and E can be simplified, involving sets instead of bags.

The most distinctive equivalence relation on LPT nets is isomorphism. Two nets are isomorphic iff their nodes can be mapped 1-1 to one another while preserving node labels and edges with their weights. Isomorphism abstracts from the sets S and T of an LPT net by considering the labels and the net structure alone.

Definition 2 An isomorphism between LPT nets N and M is a bijection $\phi \in \mathbb{P}((S_N \times S_M) \cup (T_N \times T_M))$ such that for all $d, e \in T \cup S$: $\ell_N(d) = \ell_M(\phi(d))$ and $F_N(d, e) = F_M(\phi(d), \phi(e))$. LPT nets N and M are called isomorphic iff there exists an isomorphism between them.

Clearly, isomorphism is an equivalence relation on LPT nets. Up to isomorphism, LPT nets are depicted by drawing the places as circles and the transitions as squares, with their labels inscribed. These elements are connected by arrows representing arcs, where the weight of the corresponding arc, if greater than 1, is shown. For reference, identifiers (not labels!) can be added next to the components (places or transitions) of nets.

Example The Figure 1 shows two LPT nets N and M. Both nets possess places with labels a and b and transitions with labels h and k. All the arcs from the a-labeled places in N and some arcs from the a-labeled places in M have weight 2. Clearly, N and M are not isomorphic.

Process graph isomorphism is considered too fine an equivalence relation for concurrent systems as it allows hardly any verifications. It distinguishes a process x from the choice between x and x. Bisimulation abstracts from choices between equivalent alternatives while preserving choices that do affect the future behavior of a process. It is said that bisimulation preserves the branching structure of a process.

Likewise, we define a structural equivalence relation on LPT nets that is coarser than isomorphism but preserves the branching structure of the net, i.e. the way in which causes determine effects and the point where effects with the same cause diverge. Two LPT nets are considered equivalent iff their places and transitions can be related in such a way that (1) only elements of the same kind and with the same label are related, (2) causes and effects of related transitions are related, and (3-4) a bag related to a transition cause is a cause of some related transition.
Definition 3 Let N, M be LPT nets. A structural bisimulation between N and M is a total and surjective relation $R \in \mathcal{P}((S_N \times S_M) \cup (T_N \times T_M))$ such that for all $t \in T_N$; $u \in T_M$; $d \in S_N \cup T_N$; $e \in S_M \cup T_M$; $P \in \mathcal{B}(S_N)$; $Q \in \mathcal{B}(S_M)$,

1. $d R e \Rightarrow \ell_N(d) = \ell_M(e),$
2. $t R u \Rightarrow C_N(t) \bar{R} C_M(u) \wedge E_N(t) \bar{R} E_M(u),
3. $C_N(t) \bar{R} Q \Rightarrow \exists v \in T_M : C_M(v) = Q \wedge t R v,
4. $P \bar{R} C_M(u) \Rightarrow \exists v \in T_N : C_N(v) = P \wedge v R u.$

Nets N and M are called bisimilar iff there exists a bisimulation between them. If there exists a functional bisimulation between N and M, M is called a projection of N. A total and surjective relation satisfying conditions 1 and 2 above is called action preserving.

We simply use the term "bisimulation" in the context of LPT nets to denote structural bisimulation. Note that for state machines (all transitions having singleton cause and effect) with all places having the same label, structural bisimilarity coincides with "standard" bisimilarity (c.f. [BaVe95]). Also note the asymmetry in parts 3 and 4 of the definition. The absence of an analogous requirement for the E function signifies that bisimulation is biased toward the future of a marking, rather than its history.

Example The Figure 2 illustrates a bisimulation between the nets L and M. The bisimulation is indicated by dotted lines. Note that the nets L and N are not bisimilar. This can be deduced from the fact that the bag p^1q^1 in N must be related to the bag r^2 in L if a bisimulation existed. Now, $r^2 = C_L(t)$, whereas no transition u in N exists such that $C_N(u) = p^1q^1.$

Lemma 1 The following properties hold. Let N, M, L be LPT nets.

i) An isomorphism between N and M is a bisimulation.

ii) The inverse of a bisimulation between N and M is a bisimulation between M and N.

iii) The composition of a bisimulation between N and M and a bisimulation between M and L is a bisimulation between N and L.

iv) Bisimilarity is an equivalence relation on LPT nets.

v) A bijective action preserving relation between N and M is an isomorphism.

vi) If N is a projection of M and M a projection of N, then N and M are isomorphic.
Proof: The first three properties are trivial from the definition. The fourth follows from the first three. The identity isomorphism yields reflexivity. Taking the inverse yields symmetry. Composition yields transitivity. To prove the fifth, let \(\phi \) be a bijective action preserving relation between \(N \) and \(M \) and let \(t \in T_N \). By action preservation condition 2, \(\hat{\phi}(E_N(t)) = E_M(\phi(t)) \) and since \(\phi \) is bijective, \(E_N(t)(p) = \hat{\phi}(E_N(t))(\phi(p)) \). So we deduce for any \(p \in S_N \) that \(F_N(t, p) = E_N(t)(p) = E_M(\phi(t))(\phi(p)) = F_M(\phi(t), \phi(p)) \). Similarly, \(F_N(p, t) = F_M(\phi(p), \phi(t)) \). The last property follows from the fifth, since a projection that does not reduce the number of places and transitions of a net must be bijective.

The following property illustrates the way in which structural properties of nets are preserved under bisimilarity.

Definition 4 Let \(N \) be an LPT net and \(P \) a set of places of \(N \).
\(P \) is a siphon of \(N \) iff \(\forall t \in T_N : \Sigma_{p \in P} F_N(t, p) > 0 \Rightarrow \Sigma_{p \in P} F_N(p, t) > 0 \).
\(P \) is a trap of \(N \) iff \(\forall t \in T_N : \Sigma_{p \in P} F_N(t, p) > 0 \Rightarrow \Sigma_{p \in P} F_N(p, t) > 0 \).

Property 1 If \(N, M \) are bisimilar LPT nets, then to each trap \(P \) of \(N \) there corresponds a trap \(Q \) of \(M \) having the same set of labels.

Proof: Let \(R \) be a bisimulation between \(N \) and \(M \) and let \(P \) be a trap of \(N \). We will show that the set \(Q = \{ q \in S_M | \exists p \in P : p R q \} \) is a trap of \(M \). Suppose \(P \) is a trap and let \(q \in Q \); \(u \in T_M \) be such that \(F_M(q, u) > 0 \), so \(q \in C_M(u) \). It suffices to show that there exists a \(q' \in Q \) such that \(q' \in E_M(u) \). By Definition 3.3, there exists a \(p \in P \); \(t \in T_N \), such that \(p R q \), \(t R u \) and \(p \in C_N(t) \). Since \(P \) is a trap and \(F_N(p, t) > 0 \), there exists a \(p' \in P \) such that \(p' \in E_N(t) \). Thus by definition 3.2, there exists a \(q' \) such that \(p' R q' \) (so \(q' \in Q \)) and \(q' \in E_M(u) \).

An analogous property for siphons does not exist, as is shown by Figure 3. The place \(p \) is a siphon of net \(N \), but the bisimilar net \(M \) does not contain a siphon.

4 Algorithms

In this section, we study equivalence classes of LPT nets modulo bisimilarity. We use a standard technique (see e.g. [Cau90]) to arrive at a normal form for each equivalence class (modulo isomorphism).

We define a class of bisimulations of a given net \(N \) with itself called *congruences*. Unlike ordinary bisimulations, this class can be closed under (relation) union and we can compute the largest
congruence R of N w.r.t. set inclusion. We prove that R can be regarded as an equivalence relation upon the places and transitions of N and construct the "quotient" N/R. This quotient net is bisimilar to N and is unique up to isomorphism.

Computing the largest congruence of a net N is polynomial-bounded w.r.t. the number of places and transitions of N, but no effort has been made to optimize the straightforward algorithm.

Checking whether two LPT nets are isomorphic is equivalent to checking graph isomorphism. This even holds for the subclass of nets in normal form w.r.t. bisimilarity ([Bro96]). Graph isomorphism may be intractable (c.f. [GaJo79]), but in practice Petri net isomorphism is easily established, e.g. by the algorithm in [Mit88]. In the first step of this algorithm, the initial partitioning must also be done on the basis of label and kind (transition vs. place).

Definition 5 A congruence of an LPT net N is a bisimulation R between N and N that satisfies for $d, e, f \in S_N \cup T_N$,

- **reflexivity** $d R d$
- **symmetry** $d R e \Rightarrow e R d$
- **transitivity** $d R e \land e R f \Rightarrow d R f$

An action preserving relation between N and N satisfying these conditions is called congruent.

We give a characterization for congruences that is easier to check than the defining conditions. In a congruence that relates places p and q, to every transition t with $p \in C(t)$ corresponds a transition u such that $C(u) = C(t) - p^1 + q^1$ and any congruent action preserving relation with this property is a congruence.

Lemma 2 Let N be an LPT net. A congruent action preserving relation $R \in \Pi((S_N \times S_N) \cup (T_N \times T_N))$ is a congruence iff for all $p, q \in S_N$ and $t \in T_N$,

$$p R q \land p \in C_N(t) \Rightarrow \exists u \in T_N : t R u \land C_N(u) = C_N(t) - p^1 + q^1.$$

Proof: Suppose that R is a congruence and let $p, q \in S_N$; $t \in T_N$ such that $p \in C_N(t)$ and $p R q$. Since $p R q$ and $p R p$, we have that $C_N(t) \hat{R} (C_N(t) - p^1 + q^1)$, so there must exist a $u \in T_N$ such that $t R u$.

Conversely, let R satisfy the lemma conditions and let $t \in T_N$; $Q \in \Pi(S_N)$ such that $C_N(t) \hat{R} Q$. There must exist $k \geq 0$ and $p_1, q_1, \ldots, p_k, q_k$ such that $Q = C_N(t) - p_1^1 + q_1^1 \ldots - p_k^1 + q_k^1$.

By the lemma conditions we conclude that there exist $u_1, \ldots, u_k \in T_N$ such that $t R u_1 \ldots R u_k$ and for $l \in 1..k$, $C_N(u_l) = C_N(t) - p_l^1 + q_l^1 \ldots - p_k^1 + q_k^1$, so $Q = C_N(u_k)$.

Since R is transitive, we conclude that $t R u_k$. By symmetry, $Q \hat{R} C_N(u)$ implies the existence of a $t \in T_N$ such that $Q = C_N(t)$ and $t R u$. So R is a bisimulation, and thus a congruence. □

As a corollary, we deduce that the transitive closure of the union of two congruences is again a congruence. This entails that every LPT net N possesses a maximal congruence, which is obtained by taking the transitive closure of the union of all congruences of N.

Lemma 3 Let N be an LPT net and let R, S be congruences of N. Then $(R \cup S)^+$ is also a congruence of N.

7
Theorem 1

The function \(N \) is a congruence as follows.

\[N = \{ (d, \bar{d}) \mid d \in S_N \cup T_N \} \]

We shall prove that \((R \cup S)^+ \) satisfies the condition of the previous lemma. Let \(p, q \in S_N ; t \in T_N \) such that \(p \in (R \cup S)^+ \) and \(q \in C_N(t) \). By the definition of \((R \cup S)^+ \), there must exist \(p_1, \ldots, p_k \in S_N \) and \(Q_1, \ldots, Q_k, Q_{k+1} \in (R, S) \) such that \(p \in Q_1, \ldots, p_k, p_k Q_{k+1} q \).

Clearly, \(\Sigma_{e \in \beta} F_N(t, q) = \Sigma_{e \in \beta} F_N(t, q) \).

Proof: Let \(\rho = \{ (d, \bar{d}) \mid d \in S_N \cup T_N \} \). We shall prove that \(\rho \) is a bisimulation between \(N \) and \(M = N \). Note that \(\rho \) and thus \(\bar{\rho} \) are functions, so for \(d \in S_N \cup T_N ; e \in S_M \cup T_M ; e \in \mathbb{B}(S_N) \cup \mathbb{B}(T_N) ; e \in \mathbb{B}(S_M) \cup \mathbb{B}(T_M) \) we have \(\rho(d) = \rho(e) \Leftrightarrow d \in R e \) and \(\bar{\rho}(D) = \bar{\rho}(E) \Leftrightarrow D \bar{R} E \).

Clearly, \(\ell_N(d) = \ell_M(\bar{d}) \), so bisimulation property 1 holds.

Let \(t \in T_N \). We want to show \(C_N(t) \bar{\rho} C_M(\bar{t}) \), and thus \(\bar{\rho}(C_N(t)) = C_M(\bar{t}) \). Now \(\bar{\rho}(C_N(t)) = \rho(\Sigma_{e \in \beta} F_N(t, q)) \).

Similarly, \(\bar{\rho}(E_N(t)) = E_M(\bar{t}) \). This completes our check of bisimulation property 2.

Now let \(t \in T_N ; Q \in \mathbb{B}(S_M) \) such that \(C_N(t) \bar{\rho} Q \). By the foregoing, \(Q = \bar{\rho}(C_N(t)) = C_M(t) \), proving property 3.

Finally, let \(\bar{u} \in T_M ; P \in \mathbb{B}(S_N) \) such that \(P \bar{\rho} C_M(\bar{u}) \). Choose a \(u \) in \(\bar{u} \). Then \(\bar{\rho}(C_N(u)) = C_M(\bar{u}) \) and \(\rho(u) = \bar{u} \). Since \(\bar{\rho}(P) = \bar{\rho}(C_N(u)) \) we must have that \(C_N(u) \bar{R} P \).

The function \(\rho = \{ (d, \bar{d}) \mid d \in S_N \cup T_N \} \) is called the canonical projection of \(N \) onto \(N/R \). Normalizing an LPT net \(N \) consists of finding the maximal congruence \(R \) within \(N \).

Theorem 1

Let \(R \) be a maximal congruence of an LPT net \(N \). Then \(N/R \) is up to isomorphism a unique normal form of the equivalence class of LPT nets bisimilar to \(N \).
Given an LPT net N, compute a maximal congruence R of N.

$$R \leftarrow \{p, q \in S_N \mid \ell(p) = \ell(q)\} \cup \{t, u \in T_N \mid \ell(t) = \ell(u)\},$$

$U \leftarrow \text{true};$

while U do

$U \leftarrow \text{false};$

for $(d, e) \in R$ do

if $d \in S_N \land (\exists t \in \text{dom}(E_N(d)) :$

$(\forall u \in T_N : t \not\rightarrow C_N(u) \neq C_N(t - d^1 + e^1))$

$\lor d \in T_N \land (C_N(d), C_N(e)) \not\in \tilde{R} \lor (E_N(d), E_N(e)) \not\in \tilde{R})$

then $R \leftarrow R - \{(d, e)\}, U \leftarrow \text{true}$

od

od.

| Table I: Maximal congruence algorithm |

Proof: Let ρ be the bisimulation between N and N/R. If Q is a bisimulation between a net M and N, the transitive closure of $Q^{-1} \circ Q$ is a congruence of N, and thus must be contained in R (by the maximality). So for $d, e \in S_N \cup T_N; f \in S_M \cup T_M$ we have $f \not\rightarrow Q d \land f \not\rightarrow Q e \Rightarrow d \not\rightarrow R e$. So $Q \circ \rho$ is a projection. Thus, by Lemma 1.6, N/R is unique up to isomorphism.

The algorithm in Table 1 constructs the maximal congruence of a given net N. Initially all elements with the same label are related to one another. Any related pair violating the conditions of a bisimulation is removed. The removal of relations may cause other pairs to violate the conditions. This process is repeated until no pair needs to be removed anymore. The resulting relation is the maximal congruence of the net. The boolean variable U indicates whether an update of the relation R has occurred in the current loop.

The algorithm gives a congruence, for if U remains false, all pairs in R have been checked to satisfy the condition of Lemma 2 as well as the action preservation condition. It contains the identity relation, so it is reflexive. The loop invariant is that R contains the maximal reflexive bisimulation as a subrelation, which proves that R is maximal. It must therefore be symmetric and transitive and thus a congruence.

5 Process theory

We now define processes associated to LPT nets. We start by defining transition systems augmented with a partial order, and where states, like steps, are labeled. Let L be a fixed set of labels.

Definition 6 An ordered process space consists of disjoint sets P of states, and A of steps together with a ternary step (transition) relation $-\rightarrow -$ in $P \times A \times P$, partial orders \leq on A and on P and a function ℓ in $(A \cup P) \rightarrow L$.
Figure 4: Net and process space

For ordered process spaces, bisimulation equivalence can be extended with order preservation. Ordered process spaces are order preserving bisimilar iff their states and steps can be related in such a way that related objects are of the same kind, have the same label and have the “transfer property” w.r.t. both the transition relation and partial order.

Definition 7 Let \(V, W \) be ordered process spaces. A total and surjective relation \(R \in \mathcal{P}((P_V \times P_W) \cup (A_V \times A_W)) \) is called an order preserving bisimulation (or OP-bisimulation for short) between \(V \) and \(W \) iff for all \(d, d', d'' \in P_V \cup A_V; e, e', e'' \in P_W \cup A_W \) such that \(d \sim_R e \),

1. \(\ell_V(d) = \ell_W(e) \),
2. \(d \leq_V d' \Rightarrow \exists f \in P_W \cup A_W : e \leq_V f \land d' \sim_R f \),
3. \(e \leq_W e' \Rightarrow \exists f \in P_V \cup A_V : d \leq_V f \land e' \sim_R f \),
4. \(d \xrightarrow{d'}_V d'' \Rightarrow \exists f \in A_V, g \in P_W : e \xrightarrow{f}_W g \land d' \sim_R f \land d'' \sim_R g \),
5. \(e \xrightarrow{e'}_W e'' \Rightarrow \exists f \in A_V, g \in P_W : d \xrightarrow{f}_V g \land e' \sim_R g \land e'' \sim_R e' \land g \sim_R e'' \),

\(V \) and \(W \) are called OP-bisimilar iff there exists an OP-bisimulation \(R \) between them.

Bisimilarity is an equivalence relation, which can be proved by taking the identity relation for reflexivity, the inverse relation for symmetry and relation composition for transitivity. Note that if the partial order is trivial (i.e. \(d \leq e \) either always or only if \(d = e \)) and all states have the same label, steps with the same label can always be related and OP-bisimilarity corresponds to “standard” bisimilarity.

An LPT net \(N \) defines an ordered process space \(V \) by defining states as markings or bags of places and steps as bags of transitions, the partial order by bag inclusion and the transition relation by token consumption and production, allowing for autoconcurrency (firing of the same transition concurrently with itself).

Definition 8 Let \(L = \mathcal{B}(C) \). An LPT net \(N \) defines an ordered process space \(V = VN \) as follows.

\(P_V = \mathcal{B}(S_N); A_V = \mathcal{B}(T_N); \ell_V = \hat{\ell}_N \). The partial order \(\leq \) on \(V \) is given by bag inclusion. For \(p, p' \in P_V; \alpha \in A_V \) we have \(p \xrightarrow{\alpha}_V p' \) iff \((\Sigma_{\text{t_ea}} C_N(t)) \leq p \land p' = p - (\Sigma_{\text{t_ea}} C_N(t)) + (\Sigma_{\text{t_ea}} E_N(t)) \).

Example The Figure 4 shows a net and part of the process space defined by it. The net is in normal form w.r.t. structural bisimulation and thus cannot be reduced. This net can be interpreted as a
factory floor containing three machines. The machines t, u can process the same jobs b, whereas the machine v processes jobs c. The machines u, v need an a-resource (operator). The t machine can work without operator.

In the process space, the 1-superscripts of the states and steps have been omitted. Note that the steps t^1 and u^1 cannot be related by an OP-bisimulation, since $t^1 \not\preceq u^1$ and there does not exist a step $\preceq u^1$ between the states $p^1 q^1 r^1$ and r^1. The interpretation is that the machine u can occupy a resource also needed by v, so they cannot work concurrently. This behavior does not occur when u is removed, so the factory floor with and without u have a different (qualitative!) behavior. □

We now prove our main theorem relating structurally bisimilar nets to order preserving bisimilar process spaces.

Theorem 2 Let N, M be LPTnets and let V, W be the respective process spaces defined by them. Then V and W are OP-bisimilar iff N and M are structurally bisimilar.

Proof: We first prove the “if” part. Let R be a structural bisimulation between N and M. Let Q be the relation between V and W defined by $Q = \hat{R}$. We shall prove that Q is an OP-bisimulation. Bisimulation conditions 1-3 for Q can be verified trivially.

We prove condition 4. Condition 5 then follows by symmetry. Let $d' \in A_V; d, d'' \in P_V; e \in P_W$ such that $d \stackrel{e}{\rightarrow} e' \in V$ and $d \stackrel{d''}{\rightarrow} \nu d''$. Then $(\Sigma_{id e} C_N (t)) \leq d$ and $d'' = d - (\Sigma_{id e} C_N (t)) + (\Sigma_{id e} E_N (t))$. For $t \in d'$, we can find bags $B_t \in P_W$ such that $\Sigma_{id e} B_t \leq e$ and $\forall t \in d' : C_N (t) \equiv B_t$. Since R is a bisimulation between N and M, there must exist a $u_t \in T_M$ such that $C_N (u_t) = B_t$ and $t R u_t$. Take $e' = \Sigma_{id e} u^1_t$. Clearly, $d' \stackrel{e'}{\rightarrow} e'$. Moreover, $\Sigma_{id e} C_N (u) = \Sigma_{id e} C_N (u_t) = \Sigma_{id e} B_t \leq e$. So there exists a (unique) e'' such that $e \stackrel{e'}{\rightarrow} e''$ Since $d' \stackrel{R}{\rightarrow} e'$, there exists a 1-1 correspondence between the t in d' and u in e' such that corresponding t and u satisfy $t R u$. Since R is action preserving, it follows that $\Sigma_{id e} E_N (t) = \Sigma_{id e} E_N (u)$. By the definition of d'' and e'', we conclude that $d'' \stackrel{e''}{\rightarrow} e''$.

We prove condition 6. Condition 7 then follows by symmetry. Let $d \in A_V; d', d'' \in P_V; e \in A_V$ such that $d \stackrel{e}{\rightarrow} e' \in V$ and $d' \stackrel{d}{\rightarrow} \nu d''$. Let $d_0 = \Sigma_{id e} C_N (t)$. Then $d_0 \leq d'$ and $d'' = d' - d_0 + \Sigma_{id e} E_N (t)$. For each $t \in d$ we can find an $u_t \in T_M$ such that $t R u_t$ and $e = \Sigma_{id e} u^1_t$. Let $e_0 = \Sigma_{id e} C_N (u_t)$. Since $d_0 \stackrel{e_0}{\rightarrow}$, we can find an $e_1 \in P_W$ such that $d' \stackrel{e_0}{\rightarrow} e_1$. Take $e' = e_0 + e_1$ and e'' such that $e' \stackrel{e'}{\rightarrow} e''$. Clearly, $d'' \stackrel{e''}{\rightarrow} e''$ as well. This settles the “if” part.

We now prove the “only if” part. Let Q be an OP-bisimulation between V and W. Note that, by OP-bisimulation condition 1, we can deduce that in this case OP-bisimulation conditions 2-3 also hold when strict inclusion is substituted for inclusion. So from Lemma 5 we may deduce that there exists a total and surjective relation $R \in \Pi((S_N \times T_N) \cup (S_M \times T_M))$ such that $Q = \hat{R}$. We shall prove that R is a structural bisimulation between N and M. Property 1 is easy.

We prove net bisimulation property 2. Let $t \in T_N$ and $u \in T_M$ such that $t R u$. We know that $C_N (t) \stackrel{t^1}{\rightarrow} \nu E_N (t)$ and $C_N (u) \stackrel{u^1}{\rightarrow} \nu E_N (u)$, whereas $t^1 \not\preceq u^1$. Since Q is an OP-bisimulation, we deduce that $C_N (t) \equiv C_N (u)$ and $E_N (t) \equiv E_N (u)$.

We prove net bisimulation property 3. Property 4 then follows by symmetry. Let $t \in T_N; B \in IB(S_M)$ such that $C_N (t) \equiv B B$. Since $C_N (t) \stackrel{t^1}{\rightarrow} \nu E_N (t)$, there must exist $\beta \in A_W, B' \in P_W$ such
that $B \xrightarrow{\beta} B'$ and $t^1 \beta$. Since t^1 is a singleton, β must be a singleton, say u^1 and $t R u$. Moreover, $C_B(t)$ is the smallest state in P_V admitting the step t^1. It follows from properties 2-3 of Q that B has the same property w.r.t. the step u. So $B = C_B(u)$. Thus R is indeed a structural bisimulation. \square

Lemma 5 Let A, B be finite sets and let $Q \in \mathbb{P}(\mathbb{B}(A) \times \mathbb{B}(B))$ be a total and surjective relation satisfying for $\alpha, \alpha' \in \mathbb{B}(A); \beta, \beta' \in \mathbb{B}(B)$ such that $\alpha \beta$, $\alpha < \alpha' \Rightarrow \exists \gamma \in \mathbb{B}(B): \beta < \gamma \land \alpha' Q \gamma$,
$\beta < \beta' \Rightarrow \exists \gamma \in \mathbb{B}(A): \alpha < \gamma \land \gamma Q \beta'$.

Then there exists a total and surjective relation $R \in \mathbb{P}(A \times B)$ such that $Q = \hat{R}$.

Proof: Note that all bags are finite since A and B are finite. We prove by induction that Q equals some \hat{R} when restricted to bags of size $\leq k$. Because of the conditions on Q and since \emptyset is the minimal element in both sets, we deduce that Q relates \emptyset to and only to \emptyset. Since singleton bags are the only bags that have \emptyset as a strict subbag, Q must relate singletons to and only to singletons. This settles the cases for sizes 0 and 1. Clearly, R must be the relation defined by $a R b \Leftrightarrow a^1 Q b^1$.

Let $\alpha \in \mathbb{B}(A); \beta \in \mathbb{B}(B)$ such that $\alpha \beta$. Let α_i for $i \in I$ be the set of all strict subbags of α and let β_j for $j \in J$ be the set of all strict subbags of β. By the conditions on Q, each α_i must be Q-related (and thus \hat{R}-related by the induction hypothesis) to a β_j and vice versa. By some case analysis it is easy to show that $\alpha \hat{R} \beta$. \square

6 Behavioral properties of nets

Theorem 2 shows how behavioral properties of LPT nets are preserved under structural bisimulation. We define a few of these properties. If N is an LPT net and V the process space derived from it, we adopt the notation $P \rightarrow^* N Q$ for $P \rightarrow N Q$.

Definition 9 A marked LPT net is a pair (N, P) where N is an LPT net and $P \in \mathbb{B}(S_N)$ a marking of N. A marking $Q \in \mathbb{B}(S_N)$ is called reachable from (N, P) (notation $P \rightarrow^* N Q$) iff there exist $k > 0; P = Q_0, \ldots , Q_k = Q \in \mathbb{B}(S_N); A_1 \ldots A_{k-1} \in \mathbb{B}(T_N)$ such that $Q_i [A_i] N Q_{i+1}$ for $0 < i < k$. The marked net (N, P) is called bounded iff there exists an $n > 0$ such that every $Q \in \mathbb{B}(S_N)$ with $P \rightarrow^* N Q$ has size $< n$. It is live iff for every $Q \in \mathbb{B}(S_N)$ with $P \rightarrow^* N Q$ and $t \in T_N$ there exists a $Q', Q'' \in \mathbb{B}(S_N)$ such that $Q \rightarrow (t) N Q' \rightarrow (t') N Q''$. It deadlocks iff there is no $t \in T_N; Q \in \mathbb{B}(S_N)$ such that $P \rightarrow (t') N Q$. It has a deadlock iff there exists a $Q \in \mathbb{B}(S_N)$ with $P \rightarrow^* N Q$ such that Q deadlocks.

The proof of the following property is trivial from Theorem 2. Note that liveness is not completely preserved. A counterexample can be found in Figure 3. This counterexample - and the whole idea behind transition labeling - suggest a weakened definition of liveness: an LPT net is live iff for every reachable state Q and transition t a subsequent state Q' and transition u with the same label can be found such that u can fire.
Figure 5: Queuing systems

Property 2 Let \((N, P)\) be a marked LPT net, \(R\) a congruence of \(N\), \(M = N/R\), \(\rho\) the canonical projection of \(N\) to \(M\) and \(Q = \rho(P)\). Then

\((N, P)\) is bounded iff \((M, Q)\) is bounded,

\((N, P)\) deadlocks iff \((M, Q)\) deadlocks,

\((N, P)\) has a deadlock iff \((M, Q)\) has a deadlock,

\((N, P)\) is live implies \((M, Q)\) is live.

7 Example

In Figure 5 two bisimilar nets are depicted that implement queues. The \(I\)(input)-labeled place contains clients that are to be served by the system. Tokens are produced for this place by the firing of the \(A\)(arrival) transition. The \(R\)(resource) places contain available servers. When an \(S\)(start) transition fires, a client and server are consumed and a \(B\)(busy) client-server combination is produced. When \(F\)(finish) fires, this \(B\) combination is consumed, the client is transferred to \(O\)(output) and the server to \(R\). The \(D\)(departure) transition can remove these clients.

In \(M\), two parallel queue systems are depicted, whereas \(N\) is a single queue system. Clearly, both nets are structurally bisimilar, so their process spaces are OP-bisimilar. This means that e.g. adding two tokens in place \(R\) of \(N\) and one each in the resource places of \(M\) will result in processes that behave the same.

Interleaving bisimilarity of the “action” parts of the nets \(N\) and \(M\) can also be proved by more or less standard techniques, viz. BPA₈ with recursion (c.f. [BaVe95]). In this case, steps consist of the firing of a single transition and states are not labeled. The nodes in the process space \(V_N\) correspond to markings of the net \(N\). Let \(X_{k,l,m,n}\) denote the node corresponding to the marking \(I^kB^lR^mD^n\). We derive the following recursive equations (**) for \(k, l, m, n \in \mathbb{IN}\):

\[
X_{k,l,m,n} = A_P X_{k+1,l,m,n} + S_{k>0,m>0} X_{k-1,l+1,m-1,n} + F_{l>0} X_{k,l-1,m+1,n} + D_{n>0} X_{k,l,m,n-1},
\]

where \(A_P\) denotes the action \(A\) if \(P\) is true and \(\delta\) if \(P\) is false. For the net \(M\) similar equations can be derived for nodes \(Y_{k,l_1,l_2,m_1,m_2,n}\). From these equations it can be deduced that \(Y_{k,l_1,l_2,m_1,m_2,n}\) and \(X_{k,l_1+l_2,m_1+m_2,n}\) satisfy the same set of (guarded) equations derived from (**). The RSP rule then yields bisimilarity of the process spaces, giving another structural equivalence of the nets.
The method sketched above can be generalized to arbitrary finite nets, showing e.g. that the net in Figure 4 and the same net with u deleted are bisimilar. It has the advantage of an axiomatic approach, but is hard to derive algorithmically. The method of this paper has the advantage of simplicity, modeling states and a concurrent step semantics.

8 Conclusions and further work

One may ask what structural LPT net bisimilarity amounts to in practice. This question may be answered by a metaphor in the style of [Gla90]. An observer is given an LPT net M. At the same time, an LPT net N is inserted in a testing device, which is depicted in Figure 6.

The device possesses four buttons, labeled “fire”, “add”, “del” and “undo”. It also possesses three rows of dials, labeled “marking”, “step” and “warp”. Each dial is labeled with a label from $£$ and displays a nonnegative integer. The “step” and “warp” dials can be set by the observer.

Initially, the marking dials display zeros. To test the net N, the observer may set the “warp” dials and press “add”. The device will respond by adding tokens to the net N. If the “warp” dial labeled with a is set with a number $n > 0$, then n tokens will be inserted in a-labeled places and likewise for the other labels. Tokens can be removed by setting the “warp” dial and pressing “del”. If the “warp” dial labeled with a is set with a number $n > 0$, then n tokens will be removed from a-labeled places and likewise for the other labels. If the specified warp cannot be executed (there are no a-labeled places in N or these places do not contain enough tokens), the maximum possible number of tokens is added or removed. If there are several possibilities for adding or removing tokens, one of them is chosen nondeterministically. After the warp, the “warp” dials display the actual number of tokens added or removed and the “marking” dials display the marking (number of tokens in a-labeled places for each label a).

The observer may also set the “step” dials and press “fire”. The device will respond by executing a step corresponding to the set dials. If the “step” dial labeled with h is set with a number $n > 0$, then n concurrent firings of h-labeled transitions will be included in the step and likewise for the other labels. If the specified step cannot be executed (e.g. there are not enough tokens available), a maximal substep of the specified step is chosen. From the possible steps, one is chosen nonde-
terministically.

The device, while executing a step F, displays in the “step” dials the number of concurrent firings of h-labeled transitions for each label h in F and displays in the “marking” dials first the state reached after consuming the tokens required for F and then the state reached after completing the step F.

At any time, the observer may press “undo”, restoring the situation before his last action. The observer is assigned the task of experimenting with N through the device and trying to match his observations to the behavior of net M. He must report whether he can detect any differences between M and N.

Such a difference may arise when N displays an observable behavior that cannot be matched by any behavior of M. If N and M would be the nets in Figure 2, he could warp to the state a^2, and discover that firing h^1 blocks. Since such a deadlock cannot occur in M, he can report their being different.

However, had N and M been interchanged, he cannot be sure so easily. He can warp to a^2 and fire h^1 as often as he likes, but, for all he knows, every time he warps to a^2, a non-deadlocking state may be chosen. So the non-occurrence of a deadlock in N gives no information as to M and N being different. For this very reason the LPT net testing device comes with a “fairness warranty” from its manufacturer:

By performing sufficiently many experiments with our device, every possible outcome will occur.

In small print, it is defined what “sufficiently many” means in terms of the size of the net N inserted and the nature of the experiments conducted. So after a while, failing to observe a deadlock, the observer may conclude that M and N are indeed different, provided that the number of places and transitions of the net N does not exceed a given upper bound.

We assert that LPT nets N and M are structurally bisimilar iff the observer cannot discover any differences between them in the above way. For instance, the difference between the net in Fig 4 and the same net with transition u removed can be discovered by warping to $a^1b^1c^1$ and discovering that one net sometimes refuses the step h^1k^1 and the other not.

The testing device described above is very powerful indeed. One may remove the fairness warranty (giving ready simulation), the undo button (giving failure-like equivalences) and/or the warp buttons and dials (giving behavioral equivalences). These possibilities certainly merit further investigation, especially the structural ones (allowing warps), as the behavioral ones will be similar to those mentioned in [PoRS92].

We have introduced structural net bisimulation and studied a few of its properties. Other properties of this equivalence relation, like causality preservation or congruence w.r.t. operations like refining transitions and/or places need further investigation.

The bisimilarity relations in this paper can be compared to strong bisimilarity for process graphs. Each token within the state and each transition firing in a step is of importance. In contrast, weak bisimilarity allows places and transitions to be labeled with the invisible label τ. Tokens in τ-labeled places should only be noticed by the fact that they enable steps that can be noticed. Sim-
ilarly, the inclusion of τ-labeled transitions in a step is only noticed by the fact that tokens are consumed or produced that can be noticed. For practical verifications, some form of weak bisimilarity cannot be dispensed with, so an extension of the present theory in this direction is necessary. Another interesting extension is to high-level (e.g. colored) nets.

References

Bro96 A.E. Brouwer (private communication)

Computing Science Reports

In this series appeared:

93/01 R. van Geldrop

93/02 T. Verhoef

93/03 T. Verhoef

93/04 E.H.L. Aarts
 J.H.M. Korst
 P.J. Zwietering

93/05 J.C.M. Baeten
 C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoesel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 J.C.M. Baeten
 J.A. Bergstra

93/15 J.C.M. Baeten
 J.A. Bergstra
 R.N. Bol

93/16 H. Schepers
 J. Hooman

93/17 D. Alstein
 P. van der Siok

93/18 C. Verhoef

93/19 G.J. Houben

93/20 F.S. de Boer

93/21 M. Codish
 D. Dams
 G. Filé
 M. Bruyerooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll
 and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamarreddine and
 R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
 T. Kloks
 D. Kratsch
 H. Müller

Department of Mathematics and Computing Science
Eindhoven University of Technology

- Deriving the Aho-Corasick algorithms: a case study into the synergy of programming methods, p. 36.
- A continuous version of the Prisoner's Dilemma, p. 17
- Quicksort for linked lists, p. 8.
- Deterministic and randomized local search, p. 78.
- A congruence theorem for structured operational semantics with predicates, p. 18.
- On the unavoidability of metastable behaviour, p. 29
- Exercises in Multiprogramming, p. 97
- A Formal Deterministic Scheduling Model for Hard Real-Time Executions in DEDOS, p. 32.
- Systems Engineering: a Formal Approach Part II: Frameworks, p. 44.
- A Trace-Based Compositional Proof Theory for Fault Tolerant Distributed Systems, p. 27
- Hard Real-Time Reliable Multicast in the DEDOS system, p. 19.
- A congruence theorem for structured operational semantics with predicates and negative premises, p. 22.
- The Design of an Online Help Facility for ExSpect, p.21.
- Freeness Analysis for Logic Programs - And Correctness, p. 24
- A Typechecker for Bijective Pure Type Systems, p. 28.
- Relational Algebra and Equational Proofs, p. 23.
- Pure Type Systems with Definitions, p. 38.
- Multi-dimensional Petri nets, p. 25.
- Finding all minimal separators of a graph, p. 11.
- A Semantics for a fine λ-calculus with de Bruijn indices, p. 49.
- GOLD, a Graph Oriented Language for Databases, p. 42.
- On Vertex Ranking for Permutation and Other Graphs, p. 11.
Derivation of delay insensitive and speed independent CMOS circuits, using directed commands and production rule sets, p. 40.

ILIAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p. 39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of Dynamic Leader Election Protocols in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

Temporal operators viewed as predicate transformers, p. 11.

Automatic Verification of Regular Protocols in P/T Nets, p. 23.

A taxonomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol, p.

Verifying Sequentially Consistent Memory using Interface Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and \Pi\text{-}conversion, p. 51.

Graph Isomorphism Models for Non Interleaving Process Algebra, p. 18.

Time and the Order of Abstract Events in Distributed Computations, p. 29.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.
The testing Paradigm Applied to Network Structure. p. 31.

A New Method for Integrity Constraint checking in Deductive Databases. p. 34.

Ups and Downs of Type Theory. p. 9.

Job Shop Scheduling by Local Search. p. 21.

Mathematical Induction Made Calculational. p. 36.

An Algebraic Semantics of Basic Message Sequence Charts. p. 9.

Refining Reduction in the Lambda Calculus. p. 15.

The performance of single-keyword and multiple-keyword pattern matching algorithms. p. 46.

Beyond β-Reduction in Church's $\lambda \rightarrow$. p. 22.

The design and implementation of the FIRE engine: A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts. p. 43.

Abstract Interpretation of Reactive Systems: Abstractions Preserving VCTL*, ECTL* and CTL*, p. 28.

$K_{1,2}$-free and W_4-free graphs. p. 10.

On the foundations of functional programming: a programmer's point of view. p. 54.

Correctness of Real Time Systems by Construction. p. 22.

Process Algebra with Feedback. p. 22.

A Boyer-Moore type algorithm for regular expression pattern matching. p. 22.

A formalization of the Ramified Type Theory. p.40

The Barendregt Cube with Definitions and Generalised Reduction. p. 37.

Delayed choice: an operator for joining Message Sequence Charts. p. 15.

Canonical typing and II-conversion in the Barendregt Cube. p. 19.

Point-free substitution. p. 10.
On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems, p. 34.

Computing a perfect edge without vertex elimination ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

The \lambda-cube with classes of terms modulo conversion, p. 16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Normalization for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to Branching Time Logic Model Checking, p. 20.

The Construction of a small Communication Library, p. 16.

Formalizing Process Algebraic Verifications in the Calculus of Constructions, p. 49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p. 20.

A Quantitative Analysis of Iterated Local Search, p. 23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Normalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

Mathpad: A System for On-Line Preparation of Mathematical Documents, p. 15
95/11 R. Seljée	Deductive Database Systems and integrity constraint checking, p. 36.
95/12 S. Mauw and M. Reniers	Empty Interworkings and Refinement Semantics of Interworkings Revised, p. 19.
95/14 A. Ponse, C. Verhoef, S.F.M. Vlijnen (eds.)	De proceedings: ACP'95, p.
95/16 D. Dams, O. Grumberg, R. Gerth	Abstract Interpretation of Reactive Systems: Preservation of CTL*, p. 27.
95/17 S. Mauw and E.A. van der Meulen	Specification of tools for Message Sequence Charts, p. 36.
95/19 J.C.M. Baeten and J.A. Bergstra	Discrete Time Process Algebra with Abstraction, p. 15.
95/20 F. van Raamsdonk and P. Severi	On Normalisation, p. 33.
95/21 A. van Deursen	Axiomatizing Early and Late Input by Variable Elimination, p. 44.
95/23 W.M.P. van der Aalst	Petri net based scheduling, p. 20.
95/25 L. Feijs	Synchronous Sequence Charts In Action, p. 36.
95/26 W.M.P. van der Aalst	A Class of Petri nets for modeling and analyzing business processes, p. 24.
95/29 H. Jurjus	On Nesting of a Nonmonotonic Conditional, p. 14
95/31 P. Kelb, D. Dams and R. Gerth	Practical Symbolic Model Checking of the full μ-calculus using Compositional Abstractions, p. 17.
95/32 W.M.P. van der Aalst	Handboek simulatie, p. 51.
95/33 J. Engelfriet and J.J. Vereijken	Context-Free Graph Grammars and Concatenation of Graphs, p. 35.
95/34 J. Zwanenburg	Record concatenation with intersection types, p. 46.
95/35 T. Basten and M. Voorhoeve	An algebraic semantics for hierarchical P/T Nets, p. 32.
96/01 M. Voorhoeve and T. Basten	Process Algebra with Autonomous Actions, p. 12.
96/02 P. de Bra and A. Aerts	Multi-User Publishing in the Web: DreSS, A Document Repository Service Station, p. 12
96/04 S. Mauw	Example specifications in phi-SDL.
96/06 W.M.P. van der Aalst and T. Basten	Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.