Modelling band-to-band tunneling current in InP-based heterostructure photonic devices
van Engelen, J.P.; Shen, L.; van der Tol, J.J.G.M.; Smit, M.K.

Published in:
Proceedings of the 20th Annual Symposium of the IEEE Photonics Benelux Chapter, November 26-27, 2015, Brussels, Belgium

Published: 01/01/2015

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Modelling Band-to-Band Tunneling Current in InP-based Heterostructure Photonic Devices

J.P. van Engelen, L. Shen, J.J.G.M. van der Tol, M.K. Smit
Photonic Integration Research Group, Dept. of Electrical Engineering,
Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands

Some semiconductor photonic devices show large discontinuities in the band structure. Short tunnel paths caused by this band structure may lead to an excessive tunnelling current, especially in highly doped layers. Modelling of this tunnelling current is therefore important when designing photonic devices with such band structures. The traditional Kane’s tunnelling model can only be applied to homostructures. An extension to heterostructures is developed to study interband tunneling probability in InP-based heterostructures and the resulting tunnelling current is calculated.

Introduction

We are developing a membrane-based photonic device with a highly doped ($N_e = 10^{18} – 10^{19}\text{ cm}^{-3}$) junction which will be operated in reverse bias. In highly doped reverse biased pn-junctions significant tunneling current can occur. Because cooling of devices in membranes is still a problem it is important that the device has a low tunneling current and therefore a low power consumption. Most research on Band-To-Band Tunneling (BTBT), such as Kane’s model [1], applies only to homojunctions, while InP-based photonic devices often contain heterojunctions with large discontinuities in the band structure at material interfaces. Figure 1 shows the band structure of a highly-doped reverse-biased pin heterojunction. It is clear that the discontinuities in the conduction and valance bands have a large influence on the tunneling probability of electrons across the junction. In this paper we describe how to model the tunneling current in heterojunctions and how to determine the breakdown voltage due to tunneling.

Theory

Band-To-Band tunneling in highly doped p-n junctions can be significant if the tunneling path (at constant electron energy) from valance band to conduction band is sufficiently small. The tunneling path starts at the classical turning point x_v where the electron energy equals the valance band edge energy, the tunneling path stops at the classical turning point x_c where the electron energy equals the conduction band edge energy. This tunneling path is indicated by the dotted line in Figure 2a. The WKB approximation is used to calculate the probability of tunneling P: [2]

$$P = |T|^2 \approx \exp \left(-2 \int_{x_v}^{x_c} |k(x)| \, dx \right),$$

(1)

with T the transmission coefficient and $k(x)$ the wavevector. A triangular barrier is based on the assumption that a tunneling electron suddenly changes its potential energy at x_v [3,
Figure 1: (a) Band diagram of a reverse-biased pin heterojunction with matching tunneling probability (b). The shortest paths show the highest probability.

p. 484]. A more realistic barrier follows from the one-dimensional two-band Schrödinger equation and yields a parabolic barrier [4]:

\[
k(x) = \frac{1}{\hbar} \sqrt{\frac{2m_r}{E_g}} (E_c(x) - E)(E - E_v(x)),
\]

with \(m_r\) the reduced mass as defined in [3, p. 484] and \(E\) the energy of the electron. Assuming a constant electric field \(\mathcal{E}\), \(|k(x)|\) can be rewritten as [3, 4]:

\[
k(x) = \frac{1}{\hbar} \sqrt{\frac{2m_r}{E_g}} \left(\frac{E_g}{2} \right)^2 - (q\mathcal{E}x)^2),
\]

and centering \(x_v\) and \(x_c\) around 0 we have [3]:

\[
T \approx \exp \left(-2 \int_{-l/2}^{l/2} |k(x)|dx \right) = \exp \left(-\frac{\pi \sqrt{2m_rE_g^{3/2}}}{\hbar q\mathcal{E}} \right),
\]

where \(l = E_g/(q\mathcal{E})\). Tunnel paths through a heterogeneous junction experience a discontinuity of \(k(x)\) at the interface because \(E_g, m_r\), the permittivity \(\varepsilon\) and the electron affinity \(\chi_e\) are different in each material. The discontinuity is shown in Figure 2b. We split the integral in two parts:

\[
\int_{-x_v}^{x_c} |k(x)|dx = \int_{-l/2}^{-l/2+x_v} |k_1(x)|dx + \int_{l/2}^{l/2-x_c} |k_2(x)|dx = I_1(x_v) + I_2(x_c);
\]

As the two integrals are similar (the integrals equal the surface of a section of a semi-circle, Figure 2b):

\[
I_i(x) = \frac{q\mathcal{E}}{\hbar} \sqrt{\frac{2m_r}{E_{g,i}}} \int_{-l_i/2}^{-l_i/2+x} \sqrt{\left(\frac{l_i}{2} \right)^2 - x'^2}dx';
\]
we can write down a general solution \(I_i(x) \) for both:

\[
I_i(x) = \frac{q \hbar}{2m} \sqrt{\frac{2m}{E_{g,i}}} \left(x - \frac{l_i}{2} \right) \sqrt{\left(\frac{l_i}{2} \right)^2 - \left(x - \frac{l_i}{2} \right)^2} \\
+ \frac{q \hbar}{2m} \sqrt{\frac{2m}{E_{g,i}}} \left(\frac{l_i}{2} \right)^2 \arcsin \left(\frac{x - l_i}{l_i} \right).
\]

Using this solution, the tunneling probability through the heterojunction is:

\[
P \approx \exp (-2I_1(x_v) - 2I_2(x_c))
\]

Effect of Transverse Energy

The model in (2) assumes that all the energy of the electron can be used for tunneling. In reality the transverse energy \(E_{\perp} \) cannot be used for tunneling [4]. Solving the two-band Schrödinger equation to include \(E_{\perp} \) yields the substitution: \(E_c \mapsto E_c + E_{\perp}, E_v \mapsto E_v - E_{\perp} \) and \(E_g \mapsto E_g + 2E_{\perp} \) in \(k(x) \):

\[
k(x) = \frac{1}{\hbar} \sqrt{\frac{2m}{E_g + 2E_{\perp}} (E_c(x) + E_{\perp} - E)(E - E_v(x) + E_{\perp})}.
\]

The tunneling probability now depends both on the total energy \(E \) and the transverse component of the energy \(E_{\perp} \) of the electron. \(E_{\perp} \) varies between 0 and \(E_s \), where \(E_s \) is the smaller of \(E_1 \) and \(E_2 \) (as defined in Figure 1) [1]. Note that the introduction of the transverse energy does not change the classical turning points \(x_v \) and \(x_c \). For completeness, the tunnel current is given by [4, 5]:

\[
J_t = \frac{q m}{2\pi^2 \hbar^3} \int_{E_{c,n}}^{E_{v,p}} (F_C(E) - F_V(E)) \int_0^{E_s} T(E, E_{\perp}) dE_{\perp} dE,
\]

where \(E_{c,n} \) is the edge energy of the conduction band at the n-side of the junction and \(E_{v,p} \) the valance band at the p-side.
Figure 3: Breakdown voltage as a function of doping. Higher doping and narrower intrinsic region d_i have a lower breakdown voltage.

Numerical Study

In the previous sections we assumed a constant electric field in (3). In practice this is only the case in intrinsic semiconductor layers. If the electric field is constant, $T(E, E_\perp)$ has an analytic solution, but in other cases we need to calculate the tunneling probability and total tunneling current numerically from (9) and (10). We can now define the breakdown voltage due to tunneling as the voltage at which the tunnel current exceeds a threshold. From experience we set the breakdown current at 3mA; higher current is found to cause thermal damage to our membrane devices. Results are shown in Figure 3 for a pin junction with doped Q1.25 regions and intrinsic InP region. High electric fields cause high tunneling probability, the result is a decrease of the breakdown voltage with increasing doping and narrower intrinsic region.

Summary

We present a theoretical model of tunneling probability across hetero junctions and the resulting tunneling current. The results were used to determine the breakdown voltage due to tunneling for a InP-based hetero pin junction. This model can be used for membrane photonic devices where high electric fields are used and where heating effects should be minimized.

References