Oxygen K-edge shift at the Verwey transition of magnetite

Citation for published version (APA):

DOI:
10.1103/PhysRevB.72.033112

Document status and date:
Published: 01/01/2005

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Apr. 2019
Oxygen K-edge shift at the Verwey transition of magnetite

E. Goering,* S. Gold, M. Lafkioti, and G. Schütz
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, 70569 Stuttgart, Germany

V. A. M. Brabers
Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

(Received 31 March 2005; published 29 July 2005)

The temperature dependence of the O K-edge threshold has been investigated in a temperature range encompassing the Verwey transition. Both above and below TV the O K-edge threshold changes linear with temperature whereas there is discontinuous energy shift of 13 meV at TV. A comparison of our results to published low and high energy photoemission experiments suggests the presence of an asymmetric gap with respect to the Fermi level. This explains present fundamental differences between photoemission and infrared derived gap energies, and supports the polaronic image of the electrical conductivity of Fe3O4 above the Verwey transition temperature.

DOI: 10.1103/PhysRevB.72.033112

PHYSICAL REVIEW B 72, 033112 (2005)

Magnetite (Fe3O4), which has been investigated since the last 2000 years, has recently attracted enormous interest. This is clearly related to its proposed half metallic behavior and a corresponding spin polarization at the Fermi level of about 100%,1,2 which transforms Fe3O4 into a promising candidate for spintronic applications.3,4 Very recent theoretical band structure calculations, based on the local density approximation, have taken into account the refined low temperature structural results.14,15 In both references the authors found simultaneously an insulating low temperature phase, where orbital ordering occurs, and a half metallic high temperature phase.

Photoemission experiments (PES) have been performed above and below the Verwey transition to monitor temperature dependent variations near the chemical potential. Chai-nani et al.16 and Park et al.17 observed a shift in energy but nearly no spectral weight has been found at the chemical potential (near TV). Only at higher temperatures a small spectral weight appears.16 This has resulted into two different interpretations of the Verwey transition as an “insulator to metal” or “insulator to insulator” transition. Recent high energy PES (hv=705eV) of a cleaved single crystal exhibits a discontinuous shift at TV of about 50 meV,18 roughly consistent to previous cleaved sample PES results of Park et al.17 In contradiction, only a continuous shift has been observed for extensively in situ prepared single crystal surfaces, which indicates a long range surface modification reaching inside the sample.19 However, no spectral weight has been found at the chemical potential (near TV), which is in contradiction to early1,2 and recent14,15,20 band structure calculations of the high temperature phase. To explain this nonmetallic behavior alternative theoretical approaches have been proposed, based on small-polarons,21 electron–electron correlations,22 and bond dimerization.23 The gap and shape of the PES results have been modeled by a small-polaron picture.18 A similar explanation, also based on polarons, has been used for the heavy electron behavior (m*≈100m_e) observed in recent infrared and Raman experiments.24

Nevertheless, from the recent high energy photoemission data full energy gaps up to 2×150 meV (at T=50 K<TV from Ref. 18) and down to 0 meV (at T=180 K>TV from Ref. 18) could be estimated, assuming a gap center position of the chemical potential,16,17,24 This is in contrast to the infrared derived optical gap information, which suggest only a full gap between 140 meV [at 10 K (Ref. 25)] and 200 meV [at 50 K (Ref. 24)].

In this contribution, we report high quality x-ray absorption results at the O K-edge of magnetite, monitoring the energy position of the unoccupied density of states. Compared to the abovementioned PES results we found a much smaller gap variation as the temperature is cycled through
the Verwey transition. This suggests an asymmetric gap, which is able to resolve the abovementioned discrepancies between IR and PES results concerning the total excitation gap.

High quality synthetic single crystalline sample have been prepared in an arc-image furnace using the floating zone technique.26 The single crystals have been annealed and cooled under equilibrium conditions to obtain highly stoichiometric single crystals.27 The vacancy concentration of the used Fe3−xO4 single crystal is smaller than x<10−6, proven by measuring magnetic after spectra.9,28 O K-edge spectra were recorded in total electron yield mode (TEY) at the new high resolution bending-magnet-beamline PM III at BESSY II with an energy resolution of about E/ΔE=6000, utilizing circular polarized light. Corresponding x-ray magnetic circular dichroism results will be discussed in detail elsewhere. No smoothing or further not mentioned data manipulations has been performed. The single crystal sample has been in situ cleaved at room temperature under UHV conditions. The ambient pressure during the measurement was lower than 8×10−10 mbar. The resulting surface has been oriented in normal incidence geometry. The temperature has been continuously warmed up at rate of 1 K/min in the range of 85–134 K. Each O K "preedge"29 spectrum (range from 528 to 534 K; see Fig. 1) has been measured in less than 3 min (energy step width of 0.1 eV). To prevent small possible energy variations related to the synchrotron beam position shifts, all spectra have been taken at low synchrotron ring currents and increased current lifetime The energy step width and temperature slope have been chosen to obtain the best compromise between thermalization, necessary measurement time, and synchrotron related beam intensity variations. During the warming up procedure a diode thermometer has monitored the sample cryostat temperature, which has been verified with an extra thermometer located at the sample position. The sample magnetization has been measured using a commercial SQUID magnetometer (Quantum Design MPMS).

Figure 1 shows the room temperature (RT) O K-edge spectrum of the freshly cleaved Fe3O4 single crystal. The shape of the spectrum is in excellent agreement to previously published x-ray absorption data,17,29–31 where the "preedge" region between 528 and 534 eV has been identified to O 2p states, which are strongly hybridized with unoccupied Fe 3d t2g− and eg− orbitals. The observable splitting at 531 eV is originated by a mixture of crystal field effects and the chemical environment of A and B site Fe ions.29 The features at higher energies are related to transitions into O 2p states hybridized with O 4s and 4p states (534–550 eV).29

Figure 2 shows background subtracted and peak-height-normalized spectra of the O K-edge onset region, as a function of the sample temperature. A continuous shift of the near threshold region from 85 K up to the 120 K is observable, followed by a step-like jump to lower excitation energies. We would like to emphasize that the energy shifts in Fig. 2 are just about the linewidth used in Fig. 1 (only visible in this expanded view). To quantify this variation the half height position of the shown spline-extrapolated curves have been extracted and plotted in Fig. 3 as a function of temperature. A continuous linear shift of about 20 meV is observed at the low temperature phase (85–120 K). Between 120 and 125 K a clear step of 13 meV width is observable, followed again by a linear variation. In the whole temperature range from 85 to 134 K the half height position is shifted by 40 meV. These relative energy position shifts at different temperatures have been reproduced (not shown) at different synchrotron runs. The maximum energy variation between different in-

FIG. 1. X-ray absorption spectrum at the O K edge of Fe3O4

(T=300 K).

FIG. 2. (Color online) Temperature dependence of the O K-edge preedge in the vicinity of the Verwey transition temperature region.

FIG. 3. Temperature dependency of the half height position of the O K edge threshold, extracted from Fig. 1(b). Inset: Sample magnetization of the Fe3O4 single crystal. The Verwey transition is directly visible at 123.7 K.
FIG. 4. (Color online) Schematic of the nonspin resolved band positions and shifts as the temperature evolves through the Verwey transition. The left site is related to the more insulating behavior below T_V, and the right site to the situation above T_V. The total gap shift is 63 meV. The green arrow at the left indicates the IR-derived gap of about 200 meV at 50 K.

The inset in Fig. 3 shows the field cooled temperature dependence of the sample magnetization, measured at 5000 Oe. The Verwey transition is clearly observable at 123.7±0.3 K, and at the same temperature of the O edge34 of Fe$_3$O$_4$ of only 50 meV at 50 K. Like in PES a clear gap variation is observable below T_V. Our results remove inconsistencies between photoemission and infrared spectroscopy, which have both explained the activated conductivity in terms of small polarons, even above the Verwey temperature.

In conclusion, we have investigated a clear, sharp, but also very small energy shift at the O K-edge of Fe$_3$O$_4$ of only 13 meV, present at the Verwey transition. This shift is much smaller, compared to photoemission results and clearly suggests the presence of an asymmetric gap opening in magnetite. Like in PES a clear gap variation is observable below T_V. Our results remove inconsistencies between photoemission and infrared spectroscopy, which have both explained the activated conductivity in terms of small polarons, even above the Verwey temperature.

The authors thank M. Fähnle, F. Walz, and H. Kronmüller for fruitful discussions, and the Max-Planck-Society for financial support. Many thanks to T. Kachel from BESSY II for support during the beamtime.

*Corresponding author. Electronic address: goering@mf.mpg.de

6 E. J. W. Verwey and P. W. Haayman, Physica (Utrecht) 8, 979 (1941).

