Optimal segmentations

Citation for published version (APA):

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 11. Nov. 2019
Optimal segmentations

by

C.G.
J.J.C.P. van der Woude

89/15

December, 1989
This is a series of notes of the Computing Science Section of the Department of Mathematics and Computing Science Eindhoven University of Technology. Since many of these notes are preliminary versions or may be published elsewhere, they have a limited distribution only and are not for review. Copies of these notes are available from the author or the editor.
OPTIMAL SEGMENTATIONS

Introduction

In programming methodology the attention gradually shifts from specific problems towards classes of problems, their characterization and theorems for their solutions. A classification of segment problems is in progress and several solution schemes may be viewed as theorems. A type of problems not too distant from the segment problems is that of partitionings. Given a sequence (or set) construct a partition, possibly an extremal partition, whose members all satisfy certain conditions. E.g. partition a list into segments that satisfy a certain "nice" predicate, give a construction of a partition with as few members as possible; such a partition may be called an optimal segmentation. I'll derive conditions on the predicate involved that guarantee efficient algorithms modulo the predicate calculations (i.e. evaluation of predicates is assumed to take constant time). Moreover, it is shown that the proposed algorithms are greedy.

Notation and concepts

One of the alleged disadvantages of predicate calculus notation is indexitis. This is often circumvented by introduction of abbreviations and ad hoc notations. A more compact, sometimes even too compact, notation is the so-called Bird-Meertens formalism (with APL rudiments, see [B]). Just as an experiment, I incorporate some of the BM features in predicate notation.

For a set (type) \(\alpha \), the triple \((\alpha^*, \#, [\,]) \) denotes the monoid of lists over \(\alpha \). Lists are denoted as sequences between brackets. The catenation \((\#) \) and the unit \(([\,], \text{the empty list) are polymorphic. So lists \((\alpha^*) \) as well as lists of lists \((\alpha^{**}) \) are both considered with the same symbols for catenation and unit, the distinction may be seen from the choice of identifiers:

\[
\begin{align*}
a & \in \alpha \\
u, v, \ldots, z & \in \alpha^* \\
u s, v s, \ldots, z s & \in \alpha^{**}
\end{align*}
\]

I'll use reduction (just \(\# / \), flatten) and filter \((<) \) as in BM. The functions inits, tails and segs are considered in the set-valued versions of those in BM, e.g.:

\[
\text{tails}.x s = \{ v s \mid (E u s :: x s = u s \# v s) \} .
\]

The segmentation concepts are formalized as follows:

\[\text{as an experiment, \# will be given the highest priority: } f . x \# y = f . (x \# y).\]
Let \(Q : \alpha^* \rightarrow \text{Bool} \) be a predicate on \(\alpha \)-lists. Define the relations \(P, OP \subseteq \alpha^* \times \alpha^* \) and the function \(N : \alpha^* \rightarrow \mathbb{N} \) by

\[
\begin{align*}
xsP x & \equiv \exists /xs = x \land Q < xs = xs \\
N.x & = (\downarrow xs : xsP x : \#xs) \\
xsOP x & \equiv xsP x \land N.x = \#xs
\end{align*}
\]

Then \(xs(O)P x \) may be paraphrased as: \(xs \) is an (optimal) \(Q \)-segmentation for \(x \). Note that optimal \(Q \)-segmentations need not be unique.

Some properties

It is good practice to collect, prior to the derivation, some properties of the concepts involved. The easy proofs are left as exercises:

1. \([\]P[\] \), hence \(N.[\] = 0 \) and \([\]OP[\] \)
2. \(xsP x \land ysP y \Rightarrow xs \# ysP x \# y \)
3. \(xsOP x \land us \in \text{segs}xs \Rightarrow usP \# /us \)
4. \(xsOP x \land us \in \text{segs}xs \Rightarrow usOP \# /us \)
5. \(xs \# [\][\] \# ysP x \Rightarrow xs \# ysP x \)

Note that by (4), empty segments may be discarded in considering optimal segmentations. If necessary one may consider \(Q' \) with \(Q'.X \equiv Q.x \land x \not= [\] \) instead of \(Q \).

Life would have been a lot easier (although very dull) if the \(OP \) version of (1) were true, quod non. Since the \(P \)-part of \(OP \) behaves nicely, an investigation of \(N \) is in order. It seems interesting to see whether some recurrence is lurking around. Indeed

\[
N.x \# [a] = (\downarrow z, w : w \# z = x \land Q.x \# [a] : N.w + 1)
\]

For:

\[
N.x \# [a]
= \{ \text{def } N \}
= \{ \downarrow ys : ysP x \# [a] : \#ys \}
= \{ \# /ys = x \# [a] \Rightarrow ys \not= [\] \}
= \{ \downarrow zs, z : zs \# [z]P x \# [a] : \#zs + 1 \}
= \{ \text{def } P \}
= \{ \downarrow zs, z : (\# /zs) \# z = x \# [a] \land Q < zs = zs \land Q.z : \#zs + 1 \}
\]
\[
\{\text{one point rule}\}
\]
\[
(\downarrow zs, z, w : w \uparrow z = x \uparrow [a] \land w = \uparrow'/zs \land Q \triangleleft zs = zs \land Q.z : \#zs + 1)
\]
\[
= \{\text{def \(P\)}\}
\]
\[
(\downarrow zs, z, w : w \uparrow z = x \uparrow [a] \land zsPw \land Q.z : \#zs + 1)
\]
\[
= \{\text{promotion}\}
\]
\[
(\downarrow z, w : w \uparrow z = x \uparrow [a] \land Q.z : (\downarrow zs : zsPw : \#zs + 1))
\]
\[
= \{\text{def \(N, \ pinf + 1 = \pinf\)}\}
\]
\[
(\downarrow z, w : w \uparrow z = x \uparrow [a] \land Q.z : N.w + 1)
\]
\[
= \{\text{split off \(z = [\], \) without loss of generality \(-Q.[\]) (5)}\}
\]
\[
(\downarrow z, w : w \uparrow z = x \land Q.z \uparrow [a] : N.w + 1)
\]

Note that, thanks to the rule \(\pinf + 1 = \pinf\), the validity of the recurrence relation is independent of the existence of \(Q\)-segmentations. Nonexistence is rather unsatisfactory, so I propose an easy way out: assume

\(Q.[a] \) for every \(a \in \alpha\)

Hence the exotic rule \(\pinf + 1 = \pinf\) is superfluous.

Thinning out the quantification

Since in the recurrence relation a quantification over all postfixes of \(x\) occurs, the resulting algorithm is quadratic modulo \(Q\)-calculations. Efficiency improvement is to be expected if only a small subset of the postfixes of \(x\) suffices. Given an optimal \(Q\)-segmentation \(xs\) for \(x\) an interesting subset of the postfixes of \(x\) is given by

\[
\{\#'/vs \mid vs \in \text{tails}.xs\} \ (=: T).
\]

In order to restrict the quantification in the right-hand side of (6) to \(z \in T\), there should be reasons to discard \(z \notin T\). Consider the following **Setting (S)**

\[
\begin{cases}
(i) & x = \#'/xs \land x = w \uparrow z \land z \notin T \\
(ii) & xsOPz \land Q.z \uparrow [a]
\end{cases}
\]

(S)

By (i), there are \(us, vs, u, v\) such that

\[
xs = us \uparrow [u \uparrow v] \uparrow vs \quad \text{and} \quad w = (\#'/us) \uparrow u \land z = v \uparrow (\#'/vs) \land u \neq [] \land v \neq [] .
\]
One may forget about this z in the quantification of (6) if there is a Q-segmentation zs of $x \vdash [a]$ such that

- $\text{last}.zs = p \vdash [a]$ for some $p \in T$
- $\#zs \leq N.w + 1$

Given setting (S), two obvious candidates for zs can be constructed from the Q-segmentation xs, such that last.$zs = p \vdash [a]$ for some $p \in T$:

(c0) $zs = us \vdash [u \vdash v \vdash (+/vs) \vdash [a]]$

(c1) $zs = us \vdash [u \vdash v \vdash (+/v) \vdash [a]]$

These candidates are Q-segmentations if:

- ad (c0): $Q.u \vdash v \vdash (+/vs) \vdash [a]$

 Since $u \vdash v$ in xs and $xsPx$, certainly $Q.u \vdash v$.

 By (ii), $Q.z \vdash [a]$, while $z = v \vdash (+/vs)$ and $v \not\in []$ ((S)).

 Hence overlap closedness of Q is sufficient.

 (I.e. $Q.k \vdash l \wedge Q.l \vdash m \wedge l \not\in [] \Rightarrow Q.k \vdash l \vdash m$.)

- ad (c1): $Q.(-/vs) \vdash [a]$

 Since $Q.z \vdash [a]$, while $z = v \vdash (-/vs)$, it is sufficient to require Q to be postfix closed.

 (I.e. $Q.k \vdash l \Rightarrow Q.l$. Indeed a weaker requirement could be $Q.k \vdash l \wedge Q.l \vdash m \wedge l \not\in [] \Rightarrow Q.m$, which seems a somewhat awkward property.)

With respect to the last requirement:

$$\#zs \leq N.w + 1$$

$$= \{\#zs = \#us + 1 + j \text{ for candidate (cj)}\}$$

$$\#us \leq N.w - j$$

$$\Leftarrow \{\text{In setting (S): } us \subseteq xs \wedge +/us \subseteq w \subseteq +/xs\}$$

(OSj) $\text{(Aus'}, w' : us' \subseteq xs \wedge +/us' \subseteq w' \subseteq +/xs : \#us' \leq N.w' - j)\}$

where "\subseteq" denotes the prefix order:

$$p \subseteq q \equiv p \in \text{inits}q, \quad p \subseteq q \equiv p \subseteq q \wedge p \neq q.$$
The universal quantification in \((OSj)\) is chosen because
- \(us\) and \(w\) in the setting \((S)\) are arbitrarily chosen such that \(z \notin T\). It is desirable to have a condition that is independent of that choice.
- \((OSj)\) is a property of the \(Q\)-segmentation \(xs\) alone (even optimality is not used).

The established "thinning out" may be formulated as:

(8) **Lemma.** Let \(xsOPx\). In each of the following two cases:

- \(L0 : Q\) is overlap closed and \(xs\) satisfies \(OS0\)
- \(L1 : Q\) is postfix closed and \(xs\) satisfies \(OS1\)

the quantification in \((6)\) may be thinned out to

\[
N.x\parallel[a] = (\downarrow us, vs : us\parallel vs = xs \land Q.(\parallel(vs)\parallel[a]) : \#us + 1).
\]

Proof.

\[
N.x\parallel[a] = \{(6), Lj \text{ hence restriction to } z \in T\}
\]

\[
(\downarrow w,z : z \in T \land w\parallel z = x \land Q.z\parallel[a] : N.w + 1)
\]

\[
= \{z \in T \equiv (\exists us, vs : us\parallel vs = xs : z = \parallel(vs)) ; \text{calc}\}
\]

\[
(\downarrow us, vs : us\parallel vs = xs :
\]

\[
(\downarrow w,z : z = \parallel(vs) \land w\parallel z = x \land Q.z\parallel[a] : N.w + 1))
\]

\[
= \{\parallel(xs = x \text{ and } w\parallel z = (\parallel(us)\parallel z \equiv w = \parallel(us)\}
\]

\[
(\downarrow us, vs : us\parallel vs = xs \land Q.(\parallel(vs)\parallel[a] : N.(\parallel(us) + 1)
\]

\[
= \{xsOPx \land us \subseteq xs, (3)\}
\]

\[
(\downarrow us, vs : us\parallel vs = xs \land Q.(\parallel(vs)\parallel[a] : \#us + 1) \]

\]

Lemma (8) only guarantees efficiency improvement if the \((OSj)\) property is an invariant in the (successive) construction of optimal segmentations. This will be addressed in the next section.

Construction of an optimal segmentation

In the following blueprint for the calculation of an optimal segmentation for \(X \in \alpha^*\), only the invariance of \(I2\) is left to be proved:

\[I0 \quad x\parallel x' = X\]
\[I1 \quad xsOPx\]
\[I2 \quad xs \text{ satisfies } OSj\]
\[
\begin{align*}
x, x', zs &:= [] , X, [] \{I\} \\
\text{do} & \ x' \neq [] \\
\rightarrow \ a &:= \text{hd}\cdot x' \\
\quad \rightarrow S \ {\text{((ys, zs) is a witness for}} \\
\quad \ (\text{hs, vs}) : us \mathrel{\#} vs = xs \land Q. \mathbin{(\#/vs) \mathrel{\#} [a] : \#us + 1}) \\
\quad \; xs &:= ys \mathrel{\#} [(\#/zs) \mathrel{\#} [a]] \{I1[x := x\mathbin{\#} [a]] \land I2!\} \\
\quad \; x, x' &:= x \mathbin{\#} [a], \text{tl}\cdot x' \{I\} \\
\text{od} \ {\text{I \land x = X, hence xsCOPX}}
\end{align*}
\]

In order to prove the invariance of \(I2\), assume

(i) \(\mathbin{\#}/(ys \mathbin{\#} [q]) = (\mathbin{\#}/xs) \mathbin{\#} [a] \) \{where \(q = (\mathbin{\#}/zs) \mathbin{\#} [a]\} \\
(ii) \(ys \subseteq xs\) \{((ys, zs) is a witness}\} \\
(iii) \(N.\mathbin{\#}/xs = \#xs\) \{I1 \land \text{def.N}\}

then

\(ys \mathbin{\#} [q] \) satisfies \(\text{OSj}\)

= \{\text{def OSj}\} \\
\quad \{\text{Aus, w : w \subseteq (ys \mathbin{\#} [q] \land \mathbin{\#}/w \subseteq \mathbin{\#}/(ys \mathbin{\#} [q]) : \#us \leq N.w - j}\} \\
\quad = \{(i) ; \subseteq \} \\
\quad \{\text{Aus, w : w \subseteq (ys \land \mathbin{\#}/w \subseteq \mathbin{\#}/xs : \#us \leq N.w - j}\} \\
\quad \Leftarrow \{(\text{ii); split off } w = \mathbin{\#}/xs ; \mathbin{\#}/w \subseteq \mathbin{\#}/xs \Rightarrow w \subseteq xs\} \\
\quad \{\text{Aus, w : w \subseteq xs \land \mathbin{\#}/w \subseteq \mathbin{\#}/xs : \#us \leq N.w - j}\} \\
\quad \land \{\text{Aus : w \subseteq xs : \#us \leq N.\mathbin{\#}/xs - j}\} \\
\quad = \{\text{def OSj}; (iii) \text{and } j \in \{0, 1\}\} \\
x \text{satisfies OSj (\land true)}

Note that \(\text{OS1}\) is an invariant for the construction in both cases, \(Q\) is overlap closed and \(Q\) is postfix closed.

For the construction of \(S\) in case \(Q\) is overlap closed I don’t see a better solution than just checking all splittings of \(xs\). However, in case \(Q\) is postfix closed, things are a lot more attractive: since

\(\neg Q.q \Rightarrow \neg Q.p \mathbin{\#} q\)
S boils down to a linear search:

\[
ys, zs, q := xs, [], [a]
\]
\[
\{ys \# zs = zs \land Q.q \land q = (\# / zs) \# [a]\}
\]
\[
; \text{do } ys \neq [] \text{ cand } Q. (\text{last} . ys) \# q
\]
\[
\rightarrow ys, zs, q := \text{front} . ys, [\text{last} . ys] \# zs, (\text{last} . ys) \# q
\]
\[
\text{od}
\]

S can easily be mixed with the assignment to \(xs\). [Identify \(ys\) and \(xs\), forget about \(zs\) in the above].

The complete algorithm is linear (modulo \(Q\)-calculations) which is evident from the variant function

\[
2 \ast \# X - 2 \ast \# x + \# xs .
\]

For completeness sake: the algorithm, in case \(Q\) is postfix closed, is:

\[
x, x', xs := [], X, []
\]
\[
; \text{do } x' \neq []
\]
\[
\rightarrow a := \text{hd} . x' ; q := [a]
\]
\[
; \text{do } xs \neq [] \text{ cand } Q. (\text{last} . xs) \# q
\]
\[
\rightarrow xs, q := \text{front} . xs, (\text{last} . xs) \# q
\]
\[
\text{od}
\]
\[
; x, x', xs := x \# [a], \text{tl} . x', xs \# [q]
\]
\[
\text{od}
\]

Greedy Q-segmentations

Interpretation of the strongest OS condition (OS1) leads to some feeling of greediness. The definition of (left-) greediness for \(Q\)-segmentations (see [B]):

\[
(9) \quad \text{Greedy} . [\cdot]
\]

\[
\text{Greedy} . [x] \# xs \equiv \text{Greedy} . xs \land x = ([z : z \subseteq x \# (\# / xs) \land Q . z : z])
\]

The following lemma shows that the construction in the former section is a construction for the greedy \(Q\)-segmentation:
Lemma. Let xs be a Q-segmentation with $Q.+/xs \equiv \#xs \leq 1$. Then

xs satisfies $OS1 \Rightarrow Greedy.xs$.

Proof. By induction on $\#xs$. The base-case, $\#xs \leq 1$, is trivial.
Suppose $\#xs \geq 1$. Then for Q-segmentation $[x]+xs$:

$[x]+xs$ satisfies $OS1$.

$\Rightarrow \{\text{domain restriction}\}$

$(Aus, w : [x] \subseteq us \subseteq [x]+xs \land \#us \subseteq w \subseteq x+(+/xs) : \#us < N.w)$

$= \{\text{dummy change for } us, w\}$

$(Aus, w : us \subseteq xs \land \#us \subseteq w \subseteq x+(+/xs) : \#us + 1 < N.x+(+/xs))$

$\Rightarrow \{Q.x, \text{ so } N.x+(+/xs) \leq 1 + N.w; \text{ def } OS1\}$

xs satisfies $OS1$

$\Rightarrow \{\text{Ind. hyp.}\}$

Greedy.xs

and

$[x]+xs$ satisfies $OS1$

$\Rightarrow \{\text{instantiate } us := [x]; \#xs \geq 1\}$

$(Aw : x \subseteq w \subseteq x+(+/xs) : 1 < N.w)$

$\Rightarrow \{1 < N.w \Rightarrow 1 \neq N.w; w \neq [] \Rightarrow (1 = N.w \equiv Q.w)\}$

$(Aw : x \subseteq w \subseteq x+(+/xs) : \neg Q.w)$

$= \{\#(x)+xs > 1 \Rightarrow \neg Q.x+(+/xs); Q.x\}$

$x = (\downarrow w : w \subseteq x+(+/xs) \land Q.w : w)$

\(\square\)

Afterthought and acknowledgements

The derivation of the requirements on Q and the corresponding algorithms were what I was after. However, also the solutions themselves are interesting: The shape of the "postfix-closed" version is very familiar. It has a striking resemblance with the algorithms for

- the maximal pre- and postfix of a string [(W0)].
- the largest rectangle under a histogram [(W1)].
- the maximal one-sided extreme segment (and the like).
A common root for all these problems would be very interesting. I don't mean simply the use of a stack that is apparent in these examples, but a general recognition strategy and a theorem that converts the recognition (almost) immediately into an algorithm.

The problem and the challenge to derive the solution resulted from discussions in the algorithmics working group at the Rijks Universiteit van Utrecht. Hans Zantema gave a functional solution using a direct proof that greedy is optimal. The solution presented here inspired Maarten Fokkinga to give a full account of promotion possibilities for an optimal segmentation problem, leading to a kind of "taxonomy" of their solution schemes ([F]). Oege de Moor presented a Bird-Meertens derivation in Ameland ([M]).
References

% LNCS 875 (1993)