Physics-Guided Neural Networks for Feedforward Control

Citation for published version (APA):

Document status and date:
Published: 01/07/2022

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Physics-Guided Neural Networks for Feedforward Control: An Orthogonal Projection-Based Approach

Johan Kon1,*, Dennis Bruijnen2, Jeroen van de Wijdeven3, Marcel Heertjes1,3, and Tom Oomen1,4

1 Background

Feedforward control can significantly improve the performance of dynamic systems \cite{1}. It aims at finding the input to a dynamic system such that this system’s output tracks a desired reference. Typically both high performance and flexibility to varying references are desired. An extensive feedforward control framework that addresses these requirements has been developed for linear time-invariant (LTI) systems, based on system identification and inversion \cite{2}, or direct identification of the inverse in a learning setting \cite{3}. Extensions to nonlinear dynamics typically require the dynamics to be fully known \cite{4}.

2 Problem Formulation

Increasing performance requirements in industrial applications, such as precision mechatronics, lead to a situation in which the LTI assumption is no longer satisfied. These nonlinear dynamics do not fit the LTI feedforward parametrization and subsequently limit the performance.

The goal is to develop a feedforward control framework that integrates physical models containing prior knowledge together with universal function approximators, e.g., neural networks, to compensate the unknown nonlinear dynamics in an explainable manner.

3 Approach

The developed feedforward framework is a class of nonlinear finite impulse response (FIR) parametrizations, i.e.,

\[f(k) = \sum_{i=0}^{\ell} \theta_i q^{-i} r(k) + \phi \left(r(k), q^{-1} r(k), \ldots, q^{-\ell} r(k) \right), \]

which is a parallel combination of a linear FIR model and a function approximator \(\phi \) acting on the reference and its \(\ell \) lags, parametrized as a neural network with coefficients \(\phi \).

The parameters \(\theta, \phi \) are optimized using an orthogonal-projection based cost function, in which the neural network output in the subspace of the model is penalized through orthogonal projection. This results in uniquely identifiable model coefficients \(\theta \).

4 Results

Figure 1 shows the application of this feedforward framework to a system with nonlinear friction. It illustrates that the developed parallel parametrization (middle) is able to capture the unknown nonlinear dynamics, resulting in high performance, whereas the an LTI parametrization (top) is not able to. The non-uniqueness of the developed parallel parametrization results in opposing contributions, and is removed by the orthogonal-projection based cost function (bottom), such that the neural network captures only the unknown dynamics.

Future research focuses on extending the feedforward parametrization to (nonlinear) zero dynamics for flexible modes, and its application to CT scanners and wafer stages.

References

\begin{thebibliography}{9}
\end{thebibliography}