Formation of the 7-triphenylphosphonio-norbornen-7-ylium dication: a non-classical dication
Schipper, P.; Castenmiller, W.A.M.; de Haan, J.W.; Buck, H.M.

Published in:
Journal of the Chemical Society, Chemical Communications

DOI:
10.1039/c39730000574

Published: 01/01/1973

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Formation of the 7-Triphenylphosphonio-norbornen-7-ylium Dication: a Non-classical Dication

By Pieter Schipper,* Wim A. M. Castenmiller, Jan W. de Haan, and Henk M. Buck

(General of Organic Chemistry, Eindhoven University of Technology, The Netherlands)

Summary While the norbornen-7-ylium cation dissolved in liquid SO₄ does not undergo 7-substitution with PPh₃, the analogous reaction with the 7-methoxynorbornen-7-ylium cation produces the 7-methoxynorbornen-7-ylium triphenylphosphonium cation; the intermediate 7-triphenylphosphonio-norbornen-7-ylium dication could be detected.

Attempts to prepare the norbornadien-7-ylphosphonium salt by treatment of norbornadien-7-yl chloride or the norbornadien-7-ylium cation with PPh₃ in liquid SO₄ failed. Only weakly nucleophilic phosphines like P(C₆F₅)₃ appeared to form 7-substituted salts. Probably, charge delocalisation in the norbornadien-7-ylium gives rise to 2- or 3-substituted products with stronger nucleophiles, like PPh₃, and the latter products apparently decompose under the reaction conditions. These nucleophiles underwent similar reactions with the norbornen-7-ylium cation, but reaction of 7-anti-chloronorbornene with PPh₃ in formic acid, where
equilibrium conditions are prevailing, does yield the 7-substituted product.

Stabilisation of charge by double-bond participation in norbornen-7-ylium cations decreases with increasing electron donating ability of the 7-substituents. Reaction of PPh₃ with 7-chloro-7-methoxynorbornene gives rise only to substitution of PPh₃ at the 7-position. Reaction of 7,7-dimethoxynorbornene with PCl₃ yields a mixture of the isomers (I) (76%) and (II) (24%), which reacts readily with PPh₃ in liquid SO₂ (−60°) to yield a mixture (28:72) of the isomeric cations (III) and (IV). At −60°, the ratio of the isomers is constant, but at ca. −14°, compound (IV) isomerises to (III), which is obtained in crystalline form at room temperature. Both isomers (III) and (IV) produce the dication (V) in liquid SO₂ with HSO₃F–SbF₅ at −60°. Quenching of this dication with methanol yields only (III). The structures of compounds (I)—(V) were confirmed by their n.m.r. (¹H and ¹³C) spectra.

In solution in liquid SO₂, isomers (I) and (II) undergo an exchange reaction at higher temperatures. This interconversion and the formation of a mixture of products in the reaction with PPh₃ indicate absence of double-bond participation in the intermediate 7-methoxy-norbornen-7-ylium cation.

First-order kinetics were observed for the isomerisation of compound (IV) to (III) in liquid SO₂ at −14° (k = 2.7 × 10⁻⁴ s⁻¹). In liquid SO₂–HSO₃F, compound (III) is stable, whereas compound (IV) decomposes at a rate comparable to the rate of isomerisation in liquid SO₂. During the decomposition no 7-methoxy-carbonyl ion was observed, although this cation was shown to be stable under these conditions by adding (I) and (II). Thus, isomerisation of (IV) to (III) proceeds via the dication (V), which is not stable in liquid SO₂–HSO₃F. In this dication, double-bond participation, which is increased by the PPh₃⁺ group explains the irreversible formation of compound (III) (vide supra).

(Received, 16th April 1973; Com. 548.)

1 P. Schipper and H. M. Buck, Phosphorus, 1971, 1, 93.
2 P. Schipper and H. M. Buck, Phosphorus, to be published.