Flux growth of ZnGa2O4 single crystals

Citation for published version (APA):

DOI:
10.1016/0022-0248(78)90179-3

Document status and date:
Published: 01/01/1978

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
FLUX GROWTH OF ZnGa2O4 SINGLE CRYSTALS

P.J.M. VAN DER STRATEN and R. METSELAAR
Laboratory of Physical Chemistry, University of Technology, Eindhoven, The Netherlands

and

H.D. JONKER
Philips Research Laboratories, Eindhoven, The Netherlands

Received 30 November 1977

Single crystals of ZnGa2O4 have been grown from a PbO—PbF2—B2O3 flux. By addition of SiO2 to this flux, inclusion free crystals of maximum dimensions of 10 mm along the edge have been obtained. We have also studied the growth of ZnGa2O4 from less volatile melts, such as the Na2O—ZnO—Ga2O3 system and a Pb2P2O7 flux. From the Na2O—ZnO—Ga2O3 system only very small ZnGa2O4 crystals could be grown. From the Pb2P2O7 flux, inclusion free crystals, the largest about 7 mm along an edge, have been obtained using a ZnO/Ga2O3 molar ratio equal to 4. Lattice constants are reported for the temperature range from 20°C to 1200°C.

In view of the increasing interest [1—4] for single crystal films of magnetic spinel ferrites, the need is felt for suitable non-magnetic substrates. In a recent article [2] we have pointed out that gallates are suited in this respect. In this study we discuss the growth of ZnGa2O4 single crystals as a possible substrate material.

The crystals obtained in this study were in general octahedrally shaped, optically clear and free of inclusions. Flux residues were leached away in a mixture of hot dilute acetic acid and nitric acid.

Crystals of ZnGa2O4 have been grown by Chase and Osmer [5] from a PbO—PbF2—B2O3 flux containing ZnO and Ga2O3 in a 1:1 molar ratio. We have used this melt composition (cf. table 1) for the growth of ZnGa2O4 from 60 ml platinum crucibles.

By cooling [6] this melt from 1250 to 1000°C at a rate of 0.5°C/h crystals of dimensions up to 5 mm along the edge were obtained.

We have found that the crystal dimensions could be increased by addition of SiO2 to the melt in a similar way as reported by Bonner [7] for the growth of ZnAl2O4. Using a melt composition given in table 1 and the growth procedure described above, crystals measuring up to 10 mm along the edge were obtained (see fig. 1).

The Si content of the crystals, as measured by spectrochemical analysis, is of the order of 0.002 atoms per formula unit, which is the same as in crystals grown without the addition of SiO2 to the melt. Thus SiO2 apparently has only beneficial effects on the growth of ZnGa2O4.

In the search for crystallization systems which are

Table 1
Melt compositions in mole % for ZnGa2O4 crystals growth form a PbO/PbF2/B2O3 flux

<table>
<thead>
<tr>
<th>Reference</th>
<th>PbO</th>
<th>PbF2</th>
<th>B2O3</th>
<th>SiO2</th>
<th>ZnO</th>
<th>Ga2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chase and Osmer</td>
<td>20.0</td>
<td>68.0</td>
<td>2.0</td>
<td>—</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Bonner [7]</td>
<td>29.34</td>
<td>32.65</td>
<td>5.22</td>
<td>15.13</td>
<td>7.57</td>
<td>10.09</td>
</tr>
</tbody>
</table>
Flux growth of ZnGa2O4 single crystals

Fig. 1. Photograph of ZnGa2O4 crystals grown from the PbO—PbF2—B2O3 flux with SiO2 additive.

less volatile than PbO—PbF2—B2O3 and which might allow top seeded growth of ZnGa2O4 we have tried the system Na2O—ZnO—Ga2O3. The melt compositions (given in table 2) are similar to those used for the growth of spinel ferrites MFe2O4 from the system Na2O—MO—Fe2O3 [8,9]. By cooling these melts from 1400 to 900°C at a rate of 5°C/h, however, only tiny ZnGa2O4 crystals (<0.5 mm) were obtained.

Better results have been obtained by using Pb2P2O7 as a solvent, this is non-volatile, relatively low melting (824°C [10]) and it provides good nucleation conditions [11]. Wickham [12] reported the preparation of Pb2P2O7 from Pb(NO3)2 and H3PO4 and used it as a flux for the crystal growth of MgFe2O4. In order to avoid the crystallization of second phases, the MgO/Fe2O3 molar ratio had to be >4.

In view of these results we have prepared melts of Pb2P2O7, ZnO and Ga2O3 with different ZnO/Ga2O3 ratios (cf. table 3) in 13 ml platinum crucibles. The melts were cooled from 1300 to 900°C at a rate of 5°C/h. ZnGa2O4 was found to be the primary phase

Table 2
Melt compositions in mole% for ZnGa2O4 crystal growth from the Na2O/ZnO/Ga2O3 system

<table>
<thead>
<tr>
<th>Melt</th>
<th>Na2O</th>
<th>ZnO</th>
<th>Ga2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>22.2</td>
<td>27.8</td>
<td>50.0</td>
</tr>
<tr>
<td>B</td>
<td>20.0</td>
<td>30.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Table 3
Melt compositions in mole% for ZnGa2O4 crystal growth from a Pb2P2O7 flux

<table>
<thead>
<tr>
<th>Melt</th>
<th>Pb2P2O7</th>
<th>ZnO</th>
<th>Ga2O3</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>Ga2O3 + ZnGa2O4</td>
</tr>
<tr>
<td>II</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>ZnGa2O4</td>
</tr>
<tr>
<td>III</td>
<td>40</td>
<td>48</td>
<td>12</td>
<td>ZnGa2O4</td>
</tr>
<tr>
<td>IV</td>
<td>40</td>
<td>53.5</td>
<td>6.7</td>
<td>ZnGa2O4</td>
</tr>
</tbody>
</table>
crystallizing from melts with a ZnO\(\text{Ga}_2\text{O}_3\) molar ratio \(\geq 2\). Although the habit of the ZnGa\(_2\)O\(_4\) crystals was chiefly octahedral also a few ZnGa\(_2\)O\(_4\) needles and plates (confirmed by X-ray diffraction) were observed. The largest crystals, about 3 mm along the edge, were obtained from melt III with a ZnO/Ga\(_2\)O\(_3\) molar ratio equal to 4.

The crystal dimensions could be increased to 7 mm along the edge by using 60 ml platinum crucibles and applying a temperature gradient of about 5°C/cm. This was achieved by locating the crucible directly on the relatively cold furnace floor or by applying a jet of cold air to the bottom.

Because the crystals are intended to be used as substrates for LPE of spinel ferrites, knowledge of the temperature dependence of the lattice constant is important. This temperature dependence was determined in steps of 200°C between 20 and 1200°C with the aid of high temperature diffractometry. The data could be fitted within 0.002 Å to the expression:

\[
a(\text{Å}) = 8.332 + 6.18 \times 10^{-5} T + 1.60 \times 10^{-8} T^2,\]

where \(T\) is the temperature in °C.

The ZnGa\(_2\)O\(_4\) crystals have been used successfully as substrates for LPE growth of gallium substituted MgFe\(_2\)O\(_4\). Epitaxial thin films were grown on the (111) growth facets of the substrate crystals.

In order to obtain substrates with higher lattice constants, we have grown indium substituted ZnGa\(_2\)O\(_4\) crystals. However, hardly any indium was incorporated in the crystals: by substitution of 20% of the Ga\(_2\)O\(_3\) in the melt by In\(_2\)O\(_3\) the lattice constant of the crystals increased with only 0.002 Å.

High quality crystals of ZnGa\(_2\)O\(_4\) can be grown from a PbO–PbF\(_2–\)B\(_2\)O\(_3\) flux with SiO\(_2\) as an additive. The size of the resulting crystals is large enough to allow their use as substrates in preliminary LPE growth of spinel ferrites. It is found that Pb\(_2\)P\(_2\)O\(_7\) is an attractive non-volatile solvent for the growth of ZnGa\(_2\)O\(_4\) crystals. This system might be a good candidate for topseeded growth.

The authors would like to thank Mr. F.C. Krüger for the high temperature diffractometry work.

References