Enhancement of p-GaN conductivity using PECVD SiOx

Karouta, F.; Kappers, M.J.; Kramer, M.C.J.C.M.; Jacobs, B.

Published in:
Electrochemical and Solid-State Letters

DOI:
10.1149/1.1922874#
10.1149/1.1922874

Published: 01/01/2005

Citation for published version (APA):
A technique to enhance the hole concentration in activated Mg-doped p-type GaN epitaxial layers is described. The method consists of depositing a porous plasma-enhanced chemical vapor deposited SiO$_x$ layer on top of p-GaN after which the sample is heated to 950°C in nitrogen ambient for 1 min followed by the removal of the SiO$_x$ layer in a buffered HF solution. A significant improvement of the conductivity of the p-GaN layer has been obtained.

© 2005 The Electrochemical Society. [DOI: 10.1149/1.1922874] All rights reserved.

intermixing: the more porous the SiO$_x$ layer, the higher the intermixing effect. The quality of the PECVD SiO$_x$ used has been tested, and it is found that a BHF solution removes the SiO$_x$ layer in a few seconds. This reveals that the SiO$_x$ layer used in our special treatment is rather porous and hence is capable of adsorbing the Ga atoms from the top p-GaN layer resulting in the improvement of the conductivity.

From the literature we trace one patent describing the use of a similar technique on p-GaN in order to avoid nitrogen out-diffusion. However the samples with and without a SiO$_x$ layer lead to the same hole concentrations of about 2×10^{17} cm$^{-3}$ and hence the SiO$_x$ layer did not improve the conductivity of the p-GaN layer. This would suggest that the SiO$_x$ layer used in that work was not sufficiently porous to introduce Ga vacancies.

Conclusions

We have demonstrated a significant improvement of the conductivity of MOVPE-grown p-GaN epilayers by applying a SiO$_x$ layer followed by an RTA step at 950°C for 1 min in nitrogen ambient. This postgrowth technique can be easily performed to p-GaN layers for improving the conductivity of p-GaN layers, and hence it is very important for the advancement of GaN-based LEDs and lasers.

Eindhoven University of Technology assisted in meeting the publication costs of this article.

References