Absolute in situ measurement of surface dangling bonds during a-Si:H growth
Aarts, I.M.P.; Pipino, A.C.R.; van de Sanden, M.C.M.; Kessels, W.M.M.

Published in:
Applied Physics Letters

DOI:
10.1063/1.2727561

Published: 01/01/2007

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Absolute in situ measurement of surface dangling bonds during a-Si:H growth

I. M. P. Aarts
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

A. C. R. Pipino
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands and National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899

M. C. M. van de Sandena) and W. M. M. Kesselsb)
Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

(Received 27 February 2007; accepted 20 March 2007; published online 19 April 2007)

Hydrogenated amorphous silicon (a-Si:H) is regarded as a model system in mechanistic studies of amorphous semiconductor film growth, where the key reactive site is generally considered to be a surface “dangling bond.” Employing an ultrahigh-Q (=10^19) monolithic optical resonator, the authors probe the creation of dangling-bond defects during growth of a-Si:H from a predominantly SiH_x (x=0–3) radical flux by detecting the associated near-IR subgap absorption with evanescent wave cavity ringdown spectroscopy. They find the apparent dangling-bond creation rate [(5±3) ×10^12 cm^2 s^-1] and steady-state surface density [(5±2) ×10^11 cm^-2] to be considerably lower than expected from dangling-bond-based growth mechanisms. © 2007 American Institute of Physics. [DOI: 10.1063/1.2727561]

Widely used in electronic and optoelectronic devices, hydrogenated amorphous silicon (a-Si:H) has unique properties derived from structural disorder and may enable the development of large-area low-cost flexible solar cells.1 In mechanistic studies of amorphous semiconductor film growth, a-Si:H also serves as a model system, where surface defects are generally thought to play a key role by providing reactive sites for binding of vapor-phase radical precursors.2–4 Based on epitaxial growth studies of c-Si (Ref. 5) and vibrational spectroscopy of a-Si:H,6 the primary defect site has long been considered to be an uncoordinated Si atom possessing a singly occupied sp^3-hybridized orbital or “dangling bond” (DB), which binds radical precursors through a facile radical-radical coupling.2–4,7 However, the bulk DB density in device-grade a-Si:H is typically ~10^{16}/cm^2, while a surface defect density as low as ~10^{11}/cm^2 is conceivably compatible with DB-based growth mechanisms. Therefore, highly sensitive in situ techniques are required to probe DB defects and yield decisive mechanistic insight.

Photoothermal deflection,8 constant photocurrent,9 electron spin resonance (ESR),10 and cavity ringdown11 spectroscopic techniques have been applied to DB detection. Although constant photocurrent and photothermal deflection methods provide the requisite sensitivity, these techniques are not easily adapted to in situ studies under growth conditions. ESR has been applied during growth and H-atom exposure of a-Si:H films,10 although surface, bulk, and interface defects are not readily distinguished: By probing the subgap DB defect absorption,8,9,12 cavity ringdown spectroscopy (CRDS) enables determination of very low absolute defect densities.11 However, the conventional implementation of CRDS using a linear resonator is not readily adapted to in situ studies of a-Si:H growth.

Alternatively, by employing an ultrahigh-Q miniature monolithic optical resonator, evanescent wave CRDS (Refs. 13 and 14) enables in situ studies with high sensitivity, as the concomitant evanescent wave at a total-internal reflection (TIR) surface serves as an ideally suited thin-film probe. The application of high-Q monolithic resonators to probe surfaces, films, and nanoscale materials shows considerable promise. For example, we demonstrated detection of a three-quantum vibration-combination transition on atomically smooth SiO_2, revealing a unique quasi-ice monolayer at ambient temperature.14 Moreover, Borselli et al.15 used a monolithic microresonator to detect surface defect states on crystalline Si, revealing the role of surface passivation in the performance of microphotonic components. Here, we employ a monolithic folded resonator13,14 to probe the DB defect states during growth of a-Si:H from a predominantly SiH_x (x=0–3) radical flux on atomically smooth SiO_2. Assuming an absorption cross section of 10^{-16} cm^2/defect,12 a minimum detectable surface DB defect density of ~10^8/cm^2 is predicted, enabling mechanistic details to be elucidated.

Fabricated from ultralow-OH amorphous silica (Suprasil 300; Heraeus Tenevo), the folded resonator (Fig. 1, inset) has two orthogonal planar highly-refractive mirror surface (R=99.99% at 1200 nm) separated by a 2 cm unfolded path and a convex TIR surface. Having 0.05 nm rms roughness, the TIR surface forms the working surface for deposition, where an approximately 0.04 mm^2 region is sampled at the apex by the resonator modes. The idler beam of a seeded-tripled-neodymium-doped-yttrium-aluminum-garnet-pumped optical parametric oscillator (30 Hz, ~0.5 mJ/pulse, 6 ns, linewidth <10 cm^-1) was employed to generate orthogonally polarized ringdown transients, which were simultaneously detected by free-space-coupled, high-speed, 125 MHz, InGaAs detectors. The resonator was mounted in a high-vacuum chamber (<10^-9 mbar) and maintained at 150 °C.

a)Electronic mail: m.c.m.v.d.sanden@tue.nl
b)Electronic mail: w.m.m.kessels@tue.nl
by radiative heating. The a-Si:H film was deposited by thermal decomposition of SiH₄ at 4×10⁻⁵ mbar on a hot tungsten filament (~2050 °C) located at a distance of 6.8 cm from the TIR surface, producing primarily SiH₃ as the growth precursor.¹⁶ Separate real-time spectroscopic ellipsometry measurements under identical conditions determined the growth rate to be 3.5 nm/min. The growth process was studied by performing many growth cycles (flux on/growth/flux off), resulting in a final thickness of 800 nm.

Figure 1(a) shows the absolute intrinsic loss per pass of the resonator prior to deposition for s and p polarizations between 1170 and 1245 nm using a 0.05 nm step size. Each data point is an average of 75 measurements, which yielded a typical 1σ noise level of 2×10⁻⁶ optical loss. The loss per pass reaches a minimum of 18×10⁻⁶ at 1205 nm, which yields a base ringdown time of 5.3 μs and a quality factor of Q=8.3×10⁹. At 150 °C in vacuum, the spectral dependence of the intrinsic loss arises mostly from mirror reflectance, although very weak features can be seen (arrows) at 1229, 1232, and 1236 nm, which we tentatively attribute to residual (100)- and (111)-cristobalite-like surface hydroxyl species.¹⁴ In Fig. 1(b), the solid and dashed plots show the intrinsic-loss-subtracted, polarized absorption spectra for 25 and 60 nm a-Si:H films, respectively, obtained after termination of growth. As the DB defect state produces a very broad absorption, only a portion of the spectrum is accessible within the coating bandwidth. The trend observed in Fig. 1(b) is consistent with the DB signature, which shows an increasing absorption toward 1.2 eV.⁸,⁹,¹¹,¹² For both the intrinsic and film-coated resonator measurements we observed excellent stability (<1 ppm drift over 3 weeks at 150 °C) and reproducibility, while environmental effects (e.g., surface heating by the filament) during experiments induced only very small variations in loss having relatively long time scales. Furthermore, no light induced degradation of the a-Si:H thin film by the radiation from the filament or lamps was observed in control experiments.¹⁷

The spectra in Fig. 1(b) show distinct polarization anisotropy and a decrease in the optical loss for the 60 nm film compared to the 25 nm film, which derive from the thickness-dependent electric field structure in the film. The total optical loss of the film as a function of wavelength

\[\Gamma(\lambda) = \int_0^h I_{s,p}(z,\lambda)N_{DB}(z)\sigma_{DB}dz, \]

where the DB absorption cross section \(\sigma_{DB} \) is assumed to be position independent. We approximate \(I_{s,p}(z,\lambda) \) using a plane-wave matrix formalism,¹⁸ which adequately describes the bulk fields, including excitation of quasiwaveguide modes having broad radiative linewidths associated with coupling into the resonator half-plane. Specifically, the polarization anisotropy observed in Fig. 1(b) arises from the influence of the quasi-TE₀ mode, which leads to a larger average electric field intensity inside the film for s compared to p polarization for both h values considered. Similarly, a larger optical loss is observed for the 25 nm compared to the 60 nm film as optimal coupling into the broad quasi-TE₀ mode occurs at a thickness of <20 nm. Furthermore, Eq. (1) accounts for the surface contribution to the optical loss through \(N_{DB}(h) \) and \(I_{s,p}(h,\lambda) \). We use the s-polarized field to evaluate the DB defect contribution to the growth mechanism, since for the p-polarized field Fresnel analysis¹⁸ implies a large discontinuity in the normal component of the surface electric field. Using the s-polarized field provides therefore a quantitative description that is insensitive to the precise relationship between the chemical versus optical surface.¹⁸

Employing the single-laser-shot minimum detectable absorption of 10⁻⁷, we probed the film growth kinetics with a repetition-rate-limited time resolution of 33 ms. Figure 2 shows the s-polarized optical response of a 60 nm a-Si:H film to a 20 s radical flux exposure, where the base loss of the resonator has been subtracted. Figure 3 shows the optical loss for both s and p polarizations up to a film thickness of 800 nm, as obtained by combining sequential growth cycles similar to the growth cycle shown in Fig. 2. The large variation in the optical loss as a function of thickness in Fig. 3 derives from excitation of aforementioned quasi-waveguide modes, while the gradual increase in optical loss with thickness is caused by absorption by DBs in the bulk a-Si:H. The
noise level in the data is enhanced at high optical loss values due to the reduced Q factor of the resonator+film configuration. Figure 2 shows that the film response to the radical flux attains steady state within several seconds of exposure, followed by comparatively slow recovery after flux termination. Using the measured DB absorption cross section, a radical flux-induced surface DB density can be obtained as shown on the right ordinate, where a local field correction has been applied using the electric field intensity just below the film surface $[i.e., I_\parallel (h_{-\parallel})]$. Because the s-polarized electric field is continuous across the surface region, DB defects on the surface cannot be distinguished from those just inside the surface, although clearly defects on the surface are relevant to growth. However, the measured s-polarized loss is at least the sum of the true surface+subsurface contributions, which provides an upper bound for the steady-state surface DB density and the DB creation rate during growth.

Figure 4 shows the radical flux-induced surface DB density, as obtained from data in Figs. 2 and 3 at different film thicknesses. A thickness-independent steady-state surface DB density of $(5 \pm 2) \times 10^{11}$ DB/cm2 is found, which corresponds to a fractional surface coverage of $\approx 5 \times 10^{-4}$. Such a low coverage precludes a mechanism based on the direct precursor-defect binding, as a coverage of ≈ 0.1 is required to account for typical a-Si:H growth rates, assuming a sticking probability for radical-radical coupling of 0.1.4 However, a low surface coverage does not eliminate mechanisms involving surface diffusion of weakly bound precursors2-4 or a direct insertion mechanism.19,20 Yet the role of the DB is significantly different for these latter two mechanisms. For precursor-mediated growth, the creation rate of DB defects is critical and much at least equal the growth rate (DB passivation rate), while for direct insertion the DB defect is not specifically relevant. As also shown in Fig. 4, the initial DB creation rate, which was obtained from many growth cycles at various film thicknesses, is found to be $(5 \pm 3) \times 10^{12}$ DB/cm2 s. Comparing this value with the actual growth rate of 2.9×10^{14} Si/cm2 s, assuming a Si density of 5×10^{22} cm$^{-3}$ in a-Si:H, the DB creation rate is $60 \times$ too small to account for the actual growth rate. Therefore, we conclude that the DB defect is not crucial in growth mechanism of a Si:H from radical precursors.

The authors thank R. Sattmann of Heraeus-Tenevo for supplying the resonator material. Financial support is acknowledged from the Netherlands FOM, the Royal Netherlands Academy of Arts and Sciences (W.M.M.K.).