The enthalpies of formation and of dehydration of some AFm phases with singly charged anions

Citation for published version (APA):

DOI:
10.1016/0008-8846(76)90029-6

Document status and date:
Published: 01/01/1976

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
THE ENTHALPIES OF FORMATION AND OF DEHYDRATION
OF SOME AFm PHASES WITH SINGLE CHARGED ANIONS.*

C.J.M. Houtepen and H.N. Stein
Laboratory of General Chemistry
Technological University, Eindhoven, The Netherlands

(Communicated by H. F. W. Taylor)
(Received June 23, 1976)

ABSTRACT

The enthalpies of formation of some AFm phases of the
type Ca2Al(OH)6X.xH2O (X = Cl-, Br-, I-, NO\textsubscript{3}-, ClO\textsubscript{4}-, ClO\textsubscript{3}-, BrO\textsubscript{3}- and IO\textsubscript{3}-) were determined by measuring the heats of
solution in hydrochloric or perchloric acid. From the
differences between the heats of solution of the compounds
and their dehydration products, the enthalpies of
dehydration were established. They increase with
increasing enthalpies of hydration of the individual
anions X in aqueous solution. However, this relationship
is not the same for halide ions as for oxy-anions.

Die Bildungsenthalpien einiger AFm Phasen Ca2Al(OH)6X.xH2O
(X = Cl-, Br-, J-, NO\textsubscript{3}-, ClO\textsubscript{4}-, ClO\textsubscript{3}-, BrO\textsubscript{3}- und IO\textsubscript{3}-) wurden
bestimmt durch Messung der Lösungswärme dieser
Verbindungen in HCl oder HClO\textsubscript{4}. Mittels der Differenzen
zwischen den Lösungswärmen der hydratisierten und
dehydratisierten Verbindungen wurden die Dehydrations-
enthalpien festgestellt. Diese nehmen zu mit steigender
Hydratationsenthalpie der individuellen Anionen X in
wässriger Lösung; aber die Relation ist verschieden
für Halogenionen und für Oxy-anionen.

*Part of the Ph.D. Thesis by C.J.M. Houtepen, Eindhoven
1975, and presented as a supplementary paper at the 6th
International Congress on the Chemistry of Cement,
Moscow 1974.
Introduction

A number of data concerning the enthalpies of formation of calcium aluminates and silicates have been published (1-13). These values are based partly on calculated, partly on experimentally determined quantities. Thus Babushkin and Mchedlov-Petrosyan (1) calculated the enthalpy of formation of C4AH13 (−1983 kcal) making use of the contributions to this quantity from Ca(OH)2, Al(OH)3 and the lattice water. The contributions from Ca(OH)2 and Al(OH)3 to the enthalpy of formation were calculated from that of C3AH6 (−1317.6 kcal), on the supposition that this compound consists of 3Ca(OH)2.2Al(OH)3, and from the enthalpy of formation of C2AH5 (2Ca(OH)2.2Al(OH)3), −1078 kcal (11). Such calculations may be justified in some cases, but in others they lead to large errors. Thus the enthalpy of formation of C3AH6 calculated from that of C3A (8) using an approximate general relationship for the enthalpy of hydration of anhydrous compounds (14, 15) is −1283.5 kcal, but the experimental value is −1326 kcal (8). Clearly there is a need for experimental data.

The AFm compounds of general formula Ca2Al(OH)6X.xH2O have almost identical crystal structures, which are essentially unaffected by removal of the interlayer water (16-18). Dehydration causes mainly a decrease of the layer thickness c and is reversible as long as the dehydration conditions are not too severe. The question is whether any relationship exists between the enthalpies of dehydration of these compounds and the enthalpies of hydration of the individual anions X. For the clay minerals such as montmorillonite and vermiculite, the cations located in the interlayers have an important effect on the ability to accommodate interlayer water (19-21); the enthalpies of dehydration of these clay minerals depend on the enthalpies of hydration of the cations in aqueous solution. In the AFm phases anions might play a similar role.

Preparation and Characterization

Samples were prepared by the following methods:

a. To a suspension of C3A (2.7 g) in 2-propanol (50 ml), prepared as described by De Jong (22), was added a solution of 50 to 100 mmoles CaX2.zH2O in CO2-free water (500 ml). The 2-propanol was used to prevent a too rapid hydration of C3A. The reaction mixture was magnetically stirred for at least five days at room temperature. The precipitate was filtered off, washed with a methanol-water mixture followed by a methanol-acetone mixture, and dried over saturated CaCl2.6H2O (37% relative humidity) in a vacuum desiccator.

b. C3AH6 was prepared by heating C3A (2.7 g) in water (250 ml) at 175°C in an autoclave for 120 hours, as described by Thorvaldson (2).

c. "C4AH13" was prepared at 0°C by adding a solution of sodium aluminate to a saturated solution of calcium hydroxide in such a way that the Ca/Al ratio in the solution was always greater than two. This method is analogous to that employed by Buser (23).

d. Samples of Ca2Al(OH)6NO3.xH2O were prepared by a method analogous to method a, but about 175°C in an autoclave, resulting in larger crystals.

e. The iodate compound was prepared as described by Le Bel and Grasland (18).
In all preparations precautions were taken against carbonation. The water used was distilled twice at reduced pressure. Filtration was performed in a CO₂-free glove box. All samples were analysed chemically. Table I gives the compositions of the samples and their dehydration products; despite the precautions taken some carbonation usually occurred. The samples and dehydration products were also characterized by X-ray diffraction, care being taken to exclude CO₂ and H₂O by covering the samples with "Mylar" foil. For the hydrated phases no differences were found between X-ray diffraction patterns made with and without such a foil, except for C₄AH₁₃. The hemicarbonate phase with layer thickness 8.2 Å was absent, but the 7.9 Å reflection had a shoulder on the low-angle side and chemical analysis (Table I) showed that CO₂ was present. In general the layer thicknesses found for the AFm phases and their dehydration products agreed with those in the literature (17, 18). Results of interest were for the hydrated chlorate compound, 9.30 Å; for the dehydrated nitrate, 7.28 Å; and for the dehydrated bromate, 8.36 Å. All molar quantities used in this paper relate to formulae of the type Ca₂Al(OH)₆X.xH₂O.

The heats of solution of the AFm phases were determined in HC₁ (1N or 2N) or in perchloric acid (1N) at 25°C with a precision calorimeter, LKB 8700-1 (24). The heats of solution were calculated using the graphical extrapolation method of Dickinson (25, 26). The calorimeter was calibrated electrically and chemically by measuring the heat of solution of CaO, prepared by burning CaCO₃ (Merck p.a.) at 1100°C for several hours. ΔHsoln was found to be -46.7 ± 0.3 kcal mole⁻¹ which implies ΔH° CaO, c = -151.9 ± 0.3 kcal mole⁻¹, in agreement with literature data (10). For accurate determinations the heat of dilution caused by the disappearance of the acid and the formation of water on dissolution of the samples must be taken into account. It can, however, be proved that, if the amount of sample (0.2 mmole) is small compared with the amounts of acid (80 mmoles) and of water (4.5 m mole), the heat of dilution is negligible. The enthalpy of dehydration i.e. the change of enthalpy involved in the hypothetical reaction:

\[
\text{Ca}_2\text{Al(OH)}_6\text{X.xH}_2\text{O}(c) + \text{Ca}_2\text{Al(OH)}_6\text{X}(c) + x\text{H}_2\text{O}(l) \quad (1)
\]

was determined as the difference between the heats of solution of the dehydrated and the hydrated compounds. This procedure is justified because, if equimolar amounts of the hydrated compounds are dissolved, the final states of the resulting solutions are nearly the same.

The enthalpies of formation of the AFm phases were determined from heats of solution in HC₁ using the following reaction scheme:

\[
\text{Ca}_2\text{Al(OH)}_6\cdot y\text{X.} \cdot 0.5(1-y)\text{CO}_3\cdot x\text{H}_2\text{O} + n_1\text{HCl} + n_2\text{H}_2\text{O} + 2\text{Ca}^{2+} + \text{Al}^{3+} + y\text{X}^- + (7-y)\text{Cl}^- + 0.5(1-y)\text{CO}_2(\text{aq}) + n_3(= n_1 - 7 + y)\text{HCl} + n_4(= n_2 + 6.5 - 0.5y + x)\text{H}_2\text{O}
\]
The enthalpy of formation is then:
\[
\Delta H^\circ_{f} \text{Ca}_2\text{Al(OH)}_6 \cdot y\text{X} \cdot 0.5(1-y)\text{CO}_3 \cdot x\text{H}_2\text{O} = 2 \Delta H^\circ_{f}\text{CaCl}_2, n_{4/2}\text{H}_2\text{O} + \Delta H^\circ_{f}[\text{AlCl}_3, n_{4}\text{H}_2\text{O}, n_3\text{HCl}] + y \Delta H^\circ_{f}[x, n_{4/y}\text{H}_2\text{O}] - y\Delta H^\circ_{f}\text{HCl, } n_{4/y}\text{H}_2\text{O} + 0.5(1-y)\Delta H^\circ_{f}\text{CO}_2(\text{aq}) + 2\Delta H^\circ_{f}\text{H}_2(\text{HCl}) - \Delta H^\circ_{f}\text{H}_2(\text{H}_2\text{O})
\]

\[
\frac{n_3}{n_4} \Delta H^\circ_{f}\text{H}_2(\text{HCl}) - \Delta H^\circ_{f}\text{soln.}
\]

\[
\Delta H^\circ_{f}[\text{CaCl}_2, n_{4/2}\text{H}_2\text{O}] \text{ is the enthalpy of formation of one mole CaCl}_2
\]
in \(n_{4/2}\) mole H$_2$O. \(H_1(\text{H}_2\text{O})\) and \(H_2(\text{H}_2\text{O})\) are the partial molar
enthalpies of water in solutions of one mole H$_2$O with \(n_1/n_2\) mole
HCl or \(n_3/n_4\) HCl, respectively. \(H_1(\text{HCl})\) and \(H_2(\text{HCl})\) are the partial
molar enthalpies of HCl in solutions of one mole HCl with \(n_2/n_1\)
and \(n_3/n_4\) mole H$_2$O respectively. The enthalpy of formation of
AlCl$_3$ in aqueous solution depends strongly on the water and HCl
concentrations (12). This enthalpy was found by interpolation of
literature data (12) \(\Delta H^\circ_{f}[\text{AlCl}_3, 200\text{HCl}, 11000\text{H}_2\text{O}] = -245.7\) kcal
mole$^{-1}$. The other data were taken from literature (8,12,13).

In the calculations, thermochemical data for CO$_2$ dissolved in water
have been used (12). This may be questionable in view of the small
solubility of CO$_2$ in 1N HCl. However, the difference between the
enthalpies of formation of CO$_2$ in aqueous solution and in the gas
phase is too small to have any noticeable influence on the
calculations.

If the heat of solution in perchloric acid was measured, the
enthalpy of formation was established as follows:
\[
\Delta H^\circ_{f}[\text{Ca}_2\text{Al(OH)}_6 \cdot y\text{X} \cdot 0.5(1-y)\text{CO}_3 \cdot x\text{H}_2\text{O} = -\Delta H^\circ_{f}\text{soln.} + 2\Delta H^\circ_{f}[\text{Ca}^{2+}, n_{4/2}\text{H}_2\text{O}] + \Delta H^\circ_{f}[\text{Al}^{3+}, n_{4}\text{H}_2\text{O}] + y\Delta H^\circ_{f}[x, n_{4/y}\text{H}_2\text{O}] + 0.5(1-y)\Delta H^\circ_{f}\text{CO}_2(\text{aq}) + (n_4-n_2)\Delta H^\circ_{f}[\text{H}_2\text{O}, n_3/n_4\text{HClO}_4]
\]

\[
\Delta H^\circ_{f}[\text{Ca}^{2+}, n_{4/2}\text{H}_2\text{O}] = \Delta H^\circ_{f}[\text{CaCl}_2, n_{4/2}\text{H}_2\text{O}] - 2\Delta H^\circ_{f}[\text{HCl, } n_{4/4}\text{H}_2\text{O}]
\]

\[
\Delta H^\circ_{f}[\text{Al}^{3+}, n_{4}\text{H}_2\text{O}] = \Delta H^\circ_{f}[\text{AlCl}_3, n_{4}\text{H}_2\text{O}] - 3\Delta H^\circ_{f}[\text{HCl, } n_{4/3}\text{H}_2\text{O}]
\]

Discussion

A. The Heats of Solution and the Enthalpies of Formation

The heats of solution of the Ca$_2$Al(OH)$_6$X$_{x}$XH$_2$O compounds are
nearly independent of X, if x = 2 and X = Cl$^-$, Br$^-$, I$^-$, NO$_3^-$, ClO$_4^-$
or ClO$_3^-$ (Table I). If x > 2 (X = BrO$_3^-$, IO$_3^-$) the heats of solution
decrease with increasing amount of interlayer water. With
increasing carbonation the heat of solution increases, since the
heat of solution of Ca$_2$Al(OH)$_6$0.5CO$_3$2.39H$_2$O is -63.7 kcal (5)
which is relatively large. The heat of solution of the iodide
compound containing 0.03 mole % CO$_2$ differs about 1 kcal from that
of the almost CO$_2$-free compound (Table I). The heat of solution
of Ca$_2$Al(OH)$_6$0.92OH, 0.04CO$_3$.3H$_2$O (-76.9 kcal) differs
considerably from those of the other AFm phases. The heat of
solution of pure Ca$_2$Al(OH)$_6$.OH.3H$_2$O (-78 kcal) was established by
extrapolation, assuming a linear relation between the heats of solution of Ca$_2$Al(OH)$_6$. 0.92OH. 0.04CO$_3$. 3H$_2$O and of Ca$_2$Al(OH)$_6$. 0.5CO$_3$. 2.39 H$_2$O. The heats of solution of the dehydration products can be correlated with the interaction energies between the anions X and the Ca$_2$Al(OH)$_6$-layers (27). We can conclude from equation 2 that, if $x = 2$, the enthalpies of formation of Ca$_2$Al(OH)$_6$.X.xH$_2$O (X = Cl$^-$, Br$^-$, J$^-$, NO$_3$, ClO$_4$ and ClO$_3$) can be expressed by the equation:

$$\Delta H_f^O \text{Ca}_2\text{Al(OH)}_6.X.2\text{H}_2\text{O} = -874(\pm1) + \Delta H_f^O [X, 10.000\text{H}_2\text{O}]$$ (6)

This means that the lattice enthalpies of these AFm phases depend linearly on the enthalpies of hydration of the anions X concerned.

For: $$\Delta H_{\text{lattice}} = \Delta H_f^O [\text{Ca}_2\text{Al(OH)}_6^+, g] + \Delta H_f^O [X, g] + 2\Delta H_f^O [\text{H}_2\text{O}, g] - \Delta H_f^O \text{Ca}_2\text{Al(OH)}_6.X.2\text{H}_2\text{O}$$ (7)

The Ca$_2$Al(OH)$_6$-ion in the gas phase is an hypothetical ion. From equation 6 and 7 follows:

$$\Delta H_{\text{lat.}} = C_1 + \Delta H_f^O (X^-, g) - \Delta H_f^O (X^-, \text{aq}) = C_1 - \Delta H_{\text{hydr.}} (X^-, g)$$ (8)

since $$\Delta H_{\text{hydr.}} (X^-, g) = \Delta H_f^O (X^-, \text{aq}) - \Delta H_f^O (X^-, g)$$ (9)

The enthalpy of formation of pure C$_4$AH$_13$, calculated from the heat of solution, -156 kcal mole$^{-1}$ and the enthalpies of formation of the reactants is -1988 kcal. Babushkin calculated -1983 kcal; the agreement is in this case very satisfactory. But if we calculate the enthalpy of formation of e.g. Ca$_2$Al(OH)$_6$Cl.2H$_2$O by the method of Babushkin, supposing that the hydrate consists of 1.5 Ca(OH)$_2$, Al(OH)$_3$ and 0.5 CaCl$_2$.4H$_2$O we get -899 kcal. The experimental value is -914 kcal. This difference occurs because the surroundings of the ions in the AFm phases differ from those in Ca(OH)$_2$, Al(OH)$_3$ and CaCl$_2$.4H$_2$O, to extents that apparently cannot be neglected.

B. The Enthalpies of Dehydration

In Fig.1 the enthalpies of dehydration of the AFm phases are given together with the absolute enthalpies of hydration of the anions X. For the halide ions, the hydration enthalpies were calculated from the enthalpies of formation in the gas state and the "absolute" enthalpies of formation in aqueous solution. The "absolute" enthalpies of formation are related to the conventional enthalpies of formation (tabulated in the literature) by the equation:

$$\Delta H_f^O (X, \text{aq})_{\text{abs.}} = \Delta H_f^O (X, \text{aq})_{\text{conv.}} - \Delta H_f^O (H^+, \text{aq})_{\text{abs.}}$$ (10)

where $$\Delta H_f^O (H^+, \text{aq})_{\text{abs.}} = 95.6 \text{ kcal mole}^{-1}$$ (ref. 30).

The enthalpies of dehydration of the AFm phases are linearly related to the enthalpies of hydration of the anions X (Fig.1).

For the oxy-anions, the hydration enthalpies are not known precisely, because the enthalpies of formation of the gaseous
TABLE I
Analytical and thermochemical results

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>prep. method</th>
<th>mmoles</th>
<th>$\Delta H_{\text{soln.}}$ kcal</th>
<th>$\Delta H_{\text{hydr.}}$ kcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.92\text{OH} \cdot 0.04\text{CO}_3 \cdot 3.0\text{H}_2\text{O}$</td>
<td>c</td>
<td>0.3924</td>
<td>76.9</td>
<td>993</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.96\text{NO}_3 \cdot 0.02\text{CO}_3 \cdot 2.0\text{H}_2\text{O}$</td>
<td>d</td>
<td>0.4238</td>
<td>61.0</td>
<td>992</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.96\text{NO}_3 \cdot 0.02\text{CO}_3$</td>
<td>f</td>
<td>0.3982</td>
<td>67.7</td>
<td></td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.98\text{ClO}_4 \cdot 0.01\text{CO}_3 \cdot 2.1\text{H}_2\text{O}$</td>
<td>a</td>
<td>0.4416</td>
<td>60.9</td>
<td>910</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.98\text{ClO}_4 \cdot 0.01\text{CO}_3$</td>
<td>f</td>
<td>0.3841</td>
<td>66.2</td>
<td></td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 1.00\text{Cl} \cdot 2.1\text{H}_2\text{O}$</td>
<td>a</td>
<td>0.4092</td>
<td>62.0</td>
<td>917</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.96\text{Br} \cdot 0.02\text{CO}_3 \cdot 2.1\text{H}_2\text{O}$</td>
<td>a</td>
<td>0.4074</td>
<td>60.9</td>
<td>913</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.96\text{Br} \cdot 0.02\text{CO}_3$</td>
<td>f</td>
<td>0.4084</td>
<td>70.5</td>
<td></td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.94\text{I} \cdot 0.03\text{CO}_3 \cdot 2.1\text{H}_2\text{O}$</td>
<td>a</td>
<td>0.3585</td>
<td>61.6</td>
<td>894</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.94\text{I} \cdot 0.03\text{CO}_3$</td>
<td>f</td>
<td>0.3801</td>
<td>69.2</td>
<td></td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 1.00\text{I} \cdot 2.0\text{H}_2\text{O}$</td>
<td>a</td>
<td>0.4038</td>
<td>60.5</td>
<td>887</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 1.00\text{I}$</td>
<td>f</td>
<td>0.4131</td>
<td>68.3</td>
<td></td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.98\text{ClO}_3 \cdot 0.01\text{CO}_3 \cdot 2.1\text{H}_2\text{O}$</td>
<td>a</td>
<td>0.4139</td>
<td>60.9*</td>
<td>904</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.98\text{ClO}_3 \cdot 0.01\text{CO}_3$</td>
<td>f</td>
<td>0.4113</td>
<td>68.7*</td>
<td></td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.98\text{BrO}_3 \cdot 0.01\text{CO}_3 \cdot 2.8\text{H}_2\text{O}$</td>
<td>a</td>
<td>0.3916</td>
<td>58.6*</td>
<td>950</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 0.98\text{BrO}_3 \cdot 0.01\text{CO}_3$</td>
<td>f</td>
<td>0.3909</td>
<td>70.0*</td>
<td></td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 1.00\text{IO}_3 \cdot 4.1\text{H}_2\text{O}$</td>
<td>e</td>
<td>0.3395</td>
<td>53.4*</td>
<td>1074</td>
</tr>
<tr>
<td>$\text{Ca}_2\text{Al(OH)}_6 \cdot 1.00\text{IO}_3$</td>
<td>f</td>
<td>0.3389</td>
<td>72.3*</td>
<td></td>
</tr>
<tr>
<td>C_3AH_6</td>
<td>b</td>
<td>0.2311</td>
<td>139.1</td>
<td>1326</td>
</tr>
</tbody>
</table>

*For measuring the heats of solution of AFm phases with oxy-anions incorporated, HClO$_4$ (1N) was used. f = dehydration product.

FIG. 1

The enthalpies of dehydration of some compounds of general formule $\text{Ca}_2\text{Al(OH)}_6\times X \times \text{H}_2\text{O}$ plotted against the "absolute" hydration enthalpies of the individual anions X in aqueous solution.

Numerical values of the quantities are given on the right.

TABLE II

<table>
<thead>
<tr>
<th>X$^-$</th>
<th>$\Delta H_{\text{hydr.}}$ kcal/mole</th>
<th>$\Delta H_{\text{hydr.}}$ kcal/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO$_3^-$</td>
<td>18.9</td>
<td>97.6</td>
</tr>
<tr>
<td>BrO$_3^-$</td>
<td>11.4</td>
<td>79.3</td>
</tr>
<tr>
<td>Cl$_2^-$</td>
<td>10.0</td>
<td>76.7</td>
</tr>
<tr>
<td>ClO$_3^-$</td>
<td>7.8</td>
<td>72.9</td>
</tr>
<tr>
<td>Br$_2^-$</td>
<td>9.6</td>
<td>68.7</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>6.7</td>
<td>67.1</td>
</tr>
<tr>
<td>ClO$_4^-$</td>
<td>5.3</td>
<td>65.9</td>
</tr>
<tr>
<td>I$^-$</td>
<td>7.8</td>
<td>61.8</td>
</tr>
</tbody>
</table>
ions cannot be determined experimentally. The most reliable way of estimating them seems to be that first proposed by Morris (28), which is based on the hypotheses that the salting-out of lyophilic colloids by electrolytes is determined by the hydration enthalpies of the ions present (29). The salting-out properties of an anion, expressed as a "lyotropic number", can be measured for both halides and oxy-anions; assuming that the same relation between enthalpy of hydration and lyotropic number applies for halides and oxy-anions, the hydration enthalpies of the oxy-anions are known. Hydration enthalpies thus obtained are shown in Fig.1. As for the halides a linear relationship is found, but the points for the oxy-anions do not lie in the same curve as those for the halides. This is ascribed to differences in the sizes and chemical characteristics of the two kinds of ion.

Acknowledgments

The authors wish to thank Mr. C.L.M. Holten and Mr. F.E.A.M.B. Lemmerling for their contributions to this investigation.

References