Effects of solvent and ionic medium on the kinetics of axial ligand substitution in vitamin B12. Part VII. The reaction between aquanitrocobaloxime and thiourea in dioxane-water mixtures

Balt, S.; Bolster, de, M.W.G.; van Herk, A.M.

Published in:
Inorganica Chimica Acta

DOI:
10.1016/S0020-1693(00)81161-5

Published: 01/01/1987

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?
Effects of Solvent and Ionic Medium on the Kinetics of Axial Ligand Substitution in Vitamin B$_{12}$.
Part VII. The Reaction between Aquanitrocobaloxime and Thiourea in Dioxane–Water Mixtures

SIJBE BALT*, MARTINUS W. G. DE BOLSTER and ALEXANDER M. VAN HERK**
Department of Chemistry, Free University, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
(Received January 23, 1987)

Abstract

Rate constants for the reaction of aquanitrocobaloxime with thiourea were measured as a function of pH, solvent composition, pressure and temperature, in dioxane–water mixtures. With the aid of solubility measurements a complete quantitative analysis of solvent effects on the initial state and transition state transfer parameters could be made. It was found that the activation enthalpy and entropy vary strongly with solvent composition. This is in contrast to the variations found for vitamin B$_{12}$, for which this cobaloxime is a model compound. The rate constants increase strongly after 50 vol.% dioxane in the dioxane-water mixtures, another difference with vitamin B$_{12}$. The volumes of activation are small and positive, in accordance with a dissociative mode of activation.

Introduction

In a series of articles [1–6] it was shown that the influence of solvent composition on the axial ligand substitution reactions of vitamin B$_{12}$ is rather small. For the reactions with thiourea and the thiocyanate ion in dioxane–water and acetonitrile–water mixtures [1–6], an analysis was performed in terms of a dissection of solvent effects on the initial state and the transition state by combining kinetic data with solubilities of the reactants. The solubilities provided interesting information on solvational effects. From this study it was concluded that vitamin B$_{12}$ essentially creates a fairly constant chemical micro-environment resulting in small solvent effects on activation parameters, whereas the ground state parameters vary much more. Also in the isomerization reactions of thiocyanotocobalamin in dioxane–water and acetonitrile–water mixtures the capability of vitamin B$_{12}$ to screen environmental changes was detected [4].

To compare these effects to the properties of model compounds like the cobaloximes a study was performed on the reactivity of vitamin B$_{12}$ and aquamethylcobaloxime towards several sulfur-coordinating ligands [3]. From this study it was concluded that the solvent effects on this model compound were comparable to those on vitamin B$_{12}$. Differences occur because of the fact that the model compound cannot mimic the effects that the acetamide side-chains exert in vitamin B$_{12}$. In this paper solvent effects on the axial ligand substitution reaction of the model compound aquanitrocobaloxime with thiourea are studied more extensively in terms of transfer Gibbs energies, enthalpies, entropies and volumes of activation.

Experimental

Materials

Aquanitrocobaloxime ([Co(dmg)$_2$NO$_2$H$_2$O]) was prepared according to Tschugaeff [7]. Anal., found (calc.): Co 16.5% (16.69); C 27.05% (27.20); H 4.49% (4.57); N 19.78% (19.83); O 31.95% (31.71). Thiourea (abbreviated as tu, Merck) was used as purchased. Dioxane was purified as described before [3].

pH measurements were carried out with a Metrohm Herisau E603 pH meter, equipped with a Metrohm EA120 combination glass electrode.

Conductometric measurements were performed with a Metrohm 644 conductometer equipped with a glass titration vessel with internal conductivity plates.

Kinetic measurements at atmospheric pressure were conducted on a Beckman Acta CIII spectro-
photometer equipped with a kinetic set. The kinetic measurements under high pressure were performed with a high pressure cell which can be placed in a conventional spectrophotometer and can be used with liquid pressures up to 1500 bar. This apparatus has been described elsewhere [8, 9].

Results and Discussion

The reaction of [Co(dmg)₂NO₂H₂O] with thiourea was studied in dioxane–water mixtures. From UV–Vis spectra it was shown that dioxane does not coordinate to [Co(dmg)₂NO₂H₂O] up to 90 vol.% dioxane. From IR spectra it was shown that the NO₂ group is coordinated through nitrogen; an absorption at 1330 cm⁻¹ is present, characteristic of nitro complexes [10]. No signal appears in the region from 1050 to 1100 cm⁻¹, characteristic of nitrito complexes [10]. The reactions were followed at a wavelength of 375 nm. When the observed first-order rate constant was plotted against the thiourea concentration (large excess over [Co(dmg)₂N0₂H₂O]) a straight line was obtained, indicating first-order kinetics in thiourea. The intercept was always zero within experimental error, so no values for k₋₁ were obtained. Values for k₁ were obtained from observed rate constants at at least three thiourea concentrations. Furthermore, the rate constants were found to be independent of the wavelength at which the reaction was followed in the range investigated (350–400 nm). A consecutive reaction was observed spectrophotometrically, which was accompanied by a change in the conductivity of the solution. This consecutive reaction is the dissociation of the nitro group (eqn. 1).

\[
[\text{Co(dmg)₂NO₂H₂O}] + \text{tu} \xrightarrow{k_1} [\text{Co(dmg)₂NO}_2\text{tu}] + \text{H₂O}
\]

\[
[\text{Co(dmg)₂NO}_2\text{tu}] \xrightarrow{k_2} [\text{Co(dmg)₂H₂Otul}^+] + \text{NO}_2^- + \text{H₂O}
\]

Fig. 1. pH dependence of the observed rate constant for the reaction between [Co(dmg)₂NO₂H₂O] and tu (0.4 M).

This consecutive reaction did not interfere with the first step at high thiourea concentrations. In water at 0.1 M NaClO₄ (35 °C, 0.2 M tu) the first-order reaction rate constant for the second reaction (k₂) was found to be 2 × 10⁻⁶ s⁻¹ (measured conductometrically). In 40 vol.% dioxane–water it was found to be 5 × 10⁻⁶ s⁻¹ (35 °C, 0.2 M tu).

[Co(dmg)₂NO₂H₂O] is known to be involved in several acid–base equilibria. At pH values above 6 a proton is abstracted, while at pH values below 4 the nitro group is protonated [11, 12]. For this reason the rate constant at 0.4 M tu and 0.1 M NaClO₄ in water at 35 °C was determined as a function of pH (Fig. 1). From this figure it can be seen that protonation retards the reaction and deprotonation accelerates the reaction. A plateau is present between pH = 4 and pH = 5. This rather narrow plateau is widened when an organic cosolvent is added, because in both the acid–base equilibria charge is created, which is more difficult in solvents with a lower dielectric constant. The reactions were measured in the presence of 5 × 10⁻⁵ M HClO₄. Under these conditions it can be concluded that the reaction followed in all cases is the first reaction in eqn. 1. The rate constants at four temperatures in dioxane–water mixtures are given in Table 1.

Fig. 1. pH dependence of the observed rate constant for the reaction between [Co(dmg)₂NO₂H₂O] and tu (0.4 M).

Table 1. Ligation Rate Constants for the Reaction of [Co(dmg)₂NO₂H₂O] with Thiourea (s⁻¹ M⁻¹)

<table>
<thead>
<tr>
<th>Vol.% dioxane</th>
<th>15 °C</th>
<th>25 °C</th>
<th>35 °C</th>
<th>40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.6 × 10⁻⁵</td>
<td>3.0 × 10⁻⁴</td>
<td>1.0 × 10⁻³</td>
<td>1.8 × 10⁻³</td>
</tr>
<tr>
<td>10</td>
<td>7.0 × 10⁻⁵</td>
<td>2.6 × 10⁻⁴</td>
<td>8.4 × 10⁻⁴</td>
<td>1.6 × 10⁻³</td>
</tr>
<tr>
<td>20</td>
<td>5.4 × 10⁻⁵</td>
<td>2.2 × 10⁻⁴</td>
<td>7.7 × 10⁻⁴</td>
<td>1.4 × 10⁻³</td>
</tr>
<tr>
<td>30</td>
<td>5.4 × 10⁻⁶</td>
<td>2.0 × 10⁻⁴</td>
<td>7.7 × 10⁻⁴</td>
<td>1.4 × 10⁻³</td>
</tr>
<tr>
<td>40</td>
<td>4.9 × 10⁻⁵</td>
<td>2.1 × 10⁻⁴</td>
<td>7.5 × 10⁻⁴</td>
<td>1.4 × 10⁻³</td>
</tr>
<tr>
<td>50</td>
<td>4.9 × 10⁻⁵</td>
<td>2.0 × 10⁻⁴</td>
<td>8.3 × 10⁻⁴</td>
<td>1.6 × 10⁻³</td>
</tr>
<tr>
<td>60</td>
<td>5.4 × 10⁻⁵</td>
<td>2.2 × 10⁻⁴</td>
<td>9.4 × 10⁻⁴</td>
<td>1.9 × 10⁻³</td>
</tr>
<tr>
<td>70</td>
<td>6.8 × 10⁻⁵</td>
<td>3.1 × 10⁻⁴</td>
<td>1.3 × 10⁻³</td>
<td>2.8 × 10⁻³</td>
</tr>
<tr>
<td>80</td>
<td>1.2 × 10⁻⁴</td>
<td>5.2 × 10⁻⁴</td>
<td>2.3 × 10⁻³</td>
<td>4.7 × 10⁻³</td>
</tr>
</tbody>
</table>
The addition of dioxane to mixtures containing more than 50 vol.% dioxane–water increased the rate constant considerably, resulting in an almost two-fold increase at 80 vol.% dioxane–water relative to water. For a complete analysis of solvent effects on the initial state and transition state, the solubility data of [Co(dmg)₂NO₂H₂O] (from ref. 5) and the solubilities of thiourea at four temperatures (data available on request) were combined with the kinetic data. In Table II the activation parameters are shown.

Table II. Activation Parameters for the Reaction of [Co(dmg)₂NO₂H₂O] with Thiourea

<table>
<thead>
<tr>
<th>Vol.% dioxane</th>
<th>ΔG₁</th>
<th>ΔH₁</th>
<th>ΔS₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93.1</td>
<td>89</td>
<td>-15</td>
</tr>
<tr>
<td>10</td>
<td>93.5</td>
<td>91</td>
<td>-10</td>
</tr>
<tr>
<td>20</td>
<td>93.9</td>
<td>95</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>94.1</td>
<td>96</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>94.0</td>
<td>98</td>
<td>12</td>
</tr>
<tr>
<td>50</td>
<td>94.1</td>
<td>102</td>
<td>26</td>
</tr>
<tr>
<td>60</td>
<td>93.9</td>
<td>103</td>
<td>36</td>
</tr>
<tr>
<td>70</td>
<td>93.0</td>
<td>108</td>
<td>52</td>
</tr>
<tr>
<td>80</td>
<td>91.8</td>
<td>108</td>
<td>54</td>
</tr>
</tbody>
</table>

a: At 298.15 K, units kJ mol⁻¹, estimated standard deviation (e.s.d.): 1 kJ mol⁻¹.
b: Units kJ mol⁻¹, e.s.d.: 2 kJ mol⁻¹.
c: Units J K⁻¹ mol⁻¹, e.s.d.: 6 J K⁻¹ mol⁻¹.

For [Co(dmg)₂NO₂H₂O] the activation parameters change rather dramatically with solvent composition (Table II). The increase of k₁ in dioxane-rich mixtures can be explained by a more strongly decreasing activation entropy contribution (−TΔS). Apparently in dioxane-rich mixtures the transition state is more ordered in comparison to the initial state (the amount of bond-formation in the transition state is larger). This behaviour is different from the behaviour of vitamin B₁₂ in its reactions with thiourea and thiocyanate in dioxane–water and acetonitrile–water mixtures. An explanation for this different behaviour could be that the mechanism of the reaction gradually changes from I_a to I_d when the medium becomes more apolar. The latter assumption is in accordance with the gradual change of the activation entropy from negative to positive (Table II).

In comparison, for the reaction of [Co(dmg)₂NO₂H₂O] in water with the thiocyanate ion an enthalpy of activation of 80 kJ mol⁻¹ and an entropy of activation of 38 J K⁻¹ mol⁻¹ were found [11]. For the azide ion values of 68 kJ mol⁻¹ and −80 J K⁻¹ mol⁻¹ were found, respectively [11].

In Fig. 2 the transfer Gibbs energy for the initial state and the transition state is shown. The transfer parameters were calculated as before [2]. In Fig. 3 the transfer enthalpy and entropy are shown for the initial state and the transition state. As can be seen, the transfer Gibbs energies of the initial state and the transition state are a result of large compensating contributions of the transfer enthalpy and entropy. The changes in transfer enthalpy and entropy of the initial state and the transition state are smaller than in the case of the reactions of vitamin B₁₂ [2]. In the case of the reaction of [Co(dmg)₂NO₂H₂O] with thiourea the differences between the initial state and the transition state are smaller than in the case of vitamin B₁₂ [2].
transition state are larger than the overall changes in the initial state and the transition state. Therefore in this case, clear differences between a model compound and vitamin B₁₂ are found, both in the change in reactivity when the solvent composition is changed and also in the changes of the activation parameters.

Activation Volumes

By measuring the influence of pressure on the rate constant of a reaction, it is possible to obtain the activation volume \(\Delta V^\ddagger \), the difference between the molar volume of the initial state and the transition state. From \(\Delta V^\ddagger \), inferences can be made about the reaction mechanism more directly than from \(\Delta H^\ddagger \) and \(\Delta S^\ddagger \). The experimental volume of activation \(\Delta V_{\text{exp}}^\ddagger \) can be thought to consist of two components [13]: the intrinsic volume contribution from the nuclear displacements at the reaction centre \(\Delta V_{\text{intr}}^\ddagger \) and the volume contributions associated with rearrangement of solvent molecules \(\Delta V_{\text{sol}}^\ddagger \). For complexes with anionic leaving groups, the electrostriction of the solvent molecules usually dominates \(\Delta V_{\text{exp}}^\ddagger \). In some cases the activation volume itself is also pressure dependent, resulting in a quadratic dependence of \(\ln k_{\text{obs}} \) versus pressure.

For a dissociative reaction a positive activation volume is expected [13], when \(\Delta V_{\text{obs}}^\ddagger \) is small. For the reaction of \([\text{B}_{12}-\text{H}_2\text{O}]^+\) with \(\text{I}^- \) at 25 °C, activation volumes were measured by Hasinoff [14]:

\[
\Delta V^\ddagger = 5.5 \text{ cm}^3 \text{ mol}^{-1}, \quad \Delta V_{\text{sol}}^\ddagger = 11.5 \text{ cm}^3 \text{ mol}^{-1}.
\]

The positive volumes of activation are consistent with a dissociative mode of activation. The negative reaction volume \(\Delta V^\ddagger = 5.8 \text{ cm}^3 \text{ mol}^{-1} \) cannot be explained in terms of electrostriction. Generally, charge neutralization is accompanied by an increase in volume due to the release of electrostricted water. For the aquation of \([\text{Co(dmg)}_2\text{Cl(urea)}]\) an activation volume of 3.5 cm³ mol⁻¹ was found [15].

For the model compound \([\text{Co(dmg)}_2\text{NO}_2\text{H}_2\text{O}]\), the activation volume for the reaction with \(\text{tu} \) was determined at 35 °C. The pressure effects are small and therefore it was not possible to distinguish statistically between a linear or a quadratic pressure dependence (Fig. 4). A similar problem occurred for the system studied by Hasinoff [14]. Both in water and in 20 vol.% dioxane–water a small positive activation volume was found, both for the linear (2.3 cm³ mol⁻¹) and quadratic (4.4 cm³ mol⁻¹) relationship. In the latter case a change in compressibility of the transition state of \(3 \times 10^{-3} \text{ cm}^3 \text{ mol}^{-1} \text{ bar}^{-1} \) was found. This is in accordance with a dissociative or dissociative interchange mechanism. In other mixtures of dioxane–water the same kind of pressure dependences were found, but activation volumes were not calculated because of the poor accuracy of the data in these mixtures.

It can be concluded that the activation volumes indicate a similar mode of activation for both vitamin B₁₂ and the model compound \([\text{Co(dmg)}_2\text{NO}_2\text{H}_2\text{O}]\) in their axial ligand substitution reactions, at least in water. This is contrary to the negative entropy of activation found for the reaction of the model compound. It must be noted, however, that the sign of the entropy of activation is reversed already when 20 vol.% dioxane is added.

Supplementary Material

Tables of solubility combined with kinetic data are available from the authors on request.

References