Ohmic resistance of polypyrrole-modified electrodes with incorporated Pt particles
Vork, F.T.A.; Janssen, L.J.J.; Barendrecht, E.

Published in:
Electrochimica Acta

DOI:
10.1016/0013-4686(87)80032-4

Published: 01/01/1987

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 19. Jul. 2018
OHMIC RESISTANCE OF POLYPYRROLE-MODIFIED ELECTRODES WITH INCORPORATED Pt PARTICLES

F. T. A. Vork, L. J. J. Janssen and E. Barendrecht

Laboratory for Electrochemistry, Department of Chemical Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 22 September 1986; in revised form 22 December 1986)

Abstract—The ohmic resistance of polypyrrole modified electrodes has been determined as a function of the potential by the ac impedance method. It has been found that polypyrrole-modified electrodes have a negligible ohmic resistance in the potential region from 0.2 to -0.2 V vs. see. When the potential is decreased from -0.2 to -0.3 V, the ohmic resistance shows a sharp increase, due to the transition of polypyrrole from the oxidized, conducting state to the reduced, insulating state. The electrodeposition of Pt particles in the film does not change the resistance at high potentials, but does decrease the rise in ohmic resistance at low potentials. Moreover, this decrease depends on the current density, used for the deposition of the particles.

INTRODUCTION

Conducting polymers have grown in importance in electrochemical research. Recently, attention has been paid to the incorporation of catalyst particles in a polypyrrole matrix, especially of metal particles by reduction of the appropriate metal salt[1–5]. In particular, the use of Pt particles seems to be very profitable. The application of these metal-polymer electrodes for the oxidation of hydrogen has been a subject of our research[6]. In order to characterize these electrodes, the ohmic resistance was determined as a function of the potential of the electrode, with incorporation of various quantities of Pt. The effect of the current density, used for the electrodeposition of these particles, upon the resistance was investigated.

EXPERIMENTAL

The impedance measurements were carried out at 293 K in a one-compartment cell of about 200 cm³, containing an aqueous solution of 2 M HCl. Two large (50 cm²) platinized Pt counter electrodes were used, symmetrically placed with respect to the working electrode (0.25 cm²), facing upwards in order to avoid accumulation of evolved gas. A saturated calomel electrode (see) served as a reference electrode; all potentials are given with respect to this electrode.

The impedance of the cell was measured using a Solartron 1250 Frequency Response Analyzer with an electrochemical interface, coupled with a HP microcomputer. A sinusoidal voltage, with an amplitude of 0.01 V and a frequency range from 128 to 65,000 Hz, was superimposed on the bias potential of the electrode, which was varied from 0.2 to -0.35 V, in steps of 0.05 V, with a time span of ca 5 min between the subsequent potential steps.

A Pt-disc electrode (0.25 cm²) was used as the substrate for the polypyrrole films. Before the deposition of polypyrrole, the Pt electrode was pretreated by the following method. For 1 min, oxygen was vigorously evolved at the electrode, at a potential of 3.5 V vs. see in an aqueous solution of 0.5 M H₂SO₄, to remove impurities and polypyrrole deposits, used in the preceding experiment. Then the electrode was pulsed between -1.0 and 2.5 V, for 2 min. Finally, the potential of the electrode was cycled between 0 and 1.5 V, with a scan rate of 1 V s⁻¹, until the cyclic voltammogram showed a clean Pt surface. Impedance measurements were carried out with this clean electrode as a blank.

Polypyrrole (PP) was formed on the clean Pt substrate by anodic oxidation of pyrrole from an aqueous solution of 0.14 M pyrrole and 0.1 M (C₂H₅)₂NBF₄, at a constant current density of 0.4 mA cm⁻². The charge, passed during formation of the film was 100 mC cm⁻², this corresponds to a film thickness of 0.28 μm, assuming a density of 1.48 g cm⁻³[7]. The electrode (PP/Pt electrode) was used as the working electrode in impedance measurements.

After the impedance measurement with the polypyrrole electrode, Pt particles (for particle distribution, see[6]) were deposited at a constant current density, ranging from 0.08 to 8 mA cm⁻², on and in the polypyrrole film, present on the Pt substrate, to prepare a platinum/polypyrrole electrode (Pt/PP/Pt electrode).

RESULTS AND DISCUSSION

The ohmic resistance of the cell was determined from the complex plane plot, in which for various frequencies the imaginary component of impedance, Z', was plotted as the real component of the impedance, Z. The ohmic resistance of the cell. Due to the
very large surface area of the counter electrodes and the construction of the cell, the resistance is caused by the resistance of the working electrode and by the resistance of a solution layer adjacent to the working electrode[8].

Pt electrodes

The Z''/Z' curve for a Pt electrode showed the expected shape, viz. at potentials higher than -0.3 V a straight line, making an angle with the Z'-axis of almost 90°. At potentials below -0.3 V hydrogen bubbles, formed at the electrode surface, affect the Z''/Z' curve, and an accurate determination of the ohmic resistance was not possible. For the bare Pt electrodes the ohmic resistance is constant in the potential region from +0.2 to -0.3 V and is equal to $1.5 \pm 0.2 \, \Omega$. This resistance is only determined by the resistance of the solution layer adjacent to the electrode, since the resistance of the Pt electrode is negligible.

PP/Pt electrode

Characteristic Z''/Z' curves for PP/Pt electrodes are given in Fig. 1. At potentials higher than -0.2 V an intersection of the Z''/Z' curve with the Z'-axis occurs. To obtain the ohmic resistance, R, at potentials lower than -0.2 V extrapolation to $\omega \rightarrow \infty$ is necessary.

Figure 2 shows for a PP/Pt electrode the ohmic resistance as a function of the potential. In the potential region from +0.2 to -0.2 V the ohmic resistance is constant. The average value (averaged for about 10 PP/Pt electrodes) is $1.45 \pm 0.09 \, \Omega$.

From Fig. 2 it follows that between -0.2 and -0.35 V the ohmic resistance increases sharply, and a hysteresis effect is clearly observed. Above 0.05 V the hysteresis has practically disappeared.

The increase in ohmic resistance in the potential region from -0.2 to -0.35 V is indicated by ΔR_0 and is defined as the difference between the average ohmic resistance at -0.30 and -0.35 V and the ohmic resistance at $+0.2$ V. For about 10 PP/Pt electrodes the average value of ΔR_0 is $4.5 \pm 0.6 \, \Omega$.

For a reduced polypyrrole electrode (surface area 0.5 cm2), assuming a film thickness of 0.28 µm, $\Delta R_0 = 4.5 \, \Omega$ is equivalent to a conductivity of $1.24 \times 10^{-5} \, \Omega^{-1} \text{ cm}^{-1}$.

The ohmic resistance for a PP/Pt electrode consists of a part related to a solution layer, which does not depend on the potential, and a part related to the polypyrrole film. In the high potential region the ohmic resistance is, within error limits, the same for both Pt and PP/Pt electrodes. This leads to the conclusion that in the high potential region polypyrrole is very well conducting, which is in agreement with published results[7].

The slight decrease in ohmic resistance, occurring when a polypyrrole film is deposited on a Pt substrate (see Fig. 2), can be explained by an increase of surface roughness. By a potential decrease from -0.2 to -0.3 V the oxidized state of polypyrrole is converted to its reduced state. It is well known that the oxidized polypyrrole is a good electron-conductor and the reduced polypyrrole is a poor electron-conductor[7]. The transition from oxidized to reduced polypyrrole causes an increase of ohmic resistance of the polypyrrole film.
Additional experiments showed that the time, passed between the subsequent potential steps in the ac impedance experiments is larger than the response time of the film. So, there should be no apparent reason for the observed hysteresis effect. We must therefore conclude that the hysteresis may be caused by irreversible changes in structure of polypyrrole during the reduction of the film. These changes are not restored by a potential increase from -0.2 to +0.2 V. The effect of the irreversible reduction of the film is only measurable for the reduced film because of its low conductivity.

Pt/PP/Pt electrodes

For Pt/PP/Pt electrodes the shape of the Z''/Z' curves was the same as for PP/Pt electrodes. Also the ohmic resistance in the high potential region ($E > -0.2$ V) is equal for both types of electrodes. Ohmic resistance vs potential curves for Pt/PP/Pt electrodes with various Pt loadings are shown in Fig. 3. From Fig. 3 it can be deduced that the rise of the ohmic resistance between -0.2 and -0.35 V, ΔR, decreases with increasing Pt loading. Because both for PP/Pt electrodes and for the Pt/PP/Pt electrodes ΔR_0 and ΔR, respectively, showed a rather large spread, it is more useful to make use of the reduced increase of ohmic resistance, ΔR^* as defined by $\Delta R/\Delta R_0$.

In Fig. 4(a-c), for two series of experiments ΔR^* is plotted vs the charge, which was used for electrodeposition of Pt, at various current densities of deposition.

Figure 4 shows that ΔR^* decreases with increasing Pt loading and approaches a limiting value. ΔR^* is affected by the current density of Pt deposition. From

Fig. 3. Ohmic resistance vs potential curves for a Pt/PP/Pt electrode with various Pt loadings: (a) 200, (b) 400, (c) 600, (d) 800 and (e) 1000 mCcm$^{-2}$.

Fig. 4. ΔR^* vs charge used for deposition of Pt particles with various current densities of Pt deposition. For each current density the results of two series of experiments are given. (a) $i_{Pt} = 0.08$ mA cm$^{-2}$; (b) $i_{Pt} = 0.8$ mA cm$^{-2}$; (c) $i_{Pt} = 8.0$ mA cm$^{-2}$.
Fig. 4(a)–(c) it follows that Pt/PP/Pt electrodes with Pt particles, formed at a low current density (0.08 mA cm\(^{-2}\)) show the sharpest decline of \(\Delta R^*\) at low Pt loading and the largest spreading in \(\Delta R^*\). For electrodes prepared with a higher current density of Pt deposition, \(\Delta R^*\) shows a more gradual decrease with increasing Pt loading. Especially, for electrodes prepared with \(i_{\text{pt}} = 8\) mA cm\(^{-2}\), the spreading in \(\Delta R^*\) is very small.

As can be seen in Fig. 3, the incorporation of Pt particles has little effect on the ohmic resistance in the potential region where polypyrrole is in the oxidized, conducting state. When polypyrrole is reduced, the electrical conductance of the polymer film will be partly taken over by the Pt particles, incorporated in the film. This explains the decrease of \(\Delta R^*\) with increasing Pt loading.

The differences in decrease of \(\Delta R^*\) between Pt/PP/Pt electrodes, prepared with various current densities of Pt deposition, are caused by differences in distribution of the particles within the film. As pointed out in a previous paper[6], Pt particles, deposited with a low current density, are distributed throughout the polypyrrole film. The particles when more enhance the electrical conductance of the whole Pt/PP film, even at low Pt loading. The conductance is then for a smaller part determined by the polypyrrole chains. The contact between the Pt particles is of great importance to the ohmic resistance. When the particles are distributed over a large space, small fluctuations in the distribution have a large effect on \(\Delta R^*\).

At the Pt/PP/Pt electrodes, prepared with a high current density for Pt deposition, the particles are first and mainly deposited on the outer surface and layer of the polypyrrole film (electrolyte-side). This is observed with a microscope. In this case a good electrical contact between the particles exist and different electrodes show a small spread in \(\Delta R^*\).

Ageing of PP/Pt electrodes

The influence of the low electrode potential, which was used for deposition of Pt particles, on the ohmic resistance of PP/Pt electrodes was investigated. A PP/Pt electrode in 2 M HCl was held at a potential of +0.1 V, being a potential within the potential range for Pt deposition. After \(t = 0, 4, 8\) and 12 min \(\Delta R_{o,t}\) was determined by measuring the ohmic resistance as a function of the potential. In Fig. 5 \(\Delta R_{o,t}\) is plotted vs the ageing time at +0.1 V. This figure shows a decrease of \(\Delta R_{o,t}\) with increasing ageing time. This decrease was caused by a decrease in ohmic resistance at low potentials (−0.2 to −0.35 V). The reason for this decrease is not yet known.

CONCLUSION

From the determination of the ohmic resistance follows that polypyrrole has a high electrical conductivity in the potential region from −0.2 to +0.2 V vs sce.

Between −0.2 and −0.3 V a sharp rise of the resistance is observed, due to the transition of the oxidized polypyrrole to the reduced state.

Incorporation of Pt particles in the film causes a decrease of the increase of ohmic resistance, because the particles contribute partly to the electrical conductivity.

Acknowledgement—This work was carried out under auspices of the Netherlands Foundation for Chemical Research (S.O.N.) with financial aid from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

REFERENCES