Cation distribution in calcium-strontium-hydroxyapatites

Heijligers, H.J.M.; Verbeeck, R.M.H.; Driessens, F.C.M.

Published in:
Journal of Inorganic and Nuclear Chemistry

DOI:
10.1016/0022-1902(79)80375-9

Published: 01/01/1979

Citation for published version (APA):
The calculation of the magnetic susceptibility from the energy splitting behavior thus obtained has been done with use of the Van Vleck formula to the first excited state, including an additional open variable Q introduced by Amberger et al. [10]. As shown in Fig. 1, a good agreement with the experimental result up to 170 K is obtained, when R_4 and Q are taken to be 2.35 Å and 0.829, respectively ($2\theta_e = 67.2°$). The eigenvalues and the eigenvectors are listed in Table 1. The value of Q is intermediate between that of uranocene ($Q = 0.94$) [11] and that of (r~t CsH04U(IV) ($Q = 0.707$) [10]. The distance R_4 and the angle θ_e seems to be reasonable values considering that the U-N distance of U(NCS)s.4(C2HshN is 2.38 Å [121 and the angle of oT"F-u - O THF is 67.2°[5]. The small deviation from the experimental value above about 170°K may be explained by taking into account higher excited states.

REFERENCES

pure end-members CaOHA and SrOHA were also subjected to this heat treatment prior to X-ray diffraction.

Both the Philips Guinier XDC-700 and the Nonius Guinier-de Wolff camera were used, either with CrKα or CuKα. The cell parameters were determined by measuring the position of at least 28 reflections for each sample. The accuracy of the cell parameters a and c of the hexagonal cell which were calculated by using a least squares procedure is estimated to be better than ±0.003 and ±0.002 respectively. The results with both cameras were the same and are represented in Fig. 1. They confirm the linear variation with composition found earlier [3, 4].

In the apatite structure two sublattices occur for the cations. Position I is fourfold (Wyckoff notation f) and position II is six-fold (denoted by h). The structure formula of solid solutions of CaOHA and SrOHA can thus be written as

\[
\text{Ca}_{4+2a}\text{Sr}_{a}(\text{Ca}_{6-a}\text{Sr}_{1+a})(\text{PO}_4)_6(\text{OH})_2. \quad (2)
\]

As the cation distributions were not known, we derived them from a comparison of the experimental values of the intensity ratios 210/002, 300/002, 222/002, 002/202, 321/202, 321/410 and 213/312 with their theoretical values depending on a. In the calculation of the theoretical values Lorentz-polarisation and multiplicity factor were taken into account, absorption correction and temperature factor were neglected. Both peak heights and peak areas were taken as a measure for the intensities of reflections.

In this way two sets of seven \(\alpha \) values were obtained for each composition \(x \). The average per set was independent of the fact whether peak heights or peak areas were taken. A distribution coefficient \(K \) was defined as

\[
K = \frac{6 - (1-x)\alpha}{4 - \alpha x} \quad (3)
\]

and its value and standard deviation were calculated from the two sets of \(\alpha \) values at a given \(x \). A constant value for \(K \) was found throughout the range \(1 \leq x \leq 9 \) within the limits of experimental error. Its overall weighted mean was \(0.84 \pm 0.06 \). This means (a) that apparently an equilibrium is reached according to

\[
\text{Ca}(I) + \text{Sr}(II) \rightleftharpoons \text{Ca}(II) + \text{Sr}(I) \quad (4)
\]

at the temperature of preparation and (b) that the solid solutions are close to ideal in the thermodynamical sense [9]. The latter conclusion enables the quantitative estimation of the effect of Sr\(^{2+}\) ion incorporation on the solubility product of CaOHA from knowledge about the solubility products of both CaOHA and SrOHA [7].

N.B. The individual values of \(\alpha \) and \(K \) derived from the intensity ratios are available on request.

Acknowledgement—The authors are indebted to Mr. F. C. Kruger for carrying out the X-ray diffraction experiments.

Laboratory for Physical Chemistry Technical University Eindhoven Netherlands

Laboratory for Analytical Chemistry State University Ghent Belgium

Institute of Dental Materials Science Catholic University, Nijmegen Netherlands

REFERENCES

© Pergamon Press Ltd., 1979. Printed in Great Britain

Synthesis and characterization of complexes of palladium(II) and platinum(II) with a tetraaza macrocycle

(First received 13 March; in revised form 20 July 1978; received for publication 20 September 1978)

Transition metal complexes with synthetic tetraaza macrocyclic ligands have been extensively investigated in recent years. Most of these studies have involved first row transition metals with emphasis on examining the role of the macrocyclic ligand on the