FeRu/TiO2 and Fe/TiO2 catalysts after reduction and Fischer-Tropsch synthesis studied by Mössbauer spectroscopy
Kraan, van der, A.M.; Nonnekens, R.C.H.; Niemantsverdriet, J.W.

Published in:
Hyperfine Interactions

DOI:
10.1007/BF02061589

Published: 01/01/1986

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
FeRu/TiO₂ AND Fe/TiO₂ CATALYSTS AFTER REDUCTION AND FISCHER-TROPSCH SYNTHESIS STUDIED BY MöSSBAUER SPECTROSCOPY

A.M. VAN DER KRAAN and R.C.H. NONNEKENS
Interuniversitair Reactor Instituut, 2629 JB Delft, the Netherlands

J.W. NIEMANTSVERDRIET
Laboratory for Inorganic Chemistry and Catalysis, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands

A series of TiO₂-supported bimetallic FeRu catalysts with different Fe:Ru ratios (10:1; 3:1; 1:1; 1:3) has been studied by means of in situ Mössbauer spectroscopy. The influence of reduction and Fischer-Tropsch synthesis on the state of iron in the FeRu/TiO₂ catalysts will be derived.

1. INTRODUCTION

Supported bimetallic catalysts of iron and ruthenium have shown interesting selectivities for formation of light olefins, ethylene and propylene in the Fischer-Tropsch synthesis /1/. Recent work by Stoop et al /2/ revealed that FeRu on TiO₂ and SiO₂ with an atomic ratio of Fe:Ru = 3:1 exhibited significantly higher olefin and lower methane selectivities than either of the single metals on TiO₂ or SiO₂ in Fischer-Tropsch synthesis at 575 K and 1 atm. Mössbauer investigations of reduced FeRu/SiO₂ catalysts have indicated that iron is present in FeRu alloy and in iron (III) oxide /3-7/. Here we report on the state of iron in FeRu/TiO₂ catalysts during reduction and after Fischer-Tropsch synthesis.

2. EXPERIMENTAL

The catalysts were prepared by impregnating TiO₂ (Degussa, p 25,50 m²/g) with aqueous solution (pH=1) of Fe(NO₃)₃·9H₂O (Merck, p.a) and RuCl₃·xH₂O (Fluca A.G.), until the incipient wetness point was reached. The total metal loading was 5 wt%. Between 5 and 15% of the iron was ⁵⁷Fe. Samples were dried in air at 295 K for 72 h, in vacuum (100 Pa) at 295 K for 24 h and in air at 400 K for 24 h. All further treatments were done in a Mössbauer in situ reactor /8/. Isomer shifts are reported relative to SNP.

3. RESULTS

The Mössbauer spectra of the dried FeRu/TiO₂ catalysts consist of a doublet with IS = 0.63 ± 0.03 mm/s and QS = 0.82 ± 0.05 mm/s, which is characteristic of high-spin Fe³⁺ ions in highly dispersed iron (III) oxide or oxyhydroxide. Figure 1 shows the Mössbauer spectra of the catalysts after intermediate reduction at 400 K, final reduction at 675 K and Fischer-Tropsch synthesis at 575 K (CO/H₂ = ½). As the spectra of 3:1 FeRu/TiO₂ and 1:1 FeRu/TiO₂ are similar, only those of the former are shown. It appears that exposure of the catalysts to H₂ at 400 K does not affect the chemical state of iron in monometallic Fe/TiO₂, but it does lead to partial reduction of the Fe³⁺ in the bimetallic FeRu/TiO₂ catalysts. In 10:1, 3:1 and 1:1 FeRu/TiO₂ almost all Fe³⁺ present in the fresh catalysts is converted to high-spin Fe²⁺ (IS = 1.36 ± 0.03 mm/s, QS = 2.10 ± 0.15 mm/s) by
H₂ at 400 K, whereas reduction to Fe²⁺ and Fe⁰ occurs in 1:3 FeRu/TiO₂. The parameters of Fe⁰, IS = 0.26 ± 0.03 mm/s and QS = 0.20 ± 0.04 mm/s correspond to those of Fe⁰ atoms in hcp-FeRu alloys, as reported by Rush et al. /9/.

After the final reduction of the catalysts at 675 K for 18 h, the Mössbauer spectra of Fe/TiO₂ and 10:1 FeRu/TiO₂ are dominated by a six-line pattern due to α-Fe, and to a combination of α-Fe and bcc-FeRu alloy, respectively. The Mössbauer spectra of the reduced 3:1, 1:1 and 1:3 FeRu/TiO₂ catalysts indicate that iron is present in three different states: zero-valent iron in hcp-FeRu alloy, Fe²⁺ and Fe³⁺. These assignments are confirmed by in situ spectra at 77 K and 4 K as in /10/. The contribution of the zero-valent iron to the spectra, about 6-7%, is surprisingly small in view of the relatively high degree of reduction in Fe/TiO₂ and 10:1 FeRu/TiO₂.

A remarkable result concerning the 3:1, 1:1 and 1:3 FeRu/TiO₂ catalysts is that almost all Fe³⁺ in the fresh catalysts can be reduced to Fe²⁺ by H₂ at 400 K, whereas after reduction at 675 K a considerable fraction of the iron is in the ferric-state. This implies that oxidation of Fe²⁺ to Fe³⁺ has occurred, under H₂, at temperatures between 400 K and 675 K. The oxidation is more pronounced with increasing ruthenium concentration. This unexpected phenomenon is illustrated in more detail in Fig. 2, where spectra of 1:1 FeRu/TiO₂ and Fe/TiO₂ are shown as a function of reduction temperature. As Fig. 2 shows, the degree of reduction in Fe/TiO₂ increases monotonically with increasing reduction temperature. In 1:1 FeRu/TiO₂, however, reduction starts at lower temperatures than in Fe/TiO₂, but when the temperature exceeds 500 K, the doublet due to Fe³⁺ shows a marked increase in intensity. The results show that the Fe³⁺ present in reduced FeRu/TiO₂ catalysts is by no means a residue of Fe³⁺ in the fresh catalysts, and suggest that the ferric
iron reflects the interaction of the FeRu particles with the support.

The Fischer-Tropsch conditions alter the chemical state of the Fe and FeRu/TiO$_2$ catalysts significantly. As shown in Fig. 1 the α-Fe present in reduced Fe/TiO$_2$ and 10:1 FeRu/TiO$_2$ is carburized to x-Fe_5C_2, and the small amount of Fe$^{3+}$ in these systems is converted to Fe$^{2+}$, as also observed on exposing 3:1, 1:1 and 1:3 FeRu/TiO$_2$ catalysts to Fischer-Tropsch synthesis. The zero-valent iron in hcp-FeRu alloy, however, is not affected by syngas. Similar behaviour of iron has been reported for FeRh/SiO$_2$ catalysts /10,11/.

4. DISCUSSION

The fact that partial reduction of iron in H$_2$ at 400 K occurs in all FeRu/TiO$_2$ catalysts and not in Fe/TiO$_2$ demonstrates that Ru enhances the reducibility of iron, similarly as in SiO$_2$- and Al$_2$O$_3$- supported FeRu catalysts /5/. Several investigations before /4,12,13/ have shown that in supported bimetallic catalysts consisting of iron and a noble group VIII metal promotion of the reduction of iron by the noble metal takes place. As explained before /14/, the noble metal provides the sites where H$_2$ is dissociated into H atoms which diffuse to contiguous iron oxide, where Fe$^{3+}$ is reduced to Fe$^{2+}$ or Fe0. Thus, the results indicate that all iron containing particles in the fresh catalysts contain or are in contact with ruthenium.

In spite of the presence of ruthenium and its reduction-promoting abilities, reduction of 3:1, 1:1 and 1:3 FeRu/TiO$_2$ catalysts at 675 K does not lead to formation of substantial amounts of zero-valent iron as in the Fe/TiO$_2$ and 10:1 FeRu/TiO$_2$ catalysts. The extent to which iron in FeRu/TiO$_2$ catalysts is reduced at 675 K, even decreases with increasing Ru content. Minai et al /11/ observed similar trends for a series of FeRh/SiO$_2$ catalysts, while Berry et al /5/, on the other hand, found the opposite for Al$_2$O$_3$-supported
FeRu catalysts. We suggest that the formation of Fe$^{3+}$ by back oxidation of Fe$^{2+}$ during reduction at more elevated temperatures, shifts to lower temperatures by increasing ruthenium content. In analogy with chemisorption-induced surface segregation in alloys it seems likely that the formation of Fe$^{3+}$ during reduction is associated with segregation of iron in the FeRu particles to the support, where it is stabilized as Fe$^{3+}$. A systematic investigation of the reduction behaviour of FeRu on different supports is presently in progress.

Mössbauer spectra of the catalysts after Fischer-Tropsch synthesis show that carburization occurs only in Fe/TiO$_2$ and iron-rich 10:1 FeRu/TiO$_2$. Nearly all zero-valent iron present in α-Fe and bcc-FeRu alloy is converted into χ-Fe$_5$C$_2$, which carbide is also the main component in unsupported Fe catalysts after Fischer-Tropsch synthesis /15/. The catalyst with the highest olefin selectivity is 3:1 FeRu/TiO$_2$ /2/. It is interesting to note that this catalyst contains iron predominantly as Fe$^{2+}$ and Fe$^{3+}$, that the contribution of Fe0 in hcp-FeRu to the Mössbauer spectrum at 295 K is only about 6% and that carburization of this Fe0 does not occur.

References