Adaptation and reuse in designing web information systems

Frasincar, F.; Houben, G.J.P.M.; Barna, P.; Fiala, Z.

Published in:
Proceedings International Conference on Information Technology: Coding and Computing (ITCC'04, Las Vegas, Nevada, USA, April 5-7, 2004), Volume 1

DOI:
10.1109/ITCC.2004.1286485

Published: 01/01/2004

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 08. Sep. 2017
Adaptation and Reuse in Designing Web Information Systems

Flavius Frasincar, Peter Barna, Geert-Jan Houben
Eindhoven University of Technology
PO Box 513
NL-5600 MB Eindhoven, the Netherlands
{flaviusf, pbarna, houben}@win.tue.nl

Zoltán Fiala
Dresden University of Technology
Mommsenstr. 13
D-01062 Dresden, Germany
zoltan.fiala@inf.tu-dresden.de

Abstract

The increasing number of requirements for a Web Information System asks for an engineered process in designing such a system. In this paper we focus on two of these requirements: presentation adaptation based on user preferences/device capabilities and reusability of the different design artifacts. Hera is a model-based design methodology for Web Information Systems. Adaptation and reuse can be tackled at different design levels in Hera. We illustrate by means of examples how adaptation and reuse can be achieved in the conceptual model, the application model, and the presentation model. Based on a static user profile, adaptation is realized by attaching appearance conditions to model elements. With respect to reusability we do focus on one mechanism that supports it, namely inheritance.

1. Introduction and related work

In order to cope with the increasing number of requirements for a Web Information System (WIS) several methodologies have been proposed for its design. Based on good engineering practices, the consideration of these requirements at an early step of the design process will ensure the application’s success. Among these requirements we mention the ability of a WIS to support: presentation adaptation (e.g. based on browsing platform or user’s preferences), reusability, maintainability, evolution etc. Building WISs that satisfy these requirements is far from being trivial.

A lot of effort is required for the maintenance and evolution of WISs. This is mainly due to the lack of abstraction primitives to capture the system design. Model-based design methodologies provide high level abstractions for representing content, navigation, and layout. The advantages of a model-based design are countless: better communication between the different stakeholders, the possibility to reverse engineer a WIS, the ability to reuse different parts of an application in a project but also between projects etc.

In previous work we have proposed Hera [6, 12], a model-based WIS design methodology using Semantic Web technology. It has all the benefits of a model-based methodology as well as the good traits of a Semantic Web product (e.g. platform independence, explicit semantics, interoperability etc.). The focus of this paper is on static adaptation (i.e. adaptation that does not consider the user’s browsing behaviour) and on reusability as integral parts of the Hera design process. Both adaptation and reuse have a great impact on WIS requirements such as maintenance and evolution and therefore contribute to the quality of the overall design process.

While there are powerful tools like AMACONT [3] that consider adaptation at implementation level, there is a lack of good WIS design specifications to include adaptation aspects. Compared with OOHDM [11] our proposed personalization goes one step further in the sense that we distinguish for each WIS design phase its “adaptation hot-spots”, i.e. what adaptation aspects are relevant to this particular phase. The adaptation is achieved by attaching conditions [4] to the different design artifacts which resembles the Event-Condition-Action rules from WebML [2]. Differently than WebML we make the semantics of the different models explicit (i.e. part of the model) using RDF(S) [1, 9] as a modeling language, instead of XML.

As previously emphasized in [7] inheritance is a good mechanism to support the reuse of the different design artifacts. Inheritance can also support adaptation by appropriately subclassing design artifacts to satisfy different adaptation needs. RDF(S) has a built-in subclassing mechanism that enables to factor out shared resource properties into a common resource. This common resource can be reused in defining new resources decreasing thus the design effort required for producing these new resources. In RDF(S) reuse is also facilitated by the possibility of adding new properties to existing resources, multiply classifying resources, refining properties etc. It is due to its flexibility and extensibility capabilities that we chose to represent our models in RDF(S).
2. Hera Methodology

Hera [6, 12] is a model-based methodology for designing WISs. Based on the principle of separation of concerns it distinguishes three design models: the conceptual model, the application model, and the presentation model. Each model captures a different aspect of the system: the conceptual model specifies the data (content) that needs to be presented, the application model captures the application logics (navigation), and the presentation model deals with layout related issues. A characteristic feature of the considered WISs is the fact that data is not known in advance (the data can be obtained, for example, as a result of a user query). Nevertheless, we assume that the data’s schema is known and as a consequence all Hera models will be at schema level.

Some of the models are overlay models of the previous ones in the Hera methodology steps. The application model extends the conceptual model with navigation primitives and the presentation model enhances the application model with layout primitives. It is exactly this superposing of models that enables the pipeline transformations between model instances [5]. In Hera we use a graphical notation to represent the different models that has a natural RDF/XML serialization. In the rest of this paper we will present the Hera models mainly in graphical notation as it easier for the reader to grasp specifications in a graphical way than in the verbose RDF/XML serialization.

2.1. Conceptual model

The conceptual model (CM) is the schema of the data that needs to be presented. CM is composed of concepts, attributes, and relationships. Attributes relate concepts to media types and relationships relate concepts to each other. Each relationship has its cardinality specified as well as its inverse relationship. The running example used through the rest of the paper is based on an art museum. Figure 1 depicts the CM for our example.

![Figure 1. Conceptual model](image1)

Part of the CM is the media model (MM). In the same way as AMACONT [3] we base our MM on a subset of the MPEG-7 standard [10]. In Figure 2 the considered media types: text, image, audio, and video have corresponding RDF representations that capture their relevant properties. Note that media items are referred via a URL and all their properties are pointing to literals. Adding a new media type will be seamlessly done by subclassing the appropriate (parent) media type and by adding its characteristic properties.

![Figure 2. Media model](image2)

2.2. Application model

The application model (AM) represents a special view over the data schema. It is not a classical database view in the sense that it adds navigation primitives to the model. AM is composed of slices and slice relationships. A slice is a meaningful data presentation unit. Slices can be aggregated by means of compositional relationships, and the navigation between slices is defined by navigational relationships. Each slice is owned by a concept or in other words a slice is a new concept property. The most primitive slices are the slice attributes which correspond to the concept attributes from CM. Figure 3 illustrates a part of the AM for the museum example.

![Figure 3. Application model](image3)
2.3. Presentation model

The presentation model (PM) describes the presentation’s layout. PM is composed of regions that represent a rectangular area on the user’s display. While slices are associated to concepts, regions are associated to slices. Navigational relationships from AM are materialized to different region relationships: spatial relationships (compositional relationships from AM are good candidates for spatial relationships), temporal relationships, and hyperlinks (navigational relationships from AM are good candidates for hyperlinks). Spatial relationships can be specified quantitatively by giving the (x,y) coordinate with respect to the top-left corner of the parent region or qualitatively by specifying a qualitative constraint (e.g. “right”) in relation to another region. Figure 4 presents one region from the PM in our running example. In order not to complicate the figure we omit from it the region relationships between attributes.

Figure 4. Presentation model

3. Adaptation

The presentation adaptation considers “adaptation hot-spots” [11] during a WIS design. Basically all Hera models considered in section 2 are adaptation hot-spots. In this paper we consider only static adaptation, i.e. an adaptation that does not consider the user’s browsing behaviour.

The static adaptation is based on another model, the user profile, a CC/PP [8] vocabulary to model user preferences and device capabilities. An excerpt of a user profile instance is given below

```
<Description rdf:about="Profile">
  <ccpp:component>
    <HardwarePlatform>
      <imageCapable>Yes</imageCapable>
      <client>Desktop</client>
    </HardwarePlatform>
    ...
  </ccpp:component>
  <UserPreferences>
    <levelOfExpertise>Expert</levelOfExpertise>
  </UserPreferences>
</ccpp:component>
```

The adaptation is realized by means of appearance conditions attached to different design artifacts. Evaluating such conditions to true/false enables/inhibits the presence of their associated artifacts in the design. Because of the overlay nature of Hera models, an artifact deleted in one model will also be eliminated from the subsequent models. In order to specify meaningful adaptation conditions, each model can only use a subset of the profile attributes in conditions.

3.1. Adaptation in CM

Adaptation in CM removes concepts and media types that have an associated condition not valid. Figure 5 depicts an adaptation condition in CM (remember that MM is part of CM). The media items corresponding to the Image media type will be part of the CM instance only if the user’s device has image viewing capabilities. The same adaptation technique can be used on the concepts from Figure 1.

Figure 5. Adaptation condition in CM

3.2. Adaptation in AM

Adaptation in AM suppresses slices that do not fulfill an attached condition. As a consequence navigation relationships that are pointing to suppressed slices will be hidden. Figure 6 presents an adaptation condition based on the level of expertise of a user (Beginner, Normal, or Expert) with respect to a given domain. If for example the user is an Expert he will have access to the textual description of a certain artistic technique in slice Technique.main.

Figure 6. Adaptation condition in AM
3.3. Adaptation in PM

Adaptation in PM eliminates regions that have an assigned condition invalid. As a side effect region relationships that involved the removed regions will also be discarded. Figure 7 shows two mutual exclusive conditions depending on what kind of client (Desktop or WAP Phone) the user has. For a Desktop client the available horizontal space is larger than for example a WAP Phone client. As a consequence the region displaying the artist’s name is on the right hand side of the artifact’s region for a Desktop client and below the artifact’s region for a WAP Phone client.

4. Reuse

All Hera models are suitable for reuse by means of different recycling mechanisms. There are a lot of recycling mechanisms among which we mention inheritance [7], prototyping (code sharing) [3, 7], attaching new properties to existing design artifacts etc. In this paper we focus on inheritance. Extending a model by means of inheritance will enable also the (direct) reuse of design aspects of the old subsequent models if the designer didn’t refine them (indirect reuse).

4.1. Reuse in CM

Concepts from CM can be easily extended to new concepts by subclassing the old ones. Figure 8 illustrates the insertion of two new concepts Painting and Painter as extensions of the existing Artifact and Artist concepts. The Painting concept has the new area property attached to characterize the painting’s surface. The concept relationships creates and created_by are also appropriately refined by paints and painted_by. In subsection 2.1 we already discussed how a new media type similar to an old one can be added to MM based on inheritance.

4.2. Reuse in AM

Slices from AM can be extended to new slices that increase the complexity of the old ones by adding new slice compositional elements and new navigational relationships. For example, these new slices can add to the AM the properties of the new concepts inserted to the CM in subsection 4.1. Figure 9 depicts the subclassing of the Artifact.main slice by the Painting.emain slice.
We strongly believe that a methodology that supports application requirements as early as possible in its design phase will ensure its success. As future work we would like to extend the Hera methodology to address (at design level) other WIS requirements like adaptivity (which considers user’s browsing behaviour) or user interaction (which takes in account user’s input to the system).

Furthermore we would like to complement Hera’s specification models with the flexible AMACONT implementation. The adaptation aspects specified in this paper correspond naturally to the variant selection mechanism of AMACONT components.

References