Extraction of copper(II) and nickel(II) by nopinoquinone dioxime

Citation for published version (APA):

DOI:
10.1016/S0277-5387(00)84630-6

Document status and date:
Published: 01/01/1984

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication
EXTRACTION OF COPPER(II) AND NICKEL(II)
BY NOPINOQUINONE DIOXIME

L. R. M. PAPING, T. P. M. BEELEN, M. MOLS, J. H. M. C. van WOLPUT
and R. PRINS*

Department of Inorganic Chemistry, Eindhoven University of Technology, P. O. Box 513,
5600 MB Eindhoven, The Netherlands

(Received 25 August 1983; accepted 16 November 1983)

Abstract—In the research for a selective extractant for nickel a strained dioxime,
β-nopinoquinone dioxime, has been studied in its extraction properties for copper(II) and
nickel(II). Spectroscopic investigations (ESR and NMR) showed that both copper and
nickel are extracted as a N,N-coordinated chelate. The extraction studies showed that the
use of strained instead of aliphatic dioximes makes the extraction more convenient because
of the higher extraction rate, but the selectivity for nickel above copper disappears.
δ-nopinoquinone dioxime is easily converted into its furazan by treatment with 1N
NaOH. This furazan is a rather weak ligand without significant extraction capacities.

Vicinal dioximate ligands usually form stable
N,N-chelated complexes containing a conjugated
N = C–C = N system (Fig. 1a).

In previous work1 it became clear that cam-
phorquinone dioxime cannot form a stable
N,N coordinated chelate with copper and nickel.
The rigid bicyclic skeleton is responsible for a
larger N–N distance than in aliphatic α-dioximes
and makes the N,O-coordination, with a six-
membered ring metal–N = C–C = N–O– more at-
tractive (Fig. 1b).

*Author to whom correspondence should be ad-
dressed.

Fig. 1. (a) The N,N-coordinated bis(dimethylglyoximato)nickel(II) chelate. (b) The N,O-coordinated
bis(camphorquinonedioximato) copper(II) chelate.

N,N-COORDINATION

N,O-COORDINATION
Fig. 2. Two isomeric forms of nopinoquinone dioxime.

EXPERIMENTAL

1H NMR spectra were obtained at room temperature on a 60 MHz Varian EM 360 A spectrometer, while ESR measurements were done with a Varian E15 spectrometer at room temperature and UV-visible spectra were obtained on a Unicam SP.800D. Aqueous metal ion concentrations were measured with the Perkin–Elmer 300 Atomic Absorption Spectrophotometer.

The extraction experiments were carried out in a three stoppered flask with a stirring device and continuous pH measurements. The starting volumes of water and organic solvent were both 250 cm3. Stirring was stopped when no further change of the pH was noticed, indicating that equilibrium was reached. For analysis equally small volumes of water layer and organic layer were withdrawn from the system. To measure the distribution coefficient as a function of pH thereafter a small quantity of 4N acid or base was added, and the process of stirring until equilibrium and withdrawal of small portions of the aqueous and organic solutions was repeated at a different pH. Care was taken to keep the volumes of the aqueous and organic solutions equal. Although in this procedure the electrolyte concentration does not stay constant we preferred this method because it is convenient to execute and because in a separate experiment it was shown that in the applied concentration range the influence of the electrolyte concentration was negligible. Pentanol was used as organic solvent and as inorganic salt we used metal nitrate. We used NaOH as base and HNO$_3$ as acid.

SYNTHESIS

β-Nopinoquinonedioxime

Nopinone(6,6-dimethyl)bicyclo[3.1.1]heptane-2-one) was prepared by ozonolysis of β-pinene (J. T. Baker chemicals B. V. Deventer, Baker grade) according to a published method. The decrease in intensity of the sharp C–H band of alkenes at 3070 cm$^{-1}$ in the IR spectrum was a useful indication how much pinene was converted. Following the conventional method2 using n-butyl nitrite, isonitrosopinopinone was obtained in 30% yield from nopinone. Following the procedures of Nakamura4, crude isonitrosopinopinone (0.18 mol) dissolved in 50 cm3 ethanol was treated with an aqueous solution of NH$_2$OH.HCl (0.48 mol) and NaOAc (0.51 mol) at 90°C for 3 days. A solid white inorganic product precipitated. The mother liquid was concentrated in vacuo to 50% of the original volume and filtered. Further concentration, removing ethanol completely gave the crude β-isomer. Extraction with boiling ethyl acetate removed the δ-isomer completely and gave the pure β-H$_2$NQD. Found: C,59.3; H,7.9; N,15.5. Calc.: C,59.3; H,7.7; N,15.4%. IR: OH stretching vibrations at 3360 and 3180 cm$^{-1}$ C = N absorptions at 1585 and 1615 cm$^{-1}$. These values are in perfect agreement with Nakamura.5 1H NMR (DMSO-d$_6$): δ 0.74 (8, 3H), 1.03 (s, 3H), 2.05 (m, 1H), 2.41 (r, 1H), 2.64 (d, 1H), 3.41 (t, 1H), 10.74 (s, 1H), 11.18 (s, 1H) confirms the β structure.4

The furazan of nopinoquinone dioxime (Fig. 3)

The yellow oil, which was obtained in the above synthesis by the evaporation of the ethylacetate from the extract, was treated with 1N NaOH and extracted with ether. The ether layer was dried and evaporated. A yellow pleasantly smelling oil was obtained. After distillation a white powder was produced with a melting point of 30°C. IR: 1510 cm$^{-1}$ (furazan) 1550 and 1615 cm$^{-1}$ (C = N); no OH stretchings present. Found: C,65.5; H,7.5; N,16.9. Calc. for C$_9$H$_{13}$N$_2$O: C,65.8; H,7.3; N,17.1%. 1H NMR (DMSO-d$_6$): see Fig. 4.

Bis(β-nopinoquinonedioximato)nickel(II)

Ni(\beta-HNQD)$_2$ was synthesized by the reaction of β-nopinoquinone dioxime and NiCl$_2$.6H$_2$O in ethanol with NaOH in a minimum amount of water. After stirring for two hours water was added and the orange–red chelate precipitated. The chelate was washed with water and dried at 50°C in the presence of silica.

IR: No absorption in the 3100–3600 cm$^{-1}$ region. 1585 and 1560 cm$^{-1}$ (shoulder) (C=N) Found: C,51.9; H,6.26; N,13.51. Calc. for NiC$_{18}$H$_{20}$N$_2$O$_4$: C,51.35; H,6.25; N,13.31%.

Fig. 3. The structure of the furazan derived from nopinoquinone dioxime.
TREATMENT OF EXTRACTION DATA

The extraction is expected to follow eqn (1):

\[\text{Me}^{2+} + 2\text{H}_{2}\text{NQD} \rightleftharpoons \text{Me(HNQD)}_2 + 2\text{H}^+ \quad (1) \]

where Me\(^{2+}\) represents the aquo metal ion, Me-(HNQD)\(_2\) the extractable complex and bars indicate the organic layer. The equilibrium constant \(K_E\) and the distribution coefficient \(D\) are defined as:

\[K_E = \frac{[\text{Me(HNQD)}_2][\text{H}^+]^2}{[\text{Me}^{2+}][\text{H}_2\text{NQD}]^2} \quad (2) \]

\[D = \frac{[\text{Me(HNQD)}_2]}{[\text{Me}^{2+}]} \quad (3) \]

Combination of (2) and (3) gives

\[\log D = \log K_E + 2\text{pH} + 2\log[\text{H}_2\text{NQD}] \quad (4) \]

When taking a large excess \(\text{H}_2\text{NQD}\), so that \(\text{H}_2\text{NQD}\) is constant, it follows that

\[\left(\frac{\partial \log D}{\partial \text{pH}}\right)_{[\text{H}_2\text{NQD}]} = 2. \quad (5) \]

Introducing \(\text{pH}_{1/2}\) as the pH value at which 50% of the metal is extracted (\(\log D = 0\)) eqn (4) leads to:

\[\log K_E = -2 \log [\text{H}_2\text{NQD}] - 2\text{pH}_{1/2} \quad (6) \]

Finally the value of \(\text{pH}_{1/2}\) at 1.0 M equilibrium concentration of extractant in the organic phase, denoted by \((\text{pH}_{1/2})_{1.0}\) can be obtained from eqn (6) as

\[(\text{pH}_{1/2})_{1.0} = -\frac{\log K_E}{2}. \quad (7) \]

Figure 5 shows the results for the extraction of Cu\(^{2+}\) and Ni\(^{2+}\) with an excess of \(\beta\)-H\(_2\)NQD. The pH\(_{1/2}\) value of 1.85 for Cu\(^{2+}\) corresponds with
Fig. 5. Log D as a function of pH for the extraction of Cu(II) (X) and Ni(II) (O) by nopinoquinone dioxime. Concentration of \(\beta \)-H\(_2\)NQD is pentanol 0.025 M. Initial metal nitrate concentration 0.001 M.

\(\text{pH}^0_1 = 0.25 \). For Ni\(^{2+} \) these values are somewhat higher: \(\text{pH}^0_2 = 2.88 \) and \(\text{pH}^0_1 = 1.28 \). For the nickel extraction equilibrium was reached within ten minutes.

The slopes of the log D - pH curves are 1.75 for copper and 2.22 for nickel, both values deviate from the theoretically expected value of 2 for a metal:ligand ratio of 1:2. No change in the extraction behaviour of \(\beta \)-H\(_2\)NQD could be observed after 2 days of contact.

To find out if copper only forms a 1:2 chelate with \(\beta \)-H\(_2\)NQD an experiment was done with equimolar amounts of copper and \(\beta \)-H\(_2\)NQD (Fig. 6). Maximum copper extraction was 50\%, in excellent agreement with the formation of Cu: \(\beta \)-H\(_2\)NQD = 1:2. The shape of the UV/visible spectrum of the pentanol solution with the extracted chelate did not change during this experiment. The spectrum showed two maxima below 37.500 cm\(^{-1} \), one at 35.700 cm\(^{-1} \) (\(\varepsilon = 9000 \)) and

Fig. 6. % Copper extraction as a function of pH for the extraction of Cu(II) by \(\beta \)-nopinoquinone dioxime. The initial concentration of \(\beta \)-H\(_2\)NQD in pentanol and the initial copper concentration in water are both 0.002 M.
Fig. 7. ESR spectrum of the copper chelate formed during the extraction of Cu$^{2+}$ by β-H$_2$NQD in chloroform at room temperature.

The other at 27,000 cm$^{-1}$ ($\epsilon = 2300$). The elemental analysis from the isolated chelate is: C, 48.61; H, 6.32; N, 11.29; Cu, 12.98; O, 20.8%. This leads to a chelate with formula CuC$_2$H$_3$N$_4$O$_6$ indicating that the chelate has two additional water molecules and also that some pentanol is retained. The expected elemental analysis for Cu(HNQD)$_2$.2H$_2$O containing 6% pentanol (C$_x$H$_y$OH) is: C, 48.19; H, 6.96; N, 11.34; Cu, 12.88; O, 20.63%. The ESR spectrum of the chelate in CHCl$_3$ is presented in Fig. 7.

The nickel H$_2$NQD chelate isolated from the extraction was examined by NMR (Fig. 8). The elemental analysis gave: C, 54.4; H, 7.0; N, 12.6; Ni, 11.7% which was different from the expected for Ni(HNQD)$_2$: C, 51.3; H, 6.2; N, 13.3; Ni, 13.9%. The IR spectrum was almost identical with that from the synthesized Ni(β-HNQD)$_2$. Only one extra absorption appeared at 3400 cm$^{-1}$, probably due to the OH from pentanol that was not completely removed at 60°C.

The furazan of nopinoquinone dioxime did not have any extraction capacities at all.

DISCUSSION

Extraction

If we compare the extraction results of β-H$_2$NQD with those of β-H$_2$CQD clearly a lowering of the (pH$^\beta$)$_{1.0}$ value for both copper and nickel is observed (Table 1). This lowering cannot completely be explained by the fact that different solvents are used. In previous work1 it was proven that β-H$_2$CQD isomerizes to δ-H$_2$CQD and that this is coupled with a lowering of the pH$^\beta$ value. So pH$^\beta(\beta$-H$_2$CQD) > pH$^\beta(\delta$-H$_2$CQD). In Table 1 it is observed that the pH$^\beta$ value of δ-H$_2$CQD is larger than that of β-H$_2$NQD in pentanol. The conclusion can be drawn that the pH$^\beta$ value of β-H$_2$NQD is smaller than that of β-H$_2$CQD. Another difference between β-H$_2$NQD and β-H$_2$CQD is that with the former compound no change in the extraction behaviour is seen after a contact time of two days. Isomerization of β-H$_2$NQD is therefore very unlikely. To confirm this the isolated copper chelate was investigated with ESR spectroscopy and the isolated nickel chelate was examined with NMR spectroscopy.

The structure of the copper H$_2$NQD chelate

Figure 6 shows that copper forms a 1:2 chelate with β-H$_2$NQD under extraction conditions. From the elemental analysis of the extracted Cu(β-HNQD)$_2$ it became clear that the chelate is extracted with two additional water molecules. It
Fig. 8. 60 MHz 1H spectrum of the nickel chelate formed during the extraction of Ni$^{2+}$ by β-H$_2$NQD in benzene at room temperature.

Table 1. Extraction of copper(II) and nickel(II) by some vic-dioximes

<table>
<thead>
<tr>
<th>compound</th>
<th>solvent</th>
<th>(pH)$_{Cu}$</th>
<th>(pH)$_{Ni}$</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-H$_2$CQD*</td>
<td>pentanol</td>
<td>+1.48</td>
<td>+3.43</td>
<td>(1)</td>
</tr>
<tr>
<td>β-H$_2$CQD*</td>
<td>t.b.p.</td>
<td>+2.61</td>
<td>+4.73</td>
<td>(1)</td>
</tr>
<tr>
<td>δ-H$_2$CQD</td>
<td>pentanol</td>
<td>+1.15</td>
<td>+3.60</td>
<td>(1)</td>
</tr>
<tr>
<td>β-H$_2$NQD</td>
<td>pentanol</td>
<td>+0.25</td>
<td>+1.28</td>
<td>this study</td>
</tr>
<tr>
<td>C5H${11}$-C(NO$_2$)-C(NO$_2$)-C5H${11}$</td>
<td>toluene</td>
<td>+0.62</td>
<td>-0.42</td>
<td>(6)</td>
</tr>
<tr>
<td>C7H${15}$-C(NO$_2$)-C(NO$_2$)-C7H${15}$</td>
<td>toluene</td>
<td>+0.54</td>
<td>-0.36</td>
<td>(6)</td>
</tr>
<tr>
<td>C-C-C-C-C(NO$_2$)-C(NO$_2$)-C-C-C-C</td>
<td>toluene</td>
<td>+0.59</td>
<td>-0.14</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Isomerization occurs to δ-H$_2$CQD under extraction conditions.
is reasonable to expect that these two water molecules are weakly bound in the axial position of a distorted octahedron. Cu\(^{2+}\) is a d\(^9\) system with one unpaired electron which will be located in the \(d(x^2 - y^2)\) orbital to minimize the electronic repulsion of the other electrons with the ligand electrons. The ESR spectrum (Fig. 7) shows four main lines which are due to copper (\(^{63}\)Cu, \(^{65}\)Cu: I = 3/2) and extra lines superimposed on it due to nitrogen (\(^{14}\)N: I = 1) superhyperfine interaction. If copper forms a CuN\(_2\) species then the \(d(x^2 - y^2)\) orbital will have overlap with 4N's which results in a superhyperfine structure with nine equidistant lines with an intensity ratio of 1:4:10:16:19:16:10:4:1. If on the other hand copper forms a CuN\(_4\) chromophore, only 2 N's are coupled to copper, and given the fact that O does not have a magnetic moment, five equidistant lines with an intensity ratio of 1:2:3:2:1 are expected. In Fig. 7 it is hard to see how many lines are superimposed on one copper line because there is some overlap between the two copper lines on which nitrogen superhyperfine splitting is noticeable. In contrast with the spectrum of Cu(\(\delta\)-HCQD)\(_2\) (Ref. 1 Fig. 9) there are now no equidistant extra lines with strange intensities due to \(^{65}\)Cu, visible on the high field side of the spectrum. This can be explained in two days. Firstly, the Cu(\(\delta\)-HCQD)\(_2\) spectrum has more narrow lines as deduced from the fact that the nitrogen superhyperfine splitting is clearly visible on the second low-field copper line. Furthermore, the \(^{63}\)Cu splitting is smaller in Cu(\(\beta\)-HNQD)\(_2\): 77.5 G instead of 90.5 G. The splitting of \(^{65}\)Cu can now be calculated from the difference in magnetic moment (0.70904 \times 10^{-4} for \(^{63}\)Cu vs 0.75958 \times 10^{-4} rad sec \(^{-1}\) G\(^{-1}\) for \(^{65}\)Cu). The expected separation between \(^{63}\)Cu and \(^{65}\)Cu on the high field side of the ESR spectrum is 3/2. ((0.75958/0.70904) - 1).77.5 = 8.3 G instead of the 9.6 G for Cu(\(\delta\)-HCQD)\(_2\). In Fig. 9 the two high-field lines of copper are seen, and the nitrogen superhyperfine lines are numbered. The intensities cannot be measured exactly, because of the superposition on the copper lines. The rough values can be obtained by taking the so-called up-down distance, but these values are too low if the copper line goes up and too high if the copper line goes down.

Table 2 shows that the intensities are in reasonably good correlation with a CuN\(_2\) chromophore, especially the lines 8–13 where no overlap occurs with the other nitrogen superhyperfine splitting. The CuN\(_2\)O\(_2\) chromophore can be rejected because the lines 1, 12 and 13 cannot be explained. Furthermore the calculated intensities of the lines 7, 8, 10 and 11 deviate from the observed intensities. It is concluded from the ESR spectrum that Cu(\(\beta\)-HNQD)\(_2\) has N,N-coordination.

The structure of the nickel \(\beta\)-HNQD chelate

The elemental analysis of Ni(\(\beta\)-HNQD)\(_2\) from extraction deviates from the expected values, while the synthesized Ni(\(\beta\)-HNQD)\(_2\) had a very good elemental analysis. Nevertheless the IR spectra of these two species are identical, except for an extra absorption of the extracted chelate at 3400 cm\(^{-1}\), probably due to the OH group of pentanol that was not completely removed at 60°C. That is why the C and H percentages are raised and as a consequence the N and Ni percentages are lowered. No additional water molecules were found by the elemental analysis. This makes a square planar structure the most probable configuration as is often seen for Ni\(^{2+}\) d\(^8\) systems. This system will
Table 2. Up-down values of the nitrogen superhyperfine splittings of Fig. 9 and the expected values for CuN$_4$ and CuN$_2$O$_2$ chromophores

<table>
<thead>
<tr>
<th>line number</th>
<th>up-down value</th>
<th>CuN$_4$ expectation</th>
<th>CuN$_2$O$_2$ expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4.4</td>
<td>5.8</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>9.1</td>
<td>9.3</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>5</td>
<td>8.4</td>
<td>9.3/1.0*</td>
<td>7.4</td>
</tr>
<tr>
<td>6</td>
<td>4.4</td>
<td>5.8/4.1*</td>
<td>3.7</td>
</tr>
<tr>
<td>7</td>
<td>8.1</td>
<td>2.3/10.3*</td>
<td>6.5</td>
</tr>
<tr>
<td>8</td>
<td>15.2</td>
<td>0.6/16.4*</td>
<td>13.0</td>
</tr>
<tr>
<td>9</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>10</td>
<td>15.7</td>
<td>16.4</td>
<td>13.0</td>
</tr>
<tr>
<td>11</td>
<td>9.6</td>
<td>10.3</td>
<td>6.5</td>
</tr>
<tr>
<td>12</td>
<td>3.2</td>
<td>4.1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.8</td>
<td>1.0</td>
<td>0</td>
</tr>
</tbody>
</table>

*The superhyperfine splitting of the two copper lines are overlapping in this region.

Table 3. 1H NMR spectra of β- and δ-nopinoquinone dioxime and their nickel(II) chelates

<table>
<thead>
<tr>
<th>compound</th>
<th>9C$_3$H$_3$</th>
<th>8C$_3$H$_3$</th>
<th>Hf</th>
<th>He</th>
<th>Hd</th>
<th>Hb,c</th>
<th>Ha</th>
<th>OH</th>
<th>solvent reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(δ-HNQD)$_2$</td>
<td>0.80 1.35 1.21 2.16 2.60 2.82</td>
<td>11.16</td>
<td>CDCl$_3$</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(β-HNQD)$_2$</td>
<td>0.56 0.94 1.17 1.52 2.20 2.45 3.29</td>
<td>17.90</td>
<td>C$_6$D$_6$</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(δ-HNQD)$_2$</td>
<td>0.63 0.94 0.86 1.52 2.09 2.38 3.29</td>
<td>18.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(β-HNQD)$_2$</td>
<td>0.53 0.89 1.16</td>
<td>* 2.15</td>
<td>* 3.28</td>
<td>17.87</td>
<td>C$_6$H$_6$ this study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extraction</td>
<td>0.60 0.89 0.82</td>
<td>* 2.05</td>
<td>* 3.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-H$_2$NQD</td>
<td>0.74 1.30 1.07 2.05 2.48-2.74 3.47 11.09/10.72 DMSO-d$_6$</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ-H$_2$NQD</td>
<td>0.74 1.31 1.20 2.10 2.44- - - 2.78 12.30/12.08 DMSO-d$_6$</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-H$_2$NQD</td>
<td>0.74 1.30 1.03 2.05 2.40-2.80 3.41 11.18/10.74 DMSO-d$_6$</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The chemical shifts of these protons could not be determined because of the presence of some pentanol.

Therefore have a low-spin state, which means that the electrons are paired in the $d(z^2)$ orbital—the orbitals $d(xy)$, $d(xz)$ and $d(yz)$ are also filled with paired electrons—and the $d(x^2-y^2)$ orbital, which has a large electron repulsion with the ligand electrons, is empty. As a consequence Ni(β-HNQD)$_2$ is diamagnetic and NMR spectroscopy might give useful information.

The NMR spectrum of Ni(β-HNQD)$_2$ is of a bad quality probably due to the presence of some paramagnetic traces. This is not strange for such a strong complexant as β-H$_2$NQD. According to Nakamura's Ni(β-HNQD)$_2$ can have two possible ligand alignments, $anti$ and syn. This can also be observed in the NMR spectrum of the extracted Ni(β-HNQD)$_2$. The values of the chemical shifts are given in Table 3 together with the literature values. The proton numbering can be found in Fig. 10.

Daniel and Pavia have studied in detail the effect of the oxime group on the chemical shift of the neighbouring proton. If the oxime group is $anti$, as is the case in Ni(β-HNQD)$_2$, the chemical

Fig. 10. The nopinoquinone dioxime molecule with hydrogen numbering.
shift of Ha will move to higher field. The origin of this effect is not known with certainty. Phillips' explains the shift by the interaction of the hydroxyl group with the Ha proton. Saito suggests an interference of the free electron pair of nitrogen in the syn structure. The observed δ of 3.28 for the extracted Niβ-HNQD₂ proves that the neighbouring oxime group has the anti configuration. Furthermore, the observed δ of 17.87 of the OH group is in very good agreement with the Niβ-HNQD₂ compound synthesized by Nakamura.

In N,O-coordination another kind of hydrogen bridging occurs (see Fig. 1) and this leads to a different chemical shift, such as Niδ-HNQD₂: δ = 11.16, Niα-HCQD₂: δ = 11.07° and Niδ-HCQD₂: δ = 10.80°. The conclusion drawn from this NMR study is that the extracted nickel chelate indeed has N,N-coordination. The spectrum gives some extra lines in the δ = 1.4 region because of the presence of some pentanol. From the NMR integral the quantity of pentanol is calculated to be about 6% which is in good agreement with that estimated by elemental analysis.

The influence of the N-N distance
The fact that both Cu²⁺ and Ni²⁺ form N,N-bonding chelates with β-H₂NQD confirms the theory that the N-N distance is an important factor in the chelation. Camphorquinone dioxime H₂CQD, an analogous molecule with a N-N distance of about 3.0 Å instead of the 2.8 Å of H₂NQD, cannot form stable N,N-coordinated chelates. From the fact that copper and nickel have smaller pHi values with β-H₂NQD than with δ-H₂CQD (see Table 1) the conclusion may be drawn that N,N-coordinated chelates are thermodynamically more stable, but that with H₂CQD the critical boundary for the N-N distance is passed. Comparing β-H₂NQD with the unstrained aliphatic dioximes in Table 1 it is remarkable that the order of stability for copper and nickel is reversed. For copper it does not seem to matter that the N-N distance is enlarged and even a slight decrease of the pHi value can be observed. For nickel the greater N-N distance is coupled with a striking increase of the pHi value. Furthermore, the nickel extraction rate is raised enormously. Equilibrium is reached within 10 min using β-H₂NQD as extractant instead of several days, when using unstrained aliphatic dioximes. To understand this difference the crystal structure of some known copper and nickel dioxime chelates have to be discussed. If we compare the results of the crystal structure analysis of bis(methylethlyglyoximato)copper(II) from Vaciago and Zambonelli there are some clear differences. Nickel forms a square planar structure with a nickel to nitrogen distance of 1.86 Å and a dioxime N-N distance of 2.42 Å, while copper is five coordinated in a square-pyramidal configuration with a copper to nitrogen distance of 1.95 Å and a dioxime N-N distance of 2.52 Å. Shannon has calculated the ionic radii for different kinds of configurations. The values for copper(II) are 0.57 Å for a four coordinated square complex, 0.65 Å for a five coordinated complex and 0.73 Å for a six coordinated complex. For nickel(II) these values are 0.49 Å for a four coordinated square complex, 0.63 Å for a five coordinated complex and 0.69 Å for a six coordinated complex. The difference between the copper and nickel radius in the structure analysis of the glyoxime chelate, however, is 0.09 Å. In the unstrained glyoxime chelate the N-N distance will be determined by the metal ion radius. That elucidates the difference in N-N distance between the two complexes in the crystal structure. In the β-H₂NQD complex the N-N distance is determined by the strained carbon skeleton to be about 2.8 Å. This is far from the ideal N-N distance for a NiN₂ chromophore which is 2.426, so the chelate will be destabilized and the pHi value will rise. For Cuβ-HNQD₂ elemental analysis shows that there are two additional water molecules associated to the chelate. It is not unlikely that these water molecules are located in the axial position of octahedral copper (d(π²)) so that a (distorted) octahedral configuration exists. The six coordinated copper has according to Shannon a much greater ionic radius than the four coordinated nickel: 0.73 Å vs 0.49 Å. Furthermore the copper coordination sphere possesses some plasticity i.e. the stronger the axial ligands are bonded, the weaker the equatorial ligands are bonded (which means in this case the larger the Cu-N distance). So less destabilization is to be expected for copper.

Good kinetics of nickel(II) extraction are to be expected whenever substitution of water takes place within an octahedral paramagnetic complex, which is directly followed by the elimination of the surplus monodentate ligands to a square planar diamagnetic complex. No octahedral complexes of the type Ni(H₂O)₂ (LL)₂ are formed by unstrained aliphatic dioximes. The weakening of the ligand by enlargement of the N-N distance makes it energetically more favourable to form this kind of paramagnetic octahedral intermediate. This could explain why β-H₂NQD has such good kinetics relative to unstrained aliphatic dioximes.
Table 4. The chemical shifts in ppm and the coupling constants in cps from the furazan of nopinoquinone dioxime. NMR spectrum see Fig. 7. Proton numbering see Fig. 10

<table>
<thead>
<tr>
<th>Protons</th>
<th>Chemical Shift (ppm)</th>
<th>Mult.</th>
<th>Coupling Constant (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_a</td>
<td>3.20</td>
<td>triplet</td>
<td>2J(H_e, H_f) = 10.5</td>
</tr>
<tr>
<td>H_b,c</td>
<td>3.04</td>
<td>doublet</td>
<td>3J(H_a, H_e) = 5.0</td>
</tr>
<tr>
<td>H_d</td>
<td>2.35</td>
<td>multiplet</td>
<td>3J(H_a, H_f) = 0</td>
</tr>
<tr>
<td>H_e</td>
<td>2.87</td>
<td>doublet</td>
<td>3J(H_d, H_e) = 5.0</td>
</tr>
<tr>
<td>H_f</td>
<td>1.27</td>
<td>multiplet</td>
<td>3J(H_d, H_f) = 0</td>
</tr>
<tr>
<td>C_gH_3</td>
<td>0.58</td>
<td>singlet</td>
<td>3J(H_d, H_b,c) = 2.5</td>
</tr>
<tr>
<td>C_8H_3</td>
<td>1.42</td>
<td>singlet</td>
<td>4J(H_a, H_d) = 5.0</td>
</tr>
</tbody>
</table>

The furazan of nopinoquinone dioxime

The yellow oil which was obtained in the synthesis of β-H,NQD by evaporation of ethyl acetate probably consists for the major part of δ-H_2NQD. To remove the impurities the oil was treated with 1N NaOH and extracted with ether. Acidifying of the water layer did not give much product, but evaporation of the ether layer gave a compound that is probably the dehydrated form of nopinoquinone dioxime. Wolff made such a furazan—also called 1,2,5-oxadiazole—by refluxing dimethylglyoxime with sodium hydroxide in water. This compound had a low melting point — 7°C and a sweet smell. Also other furazans could be synthesized from dioximes. Behr found that especially the amphi forms (δ-H_2NQD is amphi) are most easily dehydrated. To prove whether the compound really is the furazan the NMR spectrum (Fig. 4) was studied in detail. The compound gave a very clear spectrum. Chemical Shifts and coupling constants are given in Table 4. Because furazan is a six electron system, 4π electrons from the two CN double bonds and two from the oxygen, the five membered ring is aromatic. The field of this aromatic ring causes a deshielding effect for the protons on the pinene skeleton. Comparing the chemical shifts of β-H_2NQD with those of the furazan it is notable that almost all chemical shifts are shifted downfield. This confirms the aromatic character of the furazan ring. The chemical shift of H_a is somewhat smaller, which was to be expected because in the furazan no anti OH group exists. The chemical shift of C_gH_3 is changed in the opposite direction because the methyl group is placed partly above the aromatic ring where lines of the induced field are opposite to the applied field.

It is known that theoretical treatments of the magnitude of coupling constants such as the Karplus equation (vicinal couplings) must be treated with reserve. Nevertheless the use of the equation of Karplus:

\[3J(H, H) = 4.22 \cdot 0.5 \cos \phi + 4.5 \cos 2\phi\]

in which \(\phi\) is the dihedral angle between the two H’s, gives dihedral angles which are in good agreement with the scale model made from the furazan of nopinoquinone dioxime. \(3J(H_a, H_e) = 5.0 \text{ cps}\) leads to an angle of 37° between H_a and H_e. The expected angle between H_a and H_f now is 120° — 37° = 83°. A dihedral angle of 83° leads to a coupling constant \(3J(H_a, H_f) = -0.21 \text{ cps}\), a coupling that will not be observed. The same holds for \(3J(H_d, H_f)\). The coupling constants are almost equal to the values found by Abraham for some other pinane derivatives. The long-range coupling \(3J(H_a, H_d)\) is remarkable but not unknown in bicyclic molecules.

Meinwald explained this long-range interaction by assuming a fairly extensive overlap between the small lobes of the orbitals directed 180° away from the direction of the CH bonds, which are pointed towards each other. This explanation appears reasonable when a scale model is examined. This proves that the pinane skeleton is still preserved. Elemental analysis also leaves no doubt on the compound being the furazan of nopinoquinone dioxime.

The furazan of nopinoquinone dioxime shows no extraction capacities at all. The main reason for this is that there is no acidic H atom present. Also no hydrogen bridge stabilization of the complex can occur. Furthermore the bidentate character of the ligand is lost. Driessen did make some metal furazan complexes with SbCl_5^- as anion. All the complexes decomposed when in contact with water which means that furazan is a rather weak ligand.

The aromaticity of the furazan ring makes the molecule very stable. It is therefore not possible to convert the furazan into β- or δ-H_2NQD.

REFERENCES