A systematic design of parallel program for Dirichlet convolution

Citation for published version (APA):

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
A Systematic Design of a Parallel Program for Dirichlet Convolution

by

Pieter Struik

89/7

May, 1989
This is a series of notes of the Computing Science Section of the Department of Mathematics and Computing Science Eindhoven University of Technology. Since many of these notes are preliminary versions or may be published elsewhere, they have a limited distribution only and are not for review. Copies of these notes are available from the author or the editor.
A Systematic Design of a Parallel Program for Dirichlet Convolution

Pieter Struijk
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O.Box 513, 5600 MB Eindhoven, The Netherlands
May 11, 1989

0 Introduction

In this paper we design a parallel program for computing the Dirichlet Convolution of two arithmetical functions. We believe that the program derivation we present is easy to understand and is, thereby, a nice example of our method for designing parallel programs. Programs are derived from their formal specification in a calculational manner. Correctness by design is our main objective, whereas other methods afterwards require a verification of the constructed algorithm.

The problem of designing a parallel program for Dirichlet Convolution was originally posed by Tom Verhoeff in [5]. Solutions for computing the Dirichlet Convolution can be found in [0] and [3]. These solutions resemble our solution; the program derivations, however, are completely different.

The program we derive is a program with fine-grained parallelism. We do not discuss methods to enlarge the grain-size. Our main goal is to show that our design method can be applied to non-trivial examples as easily as to simple examples.

This paper is organized as follows. In section 1 the Dirichlet Convolution is defined and a parallel program is derived for computing the Dirichlet Convolution of two arbitrary arithmetical functions. Section 2 deals with the inverse convolution problem. A parallel program for the inverse convolution problem turns out to be almost identical to the program for Dirichlet Convolution. The Möbius function is an instance of the inverse convolution problem. A parallel program for this function is discussed in section 3. Our program for the Möbius function differs from Tom Verhoeff’s program [5].

The notation we use has been adopted from [4].

1 Dirichlet Convolution

In this section we give a definition of Dirichlet Convolution. Next, we generalize this definition and obtain an expression for which we derive a recurrence relation. The program we derive
consists of a network of cells that communicate with each other by message passing over uni­
directional channels. By applying the above mentioned recurrence relation, we derive relations
for the individual communications along the channels. These relations impose requirements
upon the communication behavior of the cells. After finding a communication behavior that
satisfies these requirements and that introduces minimal buffering, we present the program
text. A short complexity analysis of the program concludes this section.

For an introduction to the theory of arithmetical functions we refer to [2]. We consider
arithmetical functions to be functions defined on the positive integers and that have the
integers as their range. The Dirichlet Convolution of two arithmetical functions F and G,
denoted by $F \ast G$, is defined as

$$(F \ast G)(n) = \{ p, q : p \cdot q = n \land 1 \leq p \land 1 \leq q : F(p) \cdot G(q) \}$$

for $n \geq 1$.

In this definition, the summation ranges over a non-empty domain that is symmetric in p
and q. In the program derivation, we shall maintain this symmetry. We do so because
other problems (e.g. dynamic programming [1]) show that destroying symmetry often leads
to inefficient programs.

For the derivation of our program we prefer a slightly different (but equivalent) definition of
$F \ast G$:

$$(F \ast G)(n) = \{ p, q : p \cdot q = n \land (\sqrt{n} \leq p \lor \sqrt{n} \leq q) : F(p) \ast G(q) \}$$

We generalize this expression by introducing an additional variable. For $0 \leq m \leq n$, expres­
sion $Q(m, n)$ is defined as

$$Q(m, n) = \{ p, q : p \cdot q = n \land (\sqrt{n} \leq p \land \sqrt{n} \leq q \leq m) : F(p) \ast G(q) \}$$

Notice that expression $Q(m, n)$ is defined in the context of arithmetical functions F and G.
Taking $m = n$, we then have $Q(n, n) = (F \ast G)(n)$. Hence, computing the Dirichlet Convolution of two arithmetical functions can be done by evaluating expression Q. We now derive a
recurrence relation for $Q(m, n)$, since evaluating $Q(n, n)$ involves evaluation of partial sums
$Q(m, n)$.

For $0 \leq m < \sqrt{n}$

$$Q(m, n) = 0$$

and for $\sqrt{n} \leq m + 1 \leq n$, we derive

$$Q(m + 1, n) = \{ \text{def. } Q \}$$

$$(S p, q : p \cdot q = n \land (\sqrt{n} \leq p \leq m + 1 \lor \sqrt{n} \leq q \leq m + 1) : F(p) \ast G(q))$$

$$= \{ \sqrt{n} \leq m + 1 \}$$

$$(S p, q : p \cdot q = n \land (\sqrt{n} \leq p \leq m \lor \sqrt{n} \leq q \leq m \lor p = m + 1 \lor q = m + 1) : F(p) \ast G(q))$$

$$= \{ \text{domain split} \}$$
1 DIRICHLET CONVOLUTION

Figure 0: linear network of cells

\[
(S p, q : p \cdot q = n \land (\sqrt{n} \leq p \leq m \lor \sqrt{n} \leq q \leq m) : F(p) \cdot G(q)) \\
+ (S p, q : p \cdot q = n \land p = m + 1 \land q = m + 1 : F(p) \cdot G(q)) \\
+ (S p, q : p \cdot q = n \land p \neq q \land (p = m + 1 \lor q = m + 1) : F(p) \cdot G(q))
\]

\[
= \begin{cases}
\text{def. } Q \\
Q(m, n) \\
+ \text{if } (m + 1)^2 = n & \rightarrow F(m + 1) \cdot G(m + 1) \\
\quad \text{if } (m + 1)^2 \neq n \land (m + 1 \mid n) & \rightarrow F(m + 1) \cdot G(n/(m + 1)) \\
\quad \text{if } \neg (m + 1 \mid n) & \rightarrow 0 \\
\end{cases}
\]

where \(k \mid n \) denotes \(k \) divides \(n \), i.e. \(n \mod k = 0 \).

We rewrite this recurrence relation for \(Q(m, n) \)

\[
Q(0, n) = 0 \\
Q(m + 1, n) = Q(m, n)
\]

\[
+ \text{if } (m + 1)^2 < n \lor \neg (m + 1 \mid n) \rightarrow 0 \\
\quad \text{if } (m + 1)^2 = n & \rightarrow F(m + 1) \cdot G(m + 1) \\
\quad \text{if } (m + 1)^2 > n \land (m + 1 \mid n) & \rightarrow F(m + 1) \cdot G(n/(m + 1)) \\
\quad \text{if } \neg (m + 1 \mid n) & \rightarrow 0 \\
\end{cases}
\]

for \(0 \leq m < n \).

We now have a recurrence relation for \(Q(m, n) \) which we use in the program derivation that follows.

The program we derive consists of a linear network of cells (see fig. 0). Cell 0 is fed with two arithmetical functions along two input channels \(f_0 \) and \(g_0 \):

\[
f_0(i) = F(i + 1) \\
g_0(i) = G(i + 1)
\]

for \(i \geq 0 \).

Cell 0 also communicates with the environment by means of output channel \(b_0 \), which satisfies
1 DIRICHLET CONVOLUTION

\[b_0(i) = (F \ast G)(i + 1) \]

for \(i \geq 0 \).

Given this definition, the first communication along channel \(b_0 \) satisfies

\[
\begin{align*}
b_0(0) & = \{ \text{def. } b_0 \} \\
(F \ast G)(1) & = \{ \text{def. } F \ast G \} \\
F(1) \ast G(1) & = \{ \text{def. } f_0 \text{ and } g_0 \} \\
f_0(0) \ast g_0(0) & = \{ \text{def. } f_0 \text{ and } g_0 \}
\end{align*}
\]

and for \(i \geq 0 \) we have

\[
\begin{align*}
b_0(i + 1) & = \{ \text{def. } b_0 \} \\
(F \ast G)((i + 1) + 1) & = \{ \text{def. } Q \} \\
Q((i + 1) + 1, (i + 1) + 1) & = \{ \text{recurrence relation for } Q; \text{ using } (i + 2)^2 > i + 2 \text{ and } i + 2 \mid i + 2 \} \\
Q(i + 1, (i + 1) + 1) + F((i + 1) + 1) \ast G(1) + F(1) \ast G((i + 1) + 1) & = \{ \text{def. } f_0 \text{ and } g_0 \} \\
Q(i + 1, (i + 1) + 1) + f_0(i + 1) \ast g_0(0) + f_0(0) \ast g_0(i + 1) & = \{ \text{def. } f_0 \text{ and } g_0 \}
\end{align*}
\]

On account of this expression, we decide that cell 1 computes \(Q(i + 1, (i + 1) + 1) \) and sends the result to cell 0 along channel \(b_1 \). Generalizing, output channel \(b_j \) of cell \(j \) \((j \geq 1)\) satisfies

\[b_j(i) = Q(i + 1, i + 1 + j) \]

for \(i \geq 0 \). Notice that this relation also holds for \(j = 0 \). On account of this observation, we expect that, later on, matching the communication behaviors of cell 0 and cell 1 will not cause any problem.

Summarizing, the values communicated along channel \(b_0 \) satisfy

\[
\begin{align*}
b_0(0) & = f_0(0) \ast g_0(0) \\
b_0(i + 1) & = b_1(i) + f_0(i + 1) \ast g_0(0) + f_0(0) \ast g_0(i + 1)
\end{align*}
\]

From now on we consider cell \(j \) for \(j \geq 1 \).

The first communication along channel \(b_j \) satisfies

\[
\begin{align*}
b_j(0) & = \{ \text{def. } b_j \} \\
Q(1, 1 + j) & = \{ \text{def. } Q \}
\end{align*}
\]
1 DIRICHLET CONVOLUTION

\[
\begin{align*}
&= \text{recurrence relation for } Q; \quad Q(0,1+j) = 0; \quad 1^2 < j + 1 \\
&= 0
\end{align*}
\]

and for \(i \geq 0 \) we have

\[
\begin{align*}
b_j(i+1) &= \text{def. } b_j \\
&= \begin{cases}
Q((i+1) + 1, (i+1) + 1 + j) \\
&\quad \text{recurrence relation for } Q; \quad (i + 2 | i + j + 2) \equiv (i + 2 | j) \\
&+ \begin{cases}
F(i+2) * G(i+2) & \quad \text{if } (i+2)^2 < i + j + 2 \lor -(i+2 | j) \rightarrow 0 \\
F(i+2) * G((i+j+2)/(i+2)) & \quad \text{if } (i+2)^2 > i + j + 2 \land (i+2 | j) \rightarrow F((i+j+2)/(i+2)) * G(i+2) \end{cases} \\
&\quad \text{if } (i+2)^2 = i + j + 2 \\
&\quad \text{if } (i+2)^2 > i + j + 2 \land (i+2 | j) \rightarrow F((i+j+2)/(i+2)) * G(i+2) + F((i+j+2)/(i+2)) * G(i+2) \\
&\end{cases}
\end{align*}
\]

Thus, for the \((i+1)\)-th communication along channel \(b_j \) cell \(j \) should have at its disposal the values of: \(Q(i+1, i + (j + 1)) \), \(F(i+2) \), \(G(i+2) \), \(F(1+j/(i+2)) \), and \(G(1+j/(i+2)) \). On account of the definition of channel \(b_j \), the \(i \)-th communication along channel \(b_{j+1} \) equals \(Q(i+1, i + 1 + (j + 1)) \).

For \(F(1+j/(i+2)) \), \(F(i+2) \), \(G(i+2) \), and \(G(1+j/(i+2)) \) we introduce four input channels for cell \(j \): respectively \(e_j \), \(f_j \), \(g_j \), and \(h_j \). Just like the definition of input channels \(f_0 \) and \(g_0 \), we define

\[
\begin{align*}
f_j(i) &= F(i+1) \\
g_j(i) &= G(i+1)
\end{align*}
\]

for \(i \geq 0 \).

Although, according to above derivation for \(b_j(i+1) \), \(f_j(i) \) (and \(g_j(i) \) similarly) need only to be specified for indices \(i \) satisfying \((i+1)^2 \geq i + j + 1\), we have specified \(f_j(i) \) for all natural \(i \). For the specification of channel \(e_j \) and \(h_j \), however, we are more liberal, viz.

\[
\begin{align*}
e_j(i) &= F(1+j \text{ div } (i+1)) \\
h_j(i) &= G(1+j \text{ div } (i+1))
\end{align*}
\]

for all natural \(i \) satisfying \((i+1)^2 > (i+j+1)\).

Actually, we have restricted ourselves a little, since \(e_j(i) \) (and \(h_j(i) \) similarly) need only be specified for indices \(i \) that also satisfy \((i+1 | j)\). In the sequel, we explicitly use the fact that \(e_j(i) \) is specified only for \(i \) satisfying \((i+1)^2 > (i+j+1)\).

Now, communications along channel \(b_j \) are implemented by

\[
\begin{align*}
b_j(0) &= 0 \\
b_j(i+1) &= b_{j+1}(i) \\
&+ \begin{cases}
0 & \quad \text{if } (i+2)^2 < i + j + 2 \lor -(i+2 | j) \rightarrow 0 \\
F(i+1) * g_j(i+1) & \quad \text{if } (i+2)^2 = i + j + 2 \\
f_j(i+1) * h_j(i+1) & \quad \text{if } (i+2)^2 > i + j + 2 \land (i+2 | j) \rightarrow f_j(i+1) * h_j(i+1) + e_j(i+1) * g_j(i+1) \\
&\end{cases}
\end{align*}
\]
Next, we turn our attention to the implementation of input channels e_j, f_j, g_j, and h_j. On behalf of the symmetry between channels e_j and h_j, and between channels f_j and g_j, we only discuss the implementation of channels e_j and f_j.

We are free to choose from which cell, either from cell $(j - 1)$ or from cell $(j + 1)$, cell j receives inputs along channels e_j and f_j. It turns out that the first choice, values along channel e_j are sent from cell $(j - 1)$ to cell j, is a good one. In particular, the fact that cell 0 can easily generate the values to be sent along channels e_1 and f_1 often indicates an appropriate choice.

Communications along channels e_1 and f_1 are sent by cell 0 and received by cell 1. Therefore, cell 0 must be able to compute both $e_1(i)$ and $f_1(i)$ for all natural i.

By definition, for all natural i: $f_1(i) = f_0(i)$.

The value of $e_1(i)$ is only specified for natural i satisfying $(i + 1)^2 > i + 2$, i.e. for $i \geq 1$. We are free to choose an appropriate value for $e_1(0)$. For $i \geq 1$:

$$e_1(i) = \begin{cases} \text{def. } e_j \\ F(1 + 1 \text{ div } (i + 1)) \end{cases}$$

$$= \begin{cases} i \geq 1 \text{ implies } 1 \text{ div } (i + 1) = 0 \\ F(1) \end{cases}$$

$$= \begin{cases} \text{def. } f_0 \\ f_0(0) \end{cases}$$

An appropriate choice for the value of $e_1(0)$, now, is $e_1(0) = f_0(0)$, of course.

We proceed by calculating e_{j+1} and f_{j+1} for all $j \geq 1$ and $i \geq 0$. Since communications along channel f_{j+1} are very easy to implement, viz. $f_{j+1}(i) = f_j(i)$, we focus our attention on $e_{j+1}(i)$.

In the calculation of e_{j+1} we use two properties of the div-operator:

Property:

For $j \geq 1$ and $i \geq 0$:

0. If $\neg(i + 1 | j + 1)$, then $(j + 1) \text{ div } (i + 1) = j \text{ div } (i + 1)$.

1. If $(i + 1 | j + 1)$ and, moreover, $(i + 1)^2 > i + j + 2$, then $(j + 1) \text{ div } (i + 1) = j \text{ div } i$.

Proof:

Let $q = (j + 1) \text{ div } (i + 1)$ and $r = (j + 1) \text{ mod } (i + 1)$.

Then, by definition, $(j + 1) = q \times (i + 1) + r \land 0 \leq r < i + 1$.

0. We derive

$$j + 1 = q \times (i + 1) + r \land 0 \leq r < i + 1$$

$$= \{ \text{arithmetic} \}$$

$$j = q \times (i + 1) + (r - 1) \land -1 \leq (r - 1) < i$$

$$= \{ \neg(i + 1 | j + 1) \text{ implies } r \neq 0 \}$$

$$j = q \times (i + 1) + (r - 1) \land 0 \leq (r - 1) < i$$

An appropriate choice for the value of $e_1(0)$, now, is $e_1(0) = f_0(0)$, of course.

We proceed by calculating e_{j+1} and f_{j+1} for all $j \geq 1$ and $i \geq 0$. Since communications along channel f_{j+1} are very easy to implement, viz. $f_{j+1}(i) = f_j(i)$, we focus our attention on $e_{j+1}(i)$.

In the calculation of e_{j+1} we use two properties of the div-operator:

Property:

For $j \geq 1$ and $i \geq 0$:

0. If $\neg(i + 1 | j + 1)$, then $(j + 1) \text{ div } (i + 1) = j \text{ div } (i + 1)$.

1. If $(i + 1 | j + 1)$ and, moreover, $(i + 1)^2 > i + j + 2$, then $(j + 1) \text{ div } (i + 1) = j \text{ div } i$.

Proof:

Let $q = (j + 1) \text{ div } (i + 1)$ and $r = (j + 1) \text{ mod } (i + 1)$.

Then, by definition, $(j + 1) = q \times (i + 1) + r \land 0 \leq r < i + 1$.

0. We derive

$$j + 1 = q \times (i + 1) + r \land 0 \leq r < i + 1$$

$$= \{ \text{arithmetic} \}$$

$$j = q \times (i + 1) + (r - 1) \land -1 \leq (r - 1) < i$$

$$= \{ \neg(i + 1 | j + 1) \text{ implies } r \neq 0 \}$$

$$j = q \times (i + 1) + (r - 1) \land 0 \leq (r - 1) < i$$
Hence, \((j + 1) \div (i + 1) = q = j \div (i + 1)\).

1. We derive

\[
\begin{align*}
(j + 1)/(i + 1) &= \{ \text{arithmetic} \} \\
&= (i + j + 2)/(i + 1) - 1 \\
&< \{ (i + 1)^2 > i + j + 2 \}
\end{align*}
\]

From \(j + 1 \neq 0\) and \(j + 1 = q \ast (i + 1)\), we infer \(q \neq 0\). Hence, \(q\) satisfies \(1 \leq q < i\).

Since in this case \(j = q \ast i + (q - 1)\) and \(0 \leq (q - 1) < i\), we conclude that \((j + 1) \div (i + 1) = q = j \div i\).

\(\square\)

Notice that the second premise in the second property reflects the condition which we imposed on the specification of \(e_{j+1}\).

We now derive a relation for \(e_{j+1}(i)\). Since \(e_{j+1}(i)\) has only been specified for indices \(i\) satisfying \((i + 1)^2 > i + j + 2\) we have

\[
e_{j+1}(i) = \{ \text{def. } e_j \}
F(1 + (j + 1) \div (i + 1))
= \{ \text{property above} \}
\]

\[
\begin{align*}
\text{if} & \quad \neg(i + 1 \mid j + 1) \quad \Rightarrow \quad F(1 + j \div (i + 1)) \\
\text{if} & \quad (i + 1 \mid j + 1) \quad \Rightarrow \quad F(1 + j \div i)
\end{align*}
\]

\[
\begin{align*}
&= \{ \text{def. } e_j; (i + 1)^2 > i + j + 2 > i + j + 1 \}
&\text{if} \quad \neg(i + 1 \mid j + 1) \quad \Rightarrow \quad e_j(i)
\text{if} \quad (i + 1 \mid j + 1) \wedge i^2 > i + j \quad \Rightarrow \quad e_j(i - 1)
\text{if} \quad (i + 1 \mid j + 1) \wedge i^2 \leq i + j \quad \Rightarrow \quad F(1 + (j + 1)/(i + 1))
\end{align*}
\]

Note that \(e_j(i - 1)\) is only specified for \(i^2 > i + j\). For \(i\) and \(j\) satisfying both \((i + 1 \mid j + 1)\) and \(i^2 \leq i + j\) and \((i + 1)^2 > i + j + 2\), we therefore have to determine \(F(1 + (j + 1)/(i + 1))\).

Since

\[
\begin{align*}
i^2 &\leq i + j \quad \wedge \quad (i + 1)^2 > (i + 1) + (j + 1) \\
&= \{ \text{arithmetic} \}
\end{align*}
\]

\[
\begin{align*}
i^2 - i + 1 &\leq j + 1 < i \ast (i + 1) \\
&= \{ \text{arithmetic} \}
\end{align*}
\]

\[
\begin{align*}
(i - 2) + 3/(i + 1) &\leq (j + 1)/(i + 1) < i \\
&\Rightarrow \quad \{(i + 1 \mid j + 1)\}
\end{align*}
\]

\[
(j + 1)/(i + 1) = i - 1
\]
we conclude that in this case \(F(1 + (j + 1)/(i + 1)) = F(1 + (i - 1)) = f_j(i - 1) \). For indices \(i \) that do not satisfy \((i + 1)^2 > i + j + 2\) we are free to assign any appropriate value to \(e_{j+1}(i) \).

The communications along channels \(e_j \) and \(f_j, j \geq 1 \), can now be implemented by

\[
\begin{align*}
e_1(i) &= f_0(0) \quad \ Quarter 1
1 DIRICHLET CONVOLUTION

\[CB\{b,e,f,g,h\} = (e,f,g,h \mid b) \]

and

\[CB\{\bar{b},e,f,g,h\} = (e,f,g,h \mid \bar{b},f,g) \]

match, we conclude that the computation we derive does not suffer from deadlock (cf. [6]).

The reader is invited to verify that

\[f,g ; (b,\bar{e},f,\bar{g},h \mid \bar{b},f,g) \]

is a possible communication behavior for cell 0.

From relations (0), (1), (4), (5), and (12) we easily derive a program for cell 0:

```plaintext
[ var v0, v1, v0g, v1g, v0b : int;
  f?v0, g?v1g
  \; b!(v0* v1g), e!v0, f!v0g, g!v1g, h!v0g
  \; (b?vb, f?vf, g?vg
  \; b!(vb + v0 * v1g + v0g), e!v0, f!vf, g!v1g, h!v0g )
  ]
```

And from relations (2), (3), (6), (7), and (11) we derive the following program for cell j:

```plaintext
[ var ve, ve1, v0f, v1f, v0g, v1g, v0h, v1h, vb : int;
  p, q, r, i : int;
  e?ve1, f?v1f, g?v1g, h?v1h
  \; b!ve, e!v1f, f!v1g, g!v1h, h!v1h, i := 0
  \; (b?vb, e?ve, f?vf, g?vg, h?vh
  \; if \ (i + 2) < i + j + 2 \lor \neg(i + 2 \mid j) \rightarrow r := 0
  \mid (i + 2)^2 = i + j + 2 \rightarrow r := v0 * v1f
  \mid (i + 2)^2 > i + j + 2 \land (i + 2 \mid j) \rightarrow r := v0 * v1h + v0 * v1f
  ]
```

The above program does not meet the 'modularity constraint' of [3], i.e. j occurs in the program text and as a consequence the operation of a cell depends on the location of that cell in the network. This problem can be eliminated by introducing additional input channels for each cell (this technique has also been applied in [5]). By applying this technique it is possible to implement the evaluation of the guards efficiently. Without going into further detail, we
suggest to introduce three additional input channels u_j, v_j, and w_j, which are specified as follows

\begin{align*}
u_j(i) &= (i+1)^2 - (i+j+1) \\
v_j(i) &= j \mod (i+1) \\
w_j(i) &= i
\end{align*}

for $i \geq 1$.

For example,

\[(i+2)^2 < i+j+2 \lor -(i+2 | j)\]

can now be replaced by

\[u_j(i+1) < 0 \lor v_j(i+1) \neq 0\]

For the sake of completeness, the transformed program texts read

```plaintext
[ var vf0, vf, vg0, vg, vb, vu, vv, vw : int; 
  f?vf0, g?vg0 
 ; vu, vv, vw := -1, 0, 0 
 ; b!(vf0 * vg0), e!vf0, f!vf0, g!vg0, h!vg0, u!vu, v!vv, w!vw 
 ; (v?vb, f?vf, g?vg 
 ; vu, vv, vw := vu + 2 * vv + 2, 1, vw + 1 
 ; b!(vb + vf * vg0 + vf0 * vg), e!vf0, f!vf, g!vg, h!vg0, u!vu, v!vv, w!vw ) ]
```

and

```plaintext
[ var ve, ve0, vf, vff, vg, vgg, vh, vhh, vb, vu, vv, vv0, vvu, vuu, vv0, vv0, vv0 : int; 
  p, q, r : int; 
 ; b!0, e!ve0, f!vff, g!vgg, h!vhh, u!(vv0 + 1), v!0, w!vw 
 ; if vu \neq vw -> vvu := vu + 1 \lor vv := vw + 1 \or vv := 0 fi 
 ; if vu < 0 \lor vv \neq 0 -> r := 0 
   \lor vu = 0 -> r := vf * vg 
   \lor vu > 0 \land vv = 0 -> r := vff + ve * vg 
 fi 
 , if vvu \neq 0 -> p, q := ve, vh 
   \lor vvu = 0 \land vu > 0 -> p, q := ve, vhh 
   \lor vvu = 0 \land vu \geq 0 -> p, q := vff, vgg 
 fi 
 ; b!(vb + r), e!p, f!vf, g!vg, h!vg, u!(vv0 + 1), v!vv, w!vw 
 ; vee, vff, vgg, vhh, vvu := ve, vf, vg, vh, vu ]
```

We are now done with the construction of our program and conclude this section with a short complexity analysis.

The response time of the program (consider the original program, not the transformed program) is analysed by introducing sequence functions σ_j for each cell j. For a channel a and natural i, $\sigma_j(a, i)$ denotes the time slot in which the i-th communication along channel a of cell j can be scheduled. From the communication behavior of the cells, (11) and (12), the following possible sequence function can be inferred (without loss of generality we only consider channels f, \bar{f}, b, and \bar{b})

$$
\begin{align*}
\sigma_j(f, i) &= 2 \cdot i + j \\
\sigma_j(\bar{f}, i) &= 2 \cdot i + j + 1 \\
\sigma_j(b, i) &= 2 \cdot i + j + 1 \\
\sigma_j(\bar{b}, i) &= 2 \cdot i + j + 2
\end{align*}
$$

For cell 0 we have $\sigma_0(b, i) = 2 \cdot i + 1$. Hence, the computation we derived has constant response time. In the same time slot in which $b_0(i)$ is produced by cell 0 cell $2 \cdot i + 1$ receives $f_{2 \cdot i + 1}(0)$. Thus, computing $(F \ast G)(n)$, for $1 \leq n \leq N$, involves $O(N)$ cells and $O(N)$ time. A sequential solution for computing $(F \ast G)(n)$, for $1 \leq n \leq N$, has time complexity at least $O(N \log N)$.

2 Inverse Convolution Problem

In this section we present a parallel program for the inverse convolution problem. It turns out that this parallel program is identical to the parallel program for Dirichlet Convolution, except for the design of cell 0.

The inverse convolution problem is stated as follows: given two arithmetical functions, G and H, one has to determine (arithmetical) function F such that $F \ast G = H$, i.e.

$$
H(n) = \left(\sum_{p, q : \text{gcd}(p, q) = 1} 1 \leq p \land 1 \leq q : F(p) \ast G(q) \right)
$$

for $n \geq 1$. Assume $G(1) \neq 0$.

The computation we derive consists of a linear network of cells where cell 0 is fed with the two given arithmetical functions along two input channels, g_0 and h_0:

$$
\begin{align*}
g_0(i) &= G(i + 1) \\
h_0(i) &= H(i + 1)
\end{align*}
$$

for $i \geq 0$.

Communication with the environment is established by means of output channel b_0, which satisfies

$$
b_0(i) = F(i + 1)
$$

for $i \geq 0$ and F satisfying $F \ast G = H$.

Since F is defined implicitly we derive relations for $F(n)$ and, next, extract $F(n)$ from these.

From $H(1) = F(1) \ast G(1)$, we readily conclude

$$
b_0(0)
$$
2 INVERSE CONVOLUTION PROBLEM

\[F(l) = \{ \text{def. } b_0 \} \]
\[H(1)/G(1) = \{ \text{def. } g_0 \text{ and } h_0 \} \]
\[h_0(0)/g_0(0) \]

For \(n \geq 1 \), we have
\[H(n + 1) = \{ F * G = H \} \]
\[(S p, q : p * q = n + 1 \land (\sqrt{n + 1} \leq p \lor \sqrt{n + 1} \leq q) : F(p) * G(q)) \]
\[= \{ \text{domain split; } 1 < \sqrt{n + 1} \} \]
\[F(1) * G(n + 1) + F(n + 1) * G(1) + (S p, q : p * q = n + 1 \land (\sqrt{n + 1} \leq p \lor \sqrt{n + 1} \leq q \leq n) : F(p) * G(q)) \]

Since \(G(1) \neq 0 \), we conclude that function \(F \) is unique.

Now, recall the definition of \(Q(m, n) \) from the previous section. \(Q(m, n) \) has been defined in the context of arithmetical functions \(F \) and \(G \). Therefore, it is possible to substitute \(Q(n, n + 1) \) for the quantified summation in the derivation above, giving
\[H(n + 1) = F(1) * G(n + 1) + F(n + 1) * G(1) + Q(n, n + 1) \]

Cell 0 should have at its disposal the value of \(Q(n, n + 1) \) for each \(n \geq 1 \). For this purpose we can use the cells with \(j \geq 1 \) that already have been implemented in the previous section. Then \(b_1(i) = Q(i + 1, i + 2) \) for \(i \geq 0 \), provided that cell 1 is supplied with the proper values.

For \(i \geq 0 \) we derive
\[b_0(i + 1) = \{ \text{def. } b_0 \} \]
\[F(i + 2) = \{ \text{above relation for } H(n + 1); G(1) \neq 0 \} \]
\[(H(i + 2) - F(1) * G(i + 2) - Q(i + 1, i + 2))/G(1) = \{ \text{def. } g_0, h_0, b_0, \text{ and } b_1 \} \]
\[(h_0(i + 1) - b_0(0) * g_0(i + 1) - b_1(i))/g_0(0) \]

Summarizing:

\[b_0(0) = h_0(0)/g_0(0) \quad (13) \]
\[b_0(i + 1) = (h_0(i + 1) - b_0(0) * g_0(i + 1) - b_1(i))/g_0(0) \quad (14) \]

A possible communication behavior for cell 0 is (cf. (12))
\[g, h ; (b, e, f, \bar{g}, \bar{h} ; \bar{b}, g, h) \]
3 THE MÖBIUS FUNCTION

The corresponding program for cell 0 reads

\[
\begin{align*}
&\textbf{var } vfo, vf, vgO, vg, vb, vh : \text{int}; \\
&g?vgO, h?vh \\
&; vfo := vh/vgO \\
&; b!vfO, e!vfO, f!vfO, g!vgO, h!vgO \\
&\text{; (b?vb, g?vg, h?vh} \\
&\text{; vf := } (vh - vfo * vg - vb)/vgO \\
&\text{; b!vf, e!vfO, f!vf, g!vg, h!vgO} \\
\end{align*}
\]

3 The Möbius Function

The Möbius function \(\mu \) is the arithmetical function defined by

\[
\mu(n) = \begin{cases}
0 & \text{if } (E m : m > 1 : m^2 | n) \\
(-1)^{\pi(n)} & \text{otherwise}
\end{cases}
\]

for \(n \geq 1 \), where \(\pi(n) \) denotes the number of prime divisors of \(n \).

It is well-known that the Möbius function is an instance of the inverse convolution problem, viz.

\[
\mu * E = U
\]

where \(E \) is the all-one function, and \(U \) is defined by \(U(1) = 1 \), and \(U(n) = 0 \) for all \(n > 1 \).

A parallel program that computes the Möbius function can be obtained from the program for the (general) inverse convolution problem by feeding cell 0 with input streams \(g \) and \(h \) that satisfy \(g(i) = E(i + 1) \) and \(h(i) = U(i + 1) \) for \(i \geq 0 \). By exploiting knowledge about functions \(E \) and \(H \) it is possible, however, to eliminate a number of communication actions from the program texts of the cells. By doing so, the input channels of cell 0 can be omitted which results in a parallel program that only produces output.

After elimination of redundant statements we obtain the following program texts. For cell 0 we get

\[
\begin{align*}
&\textbf{var } vb : \text{int}; \\
&\quad b!1, e!1, f!1 \\
&\quad ; (b?vb} \\
&\quad ; b!(-vb - 1), e!1, f!(-vb - 1) \\
&\end{align*}
\]

and for cell \(j \) (\(j \geq 1 \))
4 CONCLUDING REMARKS

Our program for generating the Möbius function differs from the program presented in [5]. This is mainly caused by the fact that in [5] there was no need for a 'symmetric solution'. Such a solution even would not have been obvious.

4 Concluding Remarks

We have derived parallel programs for Dirichlet Convolution and for the inverse convolution problem in a calculational, rather straightforward manner. A key issue in the derivation was the decision to maintain the symmetry of the problem specification in the generalized expression $Q(m, n)$. It is our experience that destroying symmetry in the derivation of parallel programs often yields inefficient solutions. In fact, this observation has also been made in [0, section 3]. Another important step in the derivation was the fact that we did not specify the additional input channels e_j and h_j for all natural i. In this way we made it possible to apply the second property that we derived for the div-operator.

We believe that our derivation is much clearer than the program derivations given in [3] and [0], which are, in a sense, based on similar but less explicit observations as our solution is based on. In [3], a rather intricate routing scheme is given for the routing of 'F-coefficients' and 'G-coefficients', which can be compared to the input channels e_j and h_j in our solution. We, however, refrained from giving an operational explanation for the behavior of the values communicated along channels e_j and h_j: such an explanation would only complicate the reasoning about our program. In [0], 'domain contraction' has been applied in order to obtain an efficient (symmetric) solution. This technique seems to be a little magical and hard to understand if one is not familiar with the method.

Starting from a parallel program for Dirichlet Convolution it turned out to be very simple to derive a parallel program for the inverse convolution problem: both programs are identical except for the design of cell 0. We have already come across this phenomenon in the design of systolic arrays for polynomial multiplication and division (cf. [4]).

Finally, we have presented a parallel program for computing the Möbius function. Our pro-
gram differs from the program presented in [5], which is mainly caused by the fact that in
[5] there was no need for a ‘symmetric solution’. Such a solution even would not have been
obvious.

Acknowledgements
Acknowledgements are due to Martin Rem, Tom Verhoeff, and Joost P. Katoen for making
comments on an earlier version of this paper.

References

[0] Marina Chen, Young-il Choo, Synthesis of a Systolic Dirichlet Product Using Non-Linear

[3] Patrice Quinton, Yves Robert, Systolic Convolution of Arithmetic Functions, IRISA Re-

and Languages Europe, Proceedings 1987 (J.W. de Bakker et al., eds.), Lecture Notes in

[5] Tom Verhoeff, A Parallel Program That Generates the Möbius Sequence, Computing Sci-
ence Note 88/01, Eindhoven University of Technology, The Netherlands (1988).

The Netherlands (1989).
In this series appeared:

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>85/01</td>
<td>R.H. Mak</td>
<td>The formal specification and derivation of CMOS-circuits</td>
</tr>
<tr>
<td>85/02</td>
<td>W.M.C.J. van Overveld</td>
<td>On arithmetic operations with M-out-of-N-codes</td>
</tr>
<tr>
<td>85/03</td>
<td>W.J.M. Lemmens</td>
<td>Use of a computer for evaluation of flow films</td>
</tr>
<tr>
<td>85/04</td>
<td>T. Verhoeff, H.M.J.L. Schols</td>
<td>Delay insensitive directed trace structures satisfy the foam rubber wrapper postulate</td>
</tr>
<tr>
<td>86/01</td>
<td>R. Koymans</td>
<td>Specifying message passing and real-time systems</td>
</tr>
<tr>
<td>86/02</td>
<td>G.A. Bussing, K.M. van Hee, M. Voorhoeve</td>
<td>ELISA, A language for formal specifications of information systems</td>
</tr>
<tr>
<td>86/03</td>
<td>Rob Hoogerwoord</td>
<td>Some reflections on the implementation of trace structures</td>
</tr>
<tr>
<td>86/04</td>
<td>G.J. Houben, J. Paredaens, K.M. van Hee</td>
<td>The partition of an information system in several parallel systems</td>
</tr>
<tr>
<td>86/05</td>
<td>Jan L.G. Dietz, Kees M. van Hee</td>
<td>A framework for the conceptual modeling of discrete dynamic systems</td>
</tr>
<tr>
<td>86/06</td>
<td>Tom Verhoeff</td>
<td>Nondeterminism and divergence created by concealment in CSP</td>
</tr>
<tr>
<td>86/07</td>
<td>R. Gerth, L. Shira</td>
<td>On proving communication closedness of distributed layers</td>
</tr>
<tr>
<td>86/09</td>
<td>C. Huizing, R. Gerth, W.P. de Roever</td>
<td>Full abstraction of a real-time denotational semantics for an OCCAM-like language</td>
</tr>
<tr>
<td>86/10</td>
<td>J. Hooman</td>
<td>A compositional proof theory for real-time distributed message passing</td>
</tr>
<tr>
<td>86/11</td>
<td>W.P. de Roever</td>
<td>Questions to Robin Milner - A responder's commentary (IFIP86)</td>
</tr>
<tr>
<td>86/12</td>
<td>A. Boucher, R. Gerth</td>
<td>A timed failures model for extended communicating processes</td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>86/13</td>
<td>R. Gerth and W.P. de Roever</td>
<td>Proving monitors revisited: a first step towards verifying object oriented systems (Fund. Informatica IX-4)</td>
</tr>
<tr>
<td>86/14</td>
<td>R. Koymans</td>
<td>Specifying passing systems requires extending temporal logic</td>
</tr>
<tr>
<td>87/01</td>
<td>R. Gerth</td>
<td>On the existence of sound and complete axiomatizations of the monitor concept</td>
</tr>
<tr>
<td>87/02</td>
<td>Simon J. Klaver and Chris F.M. Verberne</td>
<td>Federative Databases</td>
</tr>
<tr>
<td>87/03</td>
<td>G.J. Houben and J.Paredaens</td>
<td>A formal approach to distributed information systems</td>
</tr>
<tr>
<td>87/04</td>
<td>T. Verhoeff</td>
<td>Delay-insensitive codes - An overview</td>
</tr>
<tr>
<td>87/05</td>
<td>R. Kuiper</td>
<td>Enforcing non-determinism via linear time temporal logic specification</td>
</tr>
<tr>
<td>87/06</td>
<td>R. Koymans</td>
<td>Temporele logica specificatie van message passing en real-time systemen (in Dutch)</td>
</tr>
<tr>
<td>87/07</td>
<td>R. Koymans</td>
<td>Specifying message passing and real-time systems with real-time temporal logic</td>
</tr>
<tr>
<td>87/08</td>
<td>H.M.J.L. Schols</td>
<td>The maximum number of states after projection</td>
</tr>
<tr>
<td>87/10</td>
<td>T. Verhoeff</td>
<td>Three families of maximally nondeterministic automata</td>
</tr>
<tr>
<td>87/11</td>
<td>P. Lemmens</td>
<td>Eldorado ins and outs. Specifications of a database management toolkit according to the functional model</td>
</tr>
<tr>
<td>87/12</td>
<td>K.M. van Hee and A. Lapinski</td>
<td>OR and AI approaches to decision support systems</td>
</tr>
<tr>
<td>87/13</td>
<td>J.C.S.P. van der Woude</td>
<td>Playing with patterns, searching for strings</td>
</tr>
<tr>
<td>87/14</td>
<td>J. Hooman</td>
<td>A compositional proof system for an occam-like real-time language</td>
</tr>
</tbody>
</table>
87/15 C. Huizing
 R. Gerth
 W.P. de Roever
 A compositional semantics for statecharts

87/16 H.M.M. ten Eikelder
 J.C.F. Wilmont
 Normal forms for a class of formulas

87/17 K.M. van Hee
 G.-J. Houben
 J.L.G. Dietz
 Modelling of discrete dynamic systems framework and examples

87/18 C.W.A.M. van Overveld
 An integer algorithm for rendering curved surfaces

87/19 A.J. Seebregts
 Optimalisering van file allocatie in gedistribueerde database systemen

87/20 G.J. Houben
 J. Paredaens
 The R²-Algebra: An extension of an algebra for nested relations

87/21 R. Gerth
 M. Codish
 Y. Lichtenstein
 E. Shapiro
 Fully abstract denotational semantics for concurrent PROLOG

88/01 T. Verhoeff
 A Parallel Program That Generates the Möbius Sequence

88/02 K.M. van Hee
 G.J. Houben
 L.J. Somers
 M. Voorhoeve
 Executable Specification for Information Systems

88/03 T. Verhoeff
 Settling a Question about Pythagorean Triples

88/04 G.J. Houben
 J. Paredaens
 D. Tahon
 The Nested Relational Algebra: A Tool to handle Structured Information

88/05 K.M. van Hee
 G.J. Houben
 L.J. Somers
 M. Voorhoeve
 Executable Specifications for Information Systems

88/06 H.M.J.L. Schols
 Notes on Delay-Insensitive Communication

88/07 C. Huizing
 R. Gerth
 W.P. de Roever
 Modelling Statecharts behaviour in a fully abstract way

88/08 K.M. van Hee
 G.J. Houben
 L.J. Somers
 M. Voorhoeve
 A Formal model for System Specification

88/09 A.T.M. Aerts
 K.M. van Hee
 A Tutorial for Data Modelling
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>88/10</td>
<td>J.C. Ebergen</td>
<td>A Formal Approach to Designing Delay Insensitive Circuits</td>
</tr>
<tr>
<td>88/11</td>
<td>G.J. Houben J.Paredaens</td>
<td>A graphical interface formalism: specifying nested relational databases</td>
</tr>
<tr>
<td>88/12</td>
<td>A.E. Eiben</td>
<td>Abstract theory of planning</td>
</tr>
<tr>
<td>88/13</td>
<td>A. Bijlsma</td>
<td>A unified approach to sequences, bags, and trees</td>
</tr>
<tr>
<td>88/14</td>
<td>H.M.M. ten Eikelder R.H. Mak</td>
<td>Language theory of a lambda-calculus with recursive types</td>
</tr>
<tr>
<td>88/15</td>
<td>R. Bos C. Hemerik</td>
<td>An introduction to the category theoretic solution of recursive domain equations</td>
</tr>
<tr>
<td>88/16</td>
<td>C. Hemerik J.P. Katoen</td>
<td>Bottom-up tree acceptors</td>
</tr>
<tr>
<td>88/17</td>
<td>K.M. van Hee G.J. Houben L.J. Somers M. Voorhoeve</td>
<td>Executable specifications for discrete event systems</td>
</tr>
<tr>
<td>88/18</td>
<td>K.M. van Hee P.M.P. Rambags</td>
<td>Discrete event systems: concepts and basic results</td>
</tr>
<tr>
<td>88/19</td>
<td>D.K. Hammer K.M. van Hee</td>
<td>Fasering en documentatie in software engineering</td>
</tr>
<tr>
<td>88/20</td>
<td>K.M. van Hee L. Somers M. Voorhoeve</td>
<td>EXSPECT, the functional part</td>
</tr>
<tr>
<td>89/1</td>
<td>E.Zs. Lepoeter-Molnar</td>
<td>Reconstruction of a 3-D surface from its normal vectors</td>
</tr>
<tr>
<td>89/2</td>
<td>R.H. Mak P. Struik</td>
<td>A systolic design for dynamic programming</td>
</tr>
<tr>
<td>89/3</td>
<td>H.M.M. Ten Eikelder C. Hemerik</td>
<td>Some category theoretical properties related to a model for a polymorphic lambda-calculus</td>
</tr>
<tr>
<td>89/4</td>
<td>J. Zwiers W.P. de Roever</td>
<td>Compositionality and modularity in process specification and design: A trace-state based approach</td>
</tr>
<tr>
<td>89/5</td>
<td>Wei Chen T. Verhoef J.T. Udding</td>
<td>Networks of Communicating Processes and their (De-)Composition</td>
</tr>
<tr>
<td>89/6</td>
<td>T. Verhoef</td>
<td>Characterizations of Delay-Insensitive Communication Protocols</td>
</tr>
<tr>
<td>89/7</td>
<td>P. Struik</td>
<td>A systematic design of a parallel program for Dirichlet convolution</td>
</tr>
</tbody>
</table>