Infinite divisibility and the waiting-time paradox

Citation for published version (APA):

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jan. 2020
Memorandum COSOR 94-24

Infinite divisibility
and the waiting-time paradox

K. van Harn
F.W. Steutel

Eindhoven, August 1994
The Netherlands
INFINITE DIVISIBILITY AND THE WAITING-TIME PARADOX

K. van HARN AND F.W. STEUTEL

Abstract. It is shown that the interarrival time \(Z \) covering the point zero in a stationary renewal process generated by \(X \) has the form \(Z \overset{d}{=} X + Y \) with \(Y \) nonnegative and independent of \(X \), if and only if \(X \) is infinitely divisible. In the special case that \(X \) has a compound-exponential distribution there is a similar decomposition of the stationary waiting time. These results shed some new light on the waiting-time paradox.

1. Introduction and summary

The \textit{waiting-time paradox} consists of the fact that a passenger arriving at a bus stop will probably have to wait considerably longer than about half the interarrival time, \(X \) say, of two buses. The paradox is resolved by the observation that a passenger is more likely to arrive in a long interval than in a short one. Alternatively, the length \(Z \) of the interval covering the arrival time of the passenger tends to be longer than \(X \), i.e., we have

\[
Z \geq X
\]

in distribution. On an appropriate sample space (1.1) can be written as

\[
Z \overset{d}{=} X + Y,
\]

where \(Y \) is nonnegative and, in general, \(X \) and \(Y \) are dependent.

In this note we consider the case where \(X \) and \(Y \) in (1.2) are \textit{independent}. It turns out that this happens if and only if \(X \) is \textit{infinitely divisible}, and this result sheds some new light on the waiting-time paradox and on the behaviour of nonnegative processes with stationary, independent increments [sii-processes]. In the special case that \(X \) is \textit{compound-exponential} [see Definition 2.5], also the (stationary) waiting-time \(W \) of a bus passenger admits of a decomposition similar to (1.2):

\[
W \overset{d}{=} X + A,
\]

where \(A \) is nonnegative and independent of \(X \).

In Section 2 we collect some results about renewal theory and infinite divisibility. Section 3 contains a characterization of infinite divisibility for nonnegative random variables by means of (1.2), and some of its consequences. In Section 4 equation (1.3) is considered for non-lattice distributions. In Section 5 we briefly present the solutions of (1.2) and (1.3) for distributions on the non-negative integers. We shall mostly use the renewal (life-time) terminology rather than the waiting-time terminology.
2. Preliminaries

We need some information on renewal theory and on infinite divisibility for non-negative random variables. Some of the results hold only for non-lattice distributions, and have analogues for lattice distributions. We shall only consider lattice random variables with values in $\mathbb{Z}_+ := \mathbb{N} \cup \{0\}$. Sometimes it will be essential that these random variables have positive probability at 0.

2.1. Renewal theory

We consider a renewal process generated by a sequence $(X_n)_{n \in \mathbb{N}}$ of independent, non-negative random variables distributed as X with distribution function F and expectation $\mathbb{E}X = \mu \in (0, \infty)$; these conditions will be assumed to hold throughout unless otherwise stated. We write $S_n = \sum_{k=1}^n X_k$, and define the number N_t of renewals in $(0, t]$, the age V_t of the unit in service at time t, the remaining lifetime W_t of this unit (the waiting time for the next bus), and the total life-time Z_t as follows:

$$N_t := \#\{n \in \mathbb{N} : S_n \leq t\},$$
$$V_t := t - S_{N_t}, \quad W_t := S_{N_t+1} - t,$$
$$Z_t = X_{N_t+1} = V_t + W_t.$$

The following result is well known; see Feller (1971).

Lemma 2.1. If F is non-lattice, then

$$V_t \xrightarrow{d} V, \quad W_t \xrightarrow{d} W \xrightarrow{d} V, \quad Z_t \xrightarrow{d} Z \quad [t \to \infty],$$

where Z and W have distribution functions given by

\begin{align}
F_Z(z) &= \frac{1}{\mu} \int_{0,z} x \, dF(x) \quad [z \geq 0], \\
F_W(w) &= \frac{1}{\mu} \int_0^w \{1 - F(x)\} \, dx \quad [w \geq 0].
\end{align}

Alternatively, V, W and Z can be regarded as quantities in a stationary renewal process (started at $-\infty$); then Z is the life time straddling 0, say, and V and W are the lengths of the parts into which Z is divided by 0. The random variables V, W and Z will be used in this sense, sometimes without comment. They satisfy

$$Z = V + W \quad \text{and} \quad V \overset{d}{=} W \overset{d}{=} U Z,$$

where U is uniformly distributed on $(0, 1)$ and independent of Z; see Winter (1989).
There is an analogue to Lemma 2.1 for lattice distributions. Now X is distributed on \mathbb{Z}^+, and the quantities N_n, V_n, W_n and Z_n are defined for $n \in \mathbb{N}$ in the same way as N_t, V_t, W_t and Z_t. We then have the following well-known result; see Feller (1968). We use the notations V, W and Z also for the limits of V_n, W_n and Z_n.

Lemma 2.2. If X has an aperiodic distribution $(p_k)_{k \in \mathbb{Z}^+}$ on \mathbb{Z}^+, then

$$
V_n \xrightarrow{d} V, \quad W_n \xrightarrow{d} W \xrightarrow{d} V + 1, \quad Z_n \xrightarrow{d} Z \quad [n \to \infty],
$$

where Z and W have distributions given by

\begin{align*}
\text{(2.4)} \quad \mathbb{P}(Z = k) &= \frac{1}{\mu} k p_k \quad [k \in \mathbb{N}], \\
\text{(2.5)} \quad \mathbb{P}(W = k) &= \frac{1}{\mu} \sum_{j=k}^{\infty} p_j \quad [k \in \mathbb{N}].
\end{align*}

Remark. Comparison with (2.4) learns that (2.1) also holds for distributions on \mathbb{Z}^+. Since the span of the lattice is of no real importance, (2.1) holds for all distributions on \mathbb{R}^+ with a finite moment. Since W in (2.2) is absolutely continuous, the non-lattice condition there is essential.

2.2. Infinite divisibility

We recall the definition of infinite divisibility: a random variable X (or its distribution function F) is said to be *infinitely divisible* if for any $n \in \mathbb{N}$ iid random variables $X_1^{(n)}, \ldots, X_n^{(n)}$ exist such that

$$
X \overset{d}{=} X_1^{(n)} + \cdots + X_n^{(n)}.
$$

In what follows the Laplace-Stieltjes transform [LSt] of a function H will be denoted by \hat{H}. We take the following result from Feller (1971).

Lemma 2.3. A distribution function F on \mathbb{R}^+ is infinitely divisible iff its LSt satisfies

\begin{equation}
\log \hat{F}(s) = \int_0^\infty (e^{-sx} - 1) x^{-1} dK(x),
\end{equation}

where K is a nondecreasing function on \mathbb{R}^+ with (necessarily) $\int_1^\infty x^{-1} dK(x) < \infty$.

K will be called the *canonical function* of F, or of the corresponding random variable. We note that the random variables $X^{(n)}$ in (2.6) are infinitely divisible with distribution function $F^{*(1/n)}$, the n-th convolution root of F, and with canonical function $K^{(n)} = (1/n) K$. Differentiation of (2.7) yields

\begin{equation}
- \frac{\hat{F}'(s)}{\hat{F}(s)} = \hat{K}(s),
\end{equation}

and inversion of this leads to the following equivalent relation [see Steutel (1970)]; let $s \downarrow 0$ for the final statement.
Corollary 2.4. A distribution function F on \mathbb{R}_+ is infinitely divisible iff F satisfies
\begin{equation}
(2.9) \quad \int_{(0,x]} y \, dF(y) = (F * K)(x) \quad [x > 0],
\end{equation}
where K is nondecreasing on \mathbb{R}_+ and $*$ denotes convolution. The, possibly infinite, first moment μ of F is given by
\begin{equation}
(2.10) \quad \mu = \int_{[0,\infty)} dK(x) = K(\infty).
\end{equation}

For Section 4 we need the following subclass of infinitely divisible distributions.

Definition 2.5. Let $S(\cdot)$ be a process with stationary, independent increments and let T be exponentially distributed with $\mathbb{E}T = 1$, independent of $S(\cdot)$. Then the random variable $X := S(T)$ is said to have a compound-exponential distribution.

The following lemma is immediate if we denote the (infinitely divisible) distribution function of $S(1)$ by F_0.

Lemma 2.6. A distribution function F on \mathbb{R}_+ is compound-exponential iff \widehat{F} has the form
\begin{equation}
(2.11) \quad \widehat{F}(s) = \frac{1}{1 - \log \widehat{F_0}(s)},
\end{equation}
where F_0 is an infinitely divisible distribution function on \mathbb{R}_+. The distribution functions F and F_0 have the same first moment.

We conclude this section with analogues (and also special cases) of Corollary 2.4 and Lemma 2.6 for infinitely divisible distributions on \mathbb{Z}_+. Here we use probability generating functions [pgf's] rather than LSt's. We stress that the factors $X_j^{(n)}$ in (2.3) are \mathbb{Z}_+-valued iff $P(X = 0) > 0$; for details we refer to Steutel (1970).

Lemma 2.7. A distribution $(p_k)_{k \in \mathbb{Z}_+}$ on \mathbb{Z}_+ with $p_0 > 0$ is infinitely divisible iff the quantities r_k with $k \in \mathbb{Z}_+$ defined by
\begin{equation}
(2.12) \quad (k + 1) p_{k+1} = \sum_{j=0}^{k} p_j r_{k-j} \quad [k \in \mathbb{Z}_+],
\end{equation}
are nonnegative, i.e., iff the coefficients of $R(z) := P'(z)/P(z)$ are nonnegative.

Lemma 2.8. A distribution on \mathbb{Z}_+ with pgf P is compound-exponential iff P has the form
\begin{equation}
(2.13) \quad P(z) = \frac{1}{1 - \log Q(z)} = \frac{1}{1 - \alpha(G(z) - 1)},
\end{equation}
where Q is the pgf of an infinitely divisible distribution on \mathbb{Z}_+ with $Q'/Q = \alpha G'$, $\alpha > 0$ and G a pgf.
3. An extreme case of the waiting-time paradox

We return to the renewal process generated by a nonnegative random variable X as described in Section 2.1. It is well known [see e.g. Ross (1970)] that for the total life-time Z with distribution function given by (2.1) we have

$$Z \overset{d}{=} X,$$

i.e., $\mathbb{P}(Z > x) \geq \mathbb{P}(X > x)$ for $x \in \mathbb{R}_+$, or on a suitable sample space,

(3.1) \hspace{1em} Z \overset{d}{=} X + Y,

where Y is nonnegative and, in general, not independent of X. Here we are interested in the situation where X and Y are independent. The following theorem can also be read as a characterization theorem for infinitely divisible random variables on \mathbb{R}_+ with a finite first moment [compare Remark following Lemma 2.2].

Theorem 3.1. Let Z be the life time covering the point 0 in a stationary renewal process generated by X. Then Z can be written as in (3.1) with X and Y independent iff X is infinitely divisible. The distribution function of Y is given by $F_Y = (1/\mu)K$, where K is the canonical function of X.

Proof. Let Z satisfy (3.1) with X and Y independent. Then by (2.1) we have

(3.2) \hspace{1em} F_Z(z) = \frac{1}{\mu} \int_{(0,z]} x \, dF(x) = (F * F_Y)(z) \quad [z \geq 0].

Multiplying by μ we see that F satisfies the functional equation (2.9) with $K = \mu F_Y$, hence by Corollary 2.4 F is infinitely divisible. Conversely, if F is infinitely divisible, then by (2.10) the functional equation (2.9) can be written in the form (3.2) for some distribution function F_Y, which means that in (3.1) X and Y can be taken independent. \qed

Remark. By a suitable choice of K, for $F_Y = (1/\mu)K$ any distribution function is possible. If $F(0) > 0$, then X is compound-Poisson [cf. van Harn (1978)], i.e.,

$$X \overset{d}{=} \tilde{X}_1 + \cdots + \tilde{X}_N,$$

where $\tilde{X}_1, \tilde{X}_2, \ldots$ are independent and distributed as \tilde{X} with distribution function G, say, and N is Poisson distributed, independent of the \tilde{X}_j's. Now F_Y takes the form

$$F_Y(y) = \frac{1}{\mathbb{E}X} \int_{(0,y]} u \, dG(u),$$

i.e., Y has the same distribution as the total life-time \tilde{Z} in the renewal process generated by \tilde{X}. This can, roughly, be explained as follows. Since X is a Poisson sum
of \tilde{X}_j's, the (positive) X-interval covering a fixed point can be regarded as the sum of the \tilde{X}-interval covering this point and a (Poisson) number of independent \tilde{X}_j's, i.e., as $X + \tilde{Z} \overset{d}{=} X + Y$.

The question remaining is: what is the meaning of the random variable Y in (3.2). An answer can be obtained by considering the renewal process generated by $X^{(n)}$ with distribution function $F^{*}(1/n)$. Denoting the corresponding Z-random variable by $Z^{(n)}$, and using the fact that $X^{(n)}$ is infinitely divisible with canonical function $K^{(n)} = (1/n)K$, by Theorem 3.1 we have

$$Z^{(n)} \overset{d}{=} X^{(n)} + Y^{(n)},$$

where the distribution function of $Y^{(n)}$ is given by

$$F_{Y^{(n)}} = \frac{1}{\mathbb{E}X^{(n)}} K^{(n)} = \frac{n}{\mu} K^{(n)} = \frac{1}{\mu} K = F_Y,$$

independent of n. More generally, considering the sii-process $X(\cdot)$ with $X(1) \overset{d}{=} X$ and $X(1/n) \overset{d}{=} X^{(n)}$, we obtain the following result.

Theorem 3.2. Let X be a nonnegative infinitely divisible random variable with finite first moment μ and with canonical function K. Let $X(\cdot)$ denote the sii-process with $X(1) \overset{d}{=} X$, and for $t > 0$ let $Z(t)$ be the Z-random variable in a stationary renewal process generated by $X(t)$. Then

$$(3.3) \quad Z(t) \overset{d}{=} X(t) + Y \quad [t > 0],$$

where $X(t)$ and Y are independent and $F_Y = (1/\mu)K$, independent of t.

Equation (3.3) tells us that, if we approach the point 0 with small steps, i.e., if t is small, then this point is passed with a non-small step of length at least Y, in distribution. Also, though $X(t) \overset{d}{\rightarrow} 0$, we have $Z(t) \overset{d}{\rightarrow} Y \neq 0$ as $t \downarrow 0$: we get an extreme case of the waiting-time paradox. For large t, on the other hand, the term $X(t)$ will dominate in the right-hand side of (3.3): the paradox, almost, disappears. Combining (2.3) with (3.3) yields the following result for the remaining life-time W.

Corollary 3.3. Let $X(\cdot)$ be as in Theorem 3.2, and for $t > 0$ let $W(t)$ be the W-random variable in a stationary renewal process generated by $X(t)$. Then

$$W(t) \overset{d}{=} UX(t) + UY \quad [t > 0],$$

where U, $X(t)$ and Y are independent, U is uniform on $(0,1)$, and Y is as in Theorem 3.2. In particular,

$$(3.5) \quad W(t) \overset{d}{\rightarrow} UY \quad [t \downarrow 0].$$
4. Compound-exponential life times

Since the compound-exponential distributions [cf. Definition 2.5] are a special subclass of the infinitely divisible distributions, one may expect the random variable Y in (3.1) to have special properties, if X is taken compound-exponential. Indeed we have the following result.

Theorem 4.1. If X is a nonnegative, compound-exponential random variable with a finite first moment, then the life time Z covering 0 in a stationary renewal process generated by X satisfies

$$(4.1) \quad Z \overset{d}{=} X + X' + Y_0,$$

where $X' \overset{d}{=} X$, Y_0 is nonnegative, and X, X' and Y_0 are independent. Equivalently, the random variable Y in (3.1) satisfies $Y \overset{d}{=} X' + Y_0$ with X' and Y_0 independent and independent of X.

Proof. By Lemma 2.6 the LSt \widehat{F} of X has the form $\widehat{F}(s) = 1/(1 - \log \widehat{F}_0(s))$, where F_0 is an infinitely divisible distribution function on \mathbb{R}_+. From this equation and (2.8) it follows that the canonical function K of F is related to the canonical function K_0 of F_0 by $K = F * K_0$:

$$\widehat{K}(s) = -\frac{d}{ds} \log \widehat{F}(s) = \widehat{F}(s) \left\{ -\frac{d}{ds} \log \widehat{F}_0(s) \right\} = \widehat{F}(s) \widehat{K}_0(s).$$

Dividing by μ, the first moment of both F and F_0, and letting Y_0 be a random variable with distribution function $(1/\mu)K_0$, we see that Y in (3.1) satisfies

$$F_Y = F * F_{Y_0},$$

so Y can be obtained as $Y \overset{d}{=} X' + Y_0$ with X' and Y_0 independent. \(\square\)

Remark. As in Theorem 3.2 one can consider the renewal process generated by $X(t)$. When $X = X(1)$ is compound-exponential, then so is $X(t)$ for $0 < t < 1$. Repeating the calculations for Theorem 4.1 with X replaced by $X(t)$, we obtain

$$(4.2) \quad Z(t) \overset{d}{=} X(t) + X'(t) + Y_0(t) \quad [0 < t \leq 1],$$

where $Y_0(t) \overset{d}{=} X(1 - t) + Y_0$ with Y_0 as in (4.1) independent of $X(1 - t)$. So, we recover (3.3) with $Y \overset{d}{=} X + Y_0$ and Y_0 as in (4.1). \(\square\)

Choosing a uniformly distributed random variable U independent of X, X' and Y_0, we can rewrite (4.1) as

$$Z \overset{d}{=} (X + UY_0) + (X' + UY_0),$$
where $\bar{U} = 1 - U \overset{d}{=} U$. Since we also have $Z = V + W$ with $V \overset{d}{=} W$ [cf. Lemma 2.1 and (2.3)], this suggests that in this case

\[(4.3) \quad W \overset{d}{=} X + A,\]

where X and A are independent with A of the form $A = U Y_0$. This is the content of the next theorem. Since apart from some mass at zero the random variable A, and hence W, has an absolutely continuous distribution, we consider the non-lattice case here; cf. Remark following Lemma 2.2.

Theorem 4.2. If X is compound-exponential and non-lattice with finite first moment μ, then the stationary remaining life-time W satisfies (4.3) with X and A independent, and A of the form $A \overset{d}{=} U Y_0$, where Y_0 is nonnegative, U is uniform on $(0,1)$ and independent of Y_0.

Proof. Use Lemmas 2.1, 2.3 and 2.6. Since X has LST $\hat{F} = 1/(1 - \log \hat{F}_0)$ with F_0 infinitely divisible, the LST of W can be written as

\[\hat{F}_W(s) = \frac{1 - \hat{F}(s)}{\mu s} = \hat{F}(s) \frac{-\log \hat{F}_0(s)}{\mu s} = \hat{F}(s) \int_0^{\infty} \frac{1 - e^{-sx}}{sx} dF_{Y_0}(x),\]

where, as in the proof of Theorem 4.1, $F_{Y_0} = (1/\mu) K_0$ with K_0 the canonical function of F_0. The equality in the extreme members of this equation easily translates in (4.3) with A of the form $A = U Y_0$ as desired.

It is unclear whether (4.3) with X and A independent implies that X has a compound-exponential distribution. The fact that A is of the form $A \overset{d}{=} U Y_0$ implies that A has a density on $(0, \infty)$ which is nonincreasing.

Remark. Proceeding as in the Remark following Theorem 4.1, for $W(t)$ we obtain

\[(4.4) \quad W(t) \overset{d}{=} X(t) + U Y_0(t) \quad [0 < t \leq 1],\]

which can be written as

\[(4.5) \quad W(t) \overset{d}{=} (1 - U)X(t) + U\{X(t) + Y_0(t)\},\]

where $X(t) + Y_0(t) \overset{d}{=} Y$, independent of t; compare Corollary 3.3.

5. Analogues for lattice distributions

In this section we briefly present the analogues of Theorems 3.1, 4.1 and 4.2 for $Z_+\text{-valued}$ random variables X. We consider the discrete-time renewal process generated by X with $\mathbb{P}(X = k) = p_k$ for $k \in \mathbb{Z}_+$ and $\mathbb{E}X = \mu \in (0, \infty)$, and use the
§5: Analogues for lattice distributions

notation as established in Lemma 2.2. We restrict attention to \(X \) with \(p_0 > 0 \). This leads to the clearest analogues, and it is no real restriction: The results for \(Z \) hold for arbitrary \(X \); for the result on \(W \) the restriction \(\mathbb{P}(X \leq 1) > 0 \) is necessary, and the case \(p_0 = 0, p_1 > 0 \) can be reduced to the case \(p_0 > 0 \) by a shift. The proofs differ only slightly from those in Sections 3 and 4.

Theorem 5.1. Let \(X \) have an aperiodic distribution \((p_k)_{k \in \mathbb{Z}^+}\) on \(\mathbb{Z}^+ \) with \(p_0 > 0 \). Then the random variable \(Z \) with distribution given by (2.4) satisfies

\[
Z \overset{d}{=} X + Y,
\]

where \(Y \) is a (necessarily \(\mathbb{N} \)-valued) random variable independent of \(X \), iff \(X \) is infinitely divisible.

Proof. By (2.4), saying that \(Z \) satisfies (5.1) with \(X \) and \(Y \) independent, is equivalent to the following assertion:

\[
\mathbb{P}(Z - 1 = k) = \frac{1}{\mu} (k + 1)p_{k+1} = \sum_{j=0}^{k} p_j \mathbb{P}(Y - 1 = k - j) \quad [k \in \mathbb{Z}^+].
\]

An appeal to Lemma 2.7 finishes the proof; note that necessarily \(\sum_{k=0}^{\infty} \tau_k = \mu \). \(\square\)

From the proof it will be clear that \(Y \) in (5.1) has distribution \((r_{k-1}/\mu)_{k \in \mathbb{N}}\). Of course, also Theorem 3.2 has a lattice analogue; we don't spell it out.

The analogues of Theorems 4.1 and 4.2 are combined in the following theorem. Note that a compound-exponential distribution on \(\mathbb{Z}^+ \) necessarily has positive mass at 0.

Theorem 5.2. Let \(X \) have an aperiodic, compound-exponential distribution \((p_k)\) on \(\mathbb{Z}^+ \). Then the random variable \(Z \) with distribution given by (2.4) satisfies

\[
Z \overset{d}{=} X + X' + Y_0,
\]

where \(X' \overset{d}{=} X, Y_0 \) is \(\mathbb{N} \)-valued, and \(X, X' \) and \(Y_0 \) are independent. For the random variable \(W \) with distribution given by (2.5) one has

\[
W \overset{d}{=} X + A,
\]

where \(X \) and \(A \) are independent and \(A \) has a nonincreasing distribution on \(\mathbb{N} \).

Proof. By Lemma 2.8 the pgf \(P \) of \(X \) has the form \(P = 1/(1 - \log Q) \) with \(Q \) an infinitely divisible pgf; hence differentiation of \(1/P \) leads to the equation \(P'/P^2 = Q'/Q \). Since the pgf \(P_{Z-1} \) of \(Z - 1 \) is given by \((1/\mu) P'\), it follows that

\[
P_{Z-1}(z) = \left\{ P(z) \right\}^2 (1/\mu) Q'(z)/Q(z).
\]
Now, \((1/\mu) Q'/Q \) can be read as the pgf of \(Y_0 - 1 \) for some \(\mathbb{N} \)-valued random variable \(Y_0 \); cf. the remark following Theorem 5.1. We conclude that \(Z \) satisfies (5.2).

With regard to (5.3) it is sufficient to note that

\[
P_{W-1}(z) = \frac{1 - P(z)}{\mu(1 - z)} = P(z) \frac{-\log Q(z)}{\mu(1 - z)} = P(z) \frac{1 - G(z)}{(\mu/\alpha)(1 - z)};
\]

cf. the second representation of (2.13) in Lemma 2.8.

\[\square\]

6. An example

For \(X(\cdot) \) in Theorem 3.2 we take a Gamma process: \(X(t) \) has a gamma distribution with parameters \(t \) and \(\lambda \), so with density \(x \mapsto \lambda^t x^{t-1} e^{-\lambda x} / \Gamma(t) \). The canonical function of \(X(t) \) has density \(x \mapsto \lambda x e^{-\lambda x} \), and it follows that for the total life-time \(Z(t) \) in the stationary renewal process generated by \(X(t) \) \([t > 0, \text{fixed}]\) we have

\[
Z(t) \overset{d}{=} X(t) + Y,
\]

where \(X(t) \) and \(Y \) are independent and \(Y \) has an exponential distribution with parameter \(\lambda \), independent of \(t \).

For \(0 < t \leq 1 \) the random variable \(X(t) \) is compound-exponential: its LST can be represented as \(1/(1 - \log F_0) \), where \(F_0 \) is infinitely divisible with canonical function \(K_0 \) satisfying

\[
\hat{K}_0(s) = -\frac{\hat{F}_0(s)}{\hat{F}_0(s)} = -\frac{d}{ds} \log \hat{F}_0(s) = \frac{t}{\lambda} \left(\frac{\lambda}{\lambda + s} \right)^{1-t}.
\]

From Theorem 4.1 it follows that for \(0 < t \leq 1 \)

\[
Z(t) \overset{d}{=} X(t) + X'(t) + Y_0(t),
\]

where \(Y_0(t) \) has a gamma distribution with parameters \(1 - t \) and \(\lambda \). The special case \(t = 1 \), i.e., \(X(1) \) exponential, gives \(Y_0(1) = 0 \) with probability 1, as is well known. In general, \(Z(t) \) has a gamma distribution with shape parameter \(t + t + (1 - t) = t + 1 \);

for \(t = \frac{1}{2} \) the random variable \(Z(t) \) is the sum of three iid random variables.

By Theorem 4.2, for the remaining life-time \(W(t) \) in the renewal process generated by \(X(t) \) we find

\[
W(t) \overset{d}{=} X(t) + A(t),
\]

with

\[
\hat{F}_A(t)(s) = \frac{(1 + s/\lambda)^t - 1}{ts/\lambda}.
\]

For \(t = 1 \) we obtain the well-known result that \(W(1) \overset{d}{=} X(1) \), i.e., \(\mathbb{P}(A(1) = 0) = 1 \).
References

July 15, 1994