Synthesis and characterization of a stable poly(iminomethylene) with pendant phenoxy radicals
Abdelkader, M.; Drenth, W.; Meijer, E.W.

Published in:
Chemistry of Materials

DOI:
10.1021/cm00016a008

Published: 01/01/1991

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Synthesis and Characterization of a Stable Poly(iminomethy1ene) with Pendant Phenoxy1 Radicals

M. Abdelkader and W. Drenth*

Department of Organic Chemistry, University at Utrecht, Padualaan 8,
3584 CH Utrecht, The Netherlands

E. W. Meijer†

Philips Research Laboratories, PO Box 80.000, 5600 JA Eindhoven, The Netherlands

Received August 23, 1990. Revised Manuscript Received May 6, 1991

Polymer 1b, [R—N=C<], where R is 4-oxyl-3,5-diphenylphenyl, has been synthesized by oxidation of polymer 8 (R = 4-hydroxy-3,5-diphenylphenyl). The latter is prepared by the NiCl2-catalyzed polymerization of the corresponding isocyanide. Magnetic susceptibility measurements indicate no evidence for ferromagnetism or any other short-range ordering among unpaired spins in the temperature region 77–320 K. A spin density of 0.8 spin/repeating unit is measured. ESR spectroscopy indicates that 1b is a paramagnet at both 4 and 320 K.

Introduction

Since their discovery in the nineteenth century, it is known that isocyanides easily polymerize. Comprehensive studies of this polymerization have been performed by Millich1–4 and by Yamamoto and other Japanese workers.5,6 A large variety of isocyanides have been polymerized by our group, applying nickel(I1) salts as catalysts.7–10 Polymers of isocyanides, more systematically called poly(iminomethylene) or poly(carbonimidoyls), are rigid rods with a helical configuration; there are approximately four R—N=C< units per helical turn.1–4,11 Figure 1 gives a top view of a right-handed poly(iminomethylene) in its most stable all-anti configuration. Syn-anti isomerization, however, cannot be excluded.12 Each molecule has four stacks of groups R parallel to the helical axis. An orderly stacking is experimentally supported by the observation of ion conductivity by polymers with pendant crown ether groups. The ions probably flow through channels formed by crown ether stacks.13

Recently, we prepared polymers of isocyanides with pendant piperidyl-N-oxyl groups 1a with the aim of obtaining ferro- or antiferromagnetic interactions of the pending stable radicals, due to the perfect alignment of the stacks.14 Despite this stacking, polymer 1a is paramagnetic with approximately 0.7 spin/repeating unit. No ordering among unpaired spins has been found.

Polymers substituted with stable radicals figure prominently in current research on possible ferromagnetic properties.15–21 A polymer of (3,5-di-tert-butyl-4-hydroxyphenyl)acetylene has been synthesized by Tsuda et al.15 and oxidized to the corresponding polyphenoxyl compound. The latter was paramagnetic with a limited concentration of unpaired spins of approximately 0.1 spin/repeating unit.

In a subsequent step in our research on polyradicals, we synthesized and characterized a polymer of an isocyanide with pendant phenoxyl radicals. These phenoxyl radicals are thought to have a spin density distributed over the aromatic ring. Hence, we anticipated a higher effect of ordering among the unpaired spins in the polymer with phenoxyl radical units, 1b, than with the polymer with nitroxyl radical units, 1a.

Experimental Section

Instrumentation. Nuclear magnetic resonance spectra are recorded on a Varian EM 360A and a VXR 400s instruments at 60 and 400 MHz for 1H and on a Varian VXR 400s instrument at 100 MHz for 13C; the chemical shifts are reported in ppm downfield from TMS for 1H and 13C. The 13C spectra are obtained with 1H broadband decoupling, and the chemical shifts are assigned by comparison with the calculated chemical shifts and by considering the intensities of the peaks. Infrared data are obtained from a Perkin-Elmer 283 spectrophotometer. Viscosity is measured at 30 °C in THF, in an Ubbelohde viscometer. Size-exclusion chromatography is carried out with two columns: Polymer Laboratories and Plgel 10μ. A Roth Scientific Ltd. Visconst refractometer/viscometer detector at 35 °C is used. The columns are calibrated with polystyrene and poly(methyl methacrylate) standards, and THF is used as an eluent. Melting points are uncorrected and obtained from a Mettler FF5 and FF51

A Stable Poly(aminomethylen)

capillary melting point apparatus. ESR and magnetic susceptibility instrumentation is as in ref 14. Elemental analyses are performed by the Elemental Analytical Section of the Institute for Applied Chemistry TNO, Zeist, The Netherlands, and by the Microanalysis Group, Department of Chemistry, University of Durham, Durham, UK. EI and CI MS are performed on a 7070 VG analytical mass spectrometer.

Materials. Most compounds are from Janssen and used without further purification. All solvents are distilled prior to use and dried if noted.

4-(N-Formylamino)-2,6-diphenylphenol (3). In a 250-cm³ round-bottomed flask equipped with a magnetic bar, a condenser, and a Dean-Stark trap are mixed at room temperature 4-amino-2,6-diphenylphenol (12.35 g, 47 mmol) and concentrated formic acid (98–100%, 50 cm³) with stirring. Toluene (dry, 160 cm³) is added; the mixture is protected with a blanket of N₂, and the vessel is placed in an oil bath. Stirring is continued, and the bath temperature is raised to 110–120 °C. The excess acid and the water formed are removed by distillation. Heating is continued for 12 h; then the volume of toluene is reduced to 50 cm³. The formamide crystallizes at room temperature (powder). It is filtered and washed first with small portions of toluene, followed by water, a solution of sodium hydrogen carbonate and water, and finally toluene. It is dried in a desiccator in the presence of phosphorus pentoxide under full vacuum; yield 11.51 g (85%), mp 167–168 °C. ¹H NMR (CDCl₃) δ 7.2–7.75 (m, 2 H, ortho to N=C-O), 8.2 (m, 1 H, CO, OH), 9.62 (s, 1 H, NH); ¹³C NMR (DMSO-d₆) δ 165.5 (s, 2 H, CH ortho to N=C=O), 122.7 (m, H, phenyl); IR (neat) 2960, 1620, 1585, 1500 cm⁻¹. Anal. Calcd for C₁₉H₁₄NO₂: C, 80.54; H, 4.79; N, 4.49. EI and CI MS m/z 313, (M + NH₄⁺)⁺ 331.

4-Hydroxy-3,5-diphenylphenyl Isocyanide (5). In a three-neck, round-bottomed flask (250 cm³) equipped with a magnetic bar, a dry ice–acetone condenser, an addition funnel, and a low-temperature thermometer, formamide is dissolved in the formamidine [0.7 g, 6.27 mmol] and dry N-Methylmorpholine (2.7 cm³, 3.83 mmol) in 125 cm³ of dichloromethane. The solution is protected with a blanket of dry N₂ and then cooled to −10 to −3 °C in a dry ice–acetone bath. A solution of diphosgene [0.781 g, 2.75 mmol] in 50 cm³ of dichloromethane is added through the addition funnel with magnetic stirring over 20 min. The clear solution is stirred for another 3 h at ambient temperature. The organic layer is washed twice with 30 cm³ of water, then dried over a 4 A molecular sieve. The solvent is rotavaporated to leave a solid, which is dried again in a desiccator in the presence of P₂O₅ under full vacuum; yield 1.342 g (81%), mp 72–75 °C. ¹H NMR (CDCl₃, 400 MHz), two isomers, δ 1.782 and 1.784 (s, 3 H, CH₃), 7.08 and 7.53 (s, 2 H, arorn ortho to N=C–O), 7.36–7.42 (m, 10 H, Ph), 8.02 and 8.69 (br, 1 H, NH), 5.2 and 8.67 (d, 1 H, NH–O), 3.81 and 3.86 (s, 3 H, CH₃); ¹³C NMR (CDCl₃), two isomers (the first cited shift corresponds to the predominant isomer, the second one to the minor isomer δ 20.45 and 20.34 (CH₃), 121.35 and 120.11 (C ortho to N=C–O), 127.67 and 127.94 (C₆H₅ of Ph), 128.25 and 128.37 (C₆ and C₅ of Ph), 128.78 and 128.69 (C₇ and C₈ of Ph), 135.16 and 134.88 (arom C attached to N=C–O), 136.25 and 136.74 (C meta to N=C–O), 137.09 and 137.23 (C₆ of Ph), 141.30 and 142.22 (C para to N=C–O), 152.29 and 152.66 (N=C–O), 169.46 and 169.18 (C=C–O); IR (KBr) 2920 (br, NH), 3040 (m, CH), 1752 (s, CO-CH₃), 1590 and 1535 (s, CO=NH), 1585 (w, Ph cm⁻¹). Anal. Calcd for C₂₆H₂₆NO₃: C, 84.04; H, 6.37; N, 7.63. Found: C, 84.02; H, 6.34; N, 7.62. EI MS m/z calcd for C₂₆H₂₆NO₃: 384.2, 362.2, 340.2. EI and CI MS m/z 384, 363, 330 (M + H⁺)⁺ 479.

Top view of right-handed polymer molecule.
Bis(4-isocynano-2,6-diphenylphenyl) carbonate (3a). 1H NMR (CDCl$_3$) δ 7.3 (s, 10 H, phenyl), 7.5 (s, 2 H, CH ortho to NC); IR (KBr) 3035, 3020 (w, CH), 2118 (s, NC), 1780 (s, CO), 1590, 1570 (m, C=O) cm$^{-1}$.

Polymerization. General Procedure. In one arm of a Y-shaped polymerization tube is placed a solution of the isocyanide in dichloromethane, and in the other NiCl$_2$ and a magnetic bar. The solution is cooled to -76 °C, and full vacuum is applied. The tube is filled with N$_2$ and then warmed to room temperature. The process is repeated three times. At ambient temperature the solution of isocyanide is added to NiCl$_2$ with stirring. The reaction is run under a N$_2$ atmosphere. The solution is then dropped into 100 cm3 of ether while stirring. The polymer is filtered and washed first with ether, subsequently with small portions of a methanol–water mixture (1:1), and finally ether. It is dried overnight in an oven at 40–60 °C in the presence of P$_2$O$_5$ under full vacuum (see Table I).

Poly[(4-acetoxy-3,5-diphenylphenyl)iminomethylene] (7).

Poly[(4-oxyl-3,5-diphenylphenyl)iminomethylene] (Ib).

Poly[(4-hydroxy-3,5-diphenylphenyl)iminomethylene] (8).

Figure 2. 13C NMR spectrum of polymer 7 with 1H broadband decoupling in ethylene glycol dimethyl ether at 75 °C. The polymer is partly soluble. (a) Expanded part of the aliphatic region. (b) Expanded part of the aromatic region. (c) Expanded part of C=O and N=C regions.

(Scheme II). The reaction took several days, and the yield was not high (Table I). The low conversion is probably due to steric hindrance by the phenyl substituents and to the presence of a donating group para with respect to the isocyanide function. The latter effect could be reduced by addition of a Lewis acid, zinc chloride, to monomer 5. When polyacetate 7 was treated with excess NaOH in a 1:1 methanol/tetrahydrofuran mixture at room temperature, only 20% of the acetate was hydrolyzed to phenolic OH. Therefore, product 8, from the polymerization of 6, was used for the final oxidation affording polyphenoxyl radical 1b (Scheme III), which is a black solid, insoluble in the usual solvents. Sodium hypochlorite is the oxidant of choice; metal oxides and other oxidants were avoided because of the difficulty of their removal from the polymer.

From the viscosity and molecular weight data of the two samples of polymer 7 (from monomer 5, Table I) the constants K and a in the Mark–Houwink–Sakurada equation, $[\eta] = K M^a$, were calculated to be 10^{-2} and 1.3, respectively. This result strongly supports the rigid-rod character of the polymers. Additional support is afforded by the 1H NMR spectra, which are, even at long acquisition times, similar (with very broad peaks) at 400 and 60 MHz.
Table I. Polymerization of Isocyanide

<table>
<thead>
<tr>
<th>[monomer], mol/dm³</th>
<th>[initiator], mol/dm³</th>
<th>time, h</th>
<th>yield, %</th>
<th>[η], g/dL</th>
<th>M_w</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.227</td>
<td>0.0032</td>
<td>166</td>
<td>29</td>
<td>0.227</td>
<td>52 500</td>
</tr>
<tr>
<td>5'</td>
<td>0.137</td>
<td>0.003</td>
<td>48</td>
<td>64</td>
<td>0.137</td>
<td>35 400</td>
</tr>
<tr>
<td>6</td>
<td>0.257</td>
<td>0.008</td>
<td>65</td>
<td>43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See Experimental Section for reaction conditions. † Initial concentrations. After 137 h of reaction time more initiator is added; final concentration 0.0096 mol/dm³. ‡ Reaction run in the presence of an equivalent amount of ZnCl₂. ZnCl₂ is mixed first with the initiator. At the beginning the reaction is heterogeneous; after 5 min it becomes all solid. Dichloromethane (10 cm³) is then added; 1 h later the reaction mixture is homogeneous. § M_w is determined by SEC using polystyrene and poly(methyl methacrylate) standards. ‡ Degree of polymerization calculated as the ratio of M_w/ (weight of repeating unit).

Figure 3. 13C NMR spectrum of monomer 5 in CDCl₃ at ambient temperature.

The 13C NMR spectrum of polymer 7 in ethylene glycol dimethyl ether (Figure 2) shows only one peak for the CH₃ carbon. This implies that only one conformer is present, syn and anti isomerism probably not being present. This CH₃ peak has shifted to lower field by 8.76 ppm compared to the monomer (Figure 3), and the C–O carbon peak has shifted to higher field by 0.94 ppm. Both shifts will be due to ring current effects or steric compression or both.

Powder ESR spectra of a sample of polymer 1b showed a single broad resonance at a g value of 2.0044. The peak-to-peak line width amounted to 7 G at ambient temperature and it increased to only 9 G at 4 K, while the intensity of the resonance increased by a factor of 2 in this temperature region. These results suggest the absence of any short-range ordering among the unpaired spins of polymer 1b. Further evidence for the absence of ordering is found in magnetic susceptibility (χ_m) measurements, as performed in the temperature region 77–320 K. A plot of χ_m versus $1/T$ shows the presence of a high diamagnetic (χ_d) contribution. A linear relation was found between $1/(\chi_m - \chi_d)$ and temperature (Figure 4). The plot is again illustrative of a paramagnet without short-range ordering among unpaired spins in the temperature region studied. From the slope of this plot we calculated a spin density of 1.8×10^{21} spins/g, assuming a density of the polymer of 1 g/cm³. This spin density is equivalent to approximately 0.8 spin/repeating unit, which is high in view of the synthetic route including the final oxidation.

The thermal stability of this polymer has been monitored at ambient temperature and at -30 °C by observation of the C–O stretching frequencies at 1640 (partly obscured by C=N) and 1610 cm⁻¹ in the infrared absorption spectrum. The polymer was found to be stable for months at ambient temperature when present in a KBr pellet.

In this paper a route is described to a polymer with a high concentration of free radicals. Evidence is presented...
of a stacking and close packing of these free radicals in rigid-rod polymer molecules. Long-range spin–spin interactions have, however, not been observed. Arguments to explain the absence of such coupling could be as follows: There is the loss of approximately 20% of free radicals during synthesis, which could be detrimental for the magnetic properties.

According to McConnell’s theory a negative value of the product of spin densities at two neighboring sites would predict ferromagnetism and a positive value antiferromagnetism (see refs 21 and 22). An exactly perpendicular stacking would lead to a positive sign. Possibly, the stacking is not exactly perpendicular and the product of spin densities is vanishingly small.

Acknowledgment. We acknowledge the experimental support by H. W. van Kesteren and G. J. M. Pooldt at Philips Research Laboratories, Eindhoven, and the recording of almost all NMR spectra by Dr. A. M. Kenwright, Department of Chemistry, University of Durham, UK.

Registry No. 2, 50432-01-4; 3, 134334-14-8; 3a, 134334-18-2; 4, 134334-15-9; 5, 134334-16-0; 5 (homopolymer), 134334-20-6; 6, 134334-17-1; 6 (homopolymer), 134334-21-7; 7 (SRU), 134334-23-9; 8 (SRU), 134334-24-0; HCO3H, 64-18-8; CH3COCl, 75-36-5.

Aging Processes of Alumina Sol–Gels: Characterization of New Aluminum Polyoxycations by 27Al NMR Spectroscopy

G. Fu and L. F. Nazar*

Department of Chemistry, University of Waterloo, Guelph-Waterloo Centre for Graduate Work in Chemistry, Waterloo, Ontario, Canada N2L 3G1

A. D. Bain

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Received September 7, 1990. Revised Manuscript Received March 19, 1991

The existence of unidentified molecular aluminum oxide clusters has been previously postulated in many alumina sols produced by various methods. We have used 27Al NMR spectroscopy kinetic studies to identify three new polyoxyaluminum cations in these sols, which we show are formed by thermal transformation of the well-known tridecamer cation Al13O4(OH)24(H2O)12+**.** These clusters, which we denote as AlP1, AlP2, and AlP3, have resonances at 64.5 ppm (tetrahedral Al site)/≈10 ppm (octahedral Al site), 70.2 ppm (tet)/10.0 ppm (oct), and 75.6 ppm (tet)/9.3 ppm (oct), respectively. NMR and gel permeation chromatography data suggest that the poly(oxyaluminum) cation AlP3, which dominates this reaction process, is a dimer of Al13—A mechanism for the aging process is proposed.

Introduction

Alumina sol–gels are complex, multicomponent fluids that are precursors for many materials such as controlled-porosity ceramic membranes, refractory fibers, coatings,1 and optical matrices.2 They are commonly formed from the hydrolysis of aluminum alkoxides, but they can also be produced by the polymerization of hydrated aluminum cations. The chemistry of these systems is still poorly defined, despite many years of study. We do know, however, that the nature of the elementary alumina species defines the bonding and microstructure in the sol. Given the importance of alumina sol–gel chemistry, this has motivated our studies to gain a fundamental understanding of the processes that control chemical composition and microstructure.

Past studies in this laboratory have centered on the alkoxide hydrolysis process. We have recently determined that the hydrolysis of aluminum alkoxides at high H2O/Al ratios at elevated temperature leads to the formation of small colloidal particles of aluminum hydroxide linked together to form an open, tenuous fractal structure.3 The acid/Al ratio determines the degree of compactness of the network. Our small-angle neutron scattering experiments have revealed that the subunits of this fractal network are about 10–25 Å in diameter. Previous work has also shown that at room temperature, hydrolysis at high acid/Al ratios leads to the formation of alumina sols in which the Al13O4(OH)24(H2O)12+** cation accounts for about 70% of the aluminum present.**4 We observed that aging these sols at 90 °C produced an unidentified species before gelation of the sol occurred. This molecule had a characteristic 27Al NMR resonance at 70 ppm to high frequency (downfield) from Al(H2O)6**.** In an effort to characterize this species and to better understand the steps in the aging and gelation process, we turned to the hydrolysis of aluminum salts in solution as a method of forming more characterizable sols.

At low pH (<3), alumina salts exist in aqueous solutions as the hydrated Al3** cation. An increase in pH leads to the removal of H+ from the coordinated water mole-
