Stress shielding in the resurfaced femoral head

van Rietbergen, B.; Huiskes, H.W.J.

Published in:
Transactions of the 51st Annual Meeting of the Orthopaedic Research Society, Washington D.C., February 20-23, 2005

Published: 01/01/2005

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
STRESS SHIELDING IN THE RESURFACED FEMORAL HEAD

++van Rietbergen, B.; *Huiskes, R.
+Eindhoven University of Technology, Eindhoven, Netherlands
b.v.rietbergen@tue.nl

Introduction
The development of wear-resistant bearings recently resulted in a renewed interest in resurfacing total hip arthroplasty. In the long-term, however, the success of such techniques, can be threatened by bone-implant loosening due to high interface stresses or stress shielding. In particular stress shielding of trabecular bone in the femoral head is likely to occur after placement of the stiff resurfacing implant. Although some authors have quantified stress shielding after resurfacing with conventional continuum finite element analysis [1], little is known about how, exactly, the stresses and strains in this critical femoral head region are affected. Recently, micro- finite element (micro-FE) techniques were introduced that enable the determination of stresses and strains throughout trabecular bone regions at the level of the bone tissue [2]. The goal of this study was to analyze stress-shielding and interface stresses in trabecular bone of the femoral head after placement of a cemented resurfacing prosthesis using micro-FE analysis.

Materials and Methods
A micro-CT scanner (Scanco mCT80) was used to create high-resolution images of a normal human femur. These images were used to create a micro-FE model with brick elements of 80 microns in size. In an earlier study, stresses and strains in the femoral head of this femur were quantified for normal loading conditions [2]. For the present study, a generalized resurfacing prosthesis, consisting of a hemispherical cup with a short stem (Fig. 1) was artificially generated and added to the micro-FE model. The outer diameter of the cup was 44 mm, the thickness of the shell 1.6 mm and the length of the stem 65 mm. The femoral head was ‘milled’ such that a 1 mm space between the head and the inside of the cup was left. This space, and 0.6 mm of the adjacent intertrabecular space, was filled with cement, such that trabeculae would penetrate partly into the cement layer. The stem was assumed fully bonded. The complete micro-FE model consisted of over 114 million 8-node brick elements. Elements were given a stiffness of 15 GPa for trabecular bone, 22.5 GPa for cortical bone, 210 GPa for the implant and 2.28 GPa for cement.

The cup was loaded with a normal force representing the stance-phase of walking at 234% BW [3]. The distal end was fully constrained. After solving, stress shielding within the femoral head was quantified for the regions Anterior-Superior, Anterior-Inferior, Posterior-Superior and Posterior-Inferior.

Results
A contour plot of Von Mises stresses clearly revealed that most of the load is transferred through the stem of the implant (Fig. 2). Severe stress shielding was found in bone tissue of all regions in the femoral head, in particular in the inferior regions (Table 1). Stresses were also reduced in the neck cortical bone due to the stiffening caused by the stem. Increased tissue stresses were found in trabeculae near the tip of the stem, at the medial side of the midstem and at some locations near the rim of the implant. Stresses in trabeculae at and near the bone-cement interface were generally low.

Discussion & Conclusion
For the implant studied here, femoral head bone loss is expected to occur in the long term due to stress-shielding. On the other hand, given the low interface stresses, interface loosening is not likely to occur. Compared to continuum models, these micro-FE models are still challenging and require large multiprocessor computers (the present analysis took 2 weeks on 32 processors). Nevertheless, the micro-FE approach has some important advantages over continuum models. First, it fully accounts for trabecular bone volume fraction and anisotropy distribution. Second, it provides results at the level of the bone tissue, which is the level at which the cells sense the changes in loading and the level at which interface failure is initiated. Third, it enables the study of interfaces without making assumptions about their mechanical and geometrical properties. Fourth, trabecular and cortical regions are accounted for without making further assumptions. In particular, no trabecular bone density stiffness relationships need to be implemented in order to estimate the mechanical properties of trabecular bone at the continuum level. For these reasons we expect that this type of analysis can improve our understanding of stress-related failure phenomena in bone.

References
2. van Rietbergen et al., JBMR, 18:1781 (2003)

Acknowledgements
This work was sponsored by the National Computing facilities Foundation (NCF) with financial support from the Netherlands Organization for Scientific Research (NWO).

Table 1: average change in trabecular bone tissue load after resurfacing in four regions within the femoral head.

<table>
<thead>
<tr>
<th>Region</th>
<th>InfPos</th>
<th>InfAnt</th>
<th>SupPos</th>
<th>SupAnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Princ Strain</td>
<td>-50%</td>
<td>-49%</td>
<td>-36%</td>
<td>-43%</td>
</tr>
<tr>
<td>Von Mises</td>
<td>-50%</td>
<td>-48%</td>
<td>-34%</td>
<td>-40%</td>
</tr>
</tbody>
</table>

Fig. 1 The artificially created cemented resurfacing prosthesis

Fig. 2 Von Mises stresses in the bone tissue and implant due a hip-joint force representing the stance-phase of walking. The half-model is shown to reveal stresses in the trabeculae and stem.