Solid-state displacement reactions in the Fe-Ni-S and Cu-Ni-S systems between 400 and 500 degrees C
Beek, van, J.A.; de Kok, P.M.T.; van Loo, F.J.J.

Published in:
Oxidation of Metals

DOI:
10.1007/BF00656902

Published: 01/01/1984

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Solid-State Displacement Reactions in the Fe–Ni–S and Cu–Ni–S Systems Between 400 and 500°C

J. A. van Beek,* P. M. T. de Kok,* and F. J. J. van Loo*

Received April 6, 1984

Solid-state displacement reactions of the type $A + BS \rightarrow B + AS$ have been studied in the systems Fe–Ni–S and Cu–Ni–S. In diffusion couples, mainly of the type Fe/Ni$_3$S$_2$ and Cu/Ni$_3$S$_2$, the layer sequence, morphology, and growth rate of the reaction products have been investigated. The layer sequence of the reaction products in the couples appears to be just the reverse of that found previously in displacement reactions in some couples of oxide systems like Ni/Cu$_2$O and Co/Cu$_2$O. We find the sequence $A/B/AS/BS$, whereas in the oxide systems the sequence $A/AO/B/BO$ has been found. This means that the metal atoms exchange and sulfide ions practically stand still in the first case, whereas in the oxide system the transport of oxygen is essential. For a correct interpretation of the results it was necessary to determine the isothermal cross-section through the Fe–Ni–S system at 460 and 500°C. At 500°C the iron stabilized high-temperature modification β-Ni$_3$S$_2$ was found.

KEY WORDS: Fe–Ni–S system; Cu–Ni–S system; displacement reaction; diffusion path; ternary diffusion; multiphase diffusion.

INTRODUCTION

The kinetics of solid-state displacement reactions of the type $pA + B_qX \rightarrow qB + A_pX$ have been extensively studied by Rapp et al.1 for the case where X stands for oxygen. In planar diffusion couples with the metal A and the oxide B_qX as starting materials, they examined the morphologies of the reaction layers and determined their growth rate experimentally. On the

*Eindhoven University of Technology, Laboratory of Physical Chemistry, Eindhoven, The Netherlands.
other hand, they predicted these morphologies and rates from a knowledge of pertinent thermodynamic and diffusion data. Their theory, in fact an extension of the well-known Wagner's oxidation theory, can be summarized as follows.

In the diffusion couple \(A/B_\text{p}X\), two reaction product morphologies are possible: a layered structure as shown schematically in Fig. 1a, or an aggregate structure as shown in Fig. 1b. Which of these possibilities will show up depends on the stability of the interface between the products \(B\) and \(A_\text{p}X\). A perturbation in this interface will disappear if the flux of \(X\) atoms through the \(B\) layer exceeds the flux of \(A\) ions through the \(A_\text{p}X\) layer, with the result that the layered structure will be stable. If, however, the reverse is true, then an accidental perturbation will grow out, eventually leading to a two-phased aggregate layer of \(B\) and \(A_\text{p}X\).

From this model Rapp et al.\(^1\) and Yurek et al.\(^2\) predicted layer morphologies, which were confirmed by their experiments, and layer thicknesses, which agreed within an order of magnitude. Vosters et al.\(^3\) also investigated some of these systems and arrived at the same conclusion, although they pointed out the important role of minor impurities on the reaction product morphology and reaction rate. Shatynski et al.\(^4\) applied the same model on displacement reactions in a number of sulfide systems. In all cases they predicted from the foregoing model an aggregate morphology which indeed they found experimentally. However, these experiments were done at temperatures where liquid phases were present in the diffusion couples, which made the results unreliable. We have carried out experiments on these and other sulfide systems at temperatures where only solid phases occur. In this

![Fig. 1. Schematic illustration of a displacement reaction \(pA + B_\text{p}X \rightarrow qB + A_\text{p}X\) according to the model of Rapp et al.\(^1\)](image-url)
paper special emphasis will be put on the investigation of the couples Fe/Ni$_3$S$_2$ and Cu/Ni$_3$S$_2$ between 400 and 500°C.

In order to interpret the experimental results it is necessary to know the isothermal cross-sections through the Fe–Ni–S and Cu–Ni–S phase diagrams at the relevant temperatures. Data about the binary systems are given by Romig et al.5 and Kubaschewsky6 on Fe–Ni, Kubaschewsky6 on Fe–S, Lin et al.7 on Ni–S (see Fig. 2), and Sharma and Chang8 on Cu–S. The rather simple 500°C cross-section through the Cu–Ni–S phase diagram is given by Moh and Kullerud.9 The Fe–Ni–S phase diagram is more intricate. Shewman and Clark10 give a number of cross-sections at several temperatures through this system with special emphasis on the homogeneity region of pentlandite, (Fe, Ni)$_9$S$_8$, and the (Fe, Ni)$_{1-y}$S phase. The other cross-section data for these two systems were taken from earlier investigations of Kullerud et al.11,12 Since we found some discrepancies with our experiments, we determined the 460 and 500°C cross-sections between 0 and 50 at.% S by the analysis of equilibrated ternary alloys and diffusion couples.

EXPERIMENTAL METHODS

For the preparation of the various sulfides, we have used Fe powder (1–5 μm Riedel de Haën or Drijfhout, 99.1% purity), Cu powder (Merck 99.5% purity), and S powder (Merck p.a.). The pure compounds Ni$_3$S$_2$, \[\text{Ni}_3\text{S}_2 \]
NiS, Cu₂S, and (FeNi)₉S₈ were made very simply and successfully by heating the appropriate mixtures of powders of the various elements in a silica tube under a He atmosphere to prevent oxidation. After the exothermal reaction the product was melted in the same tube, except for NiS because of the loss of sulfur at the melting point. The various ternary alloys, which were used for the determination of the isothermal cross-sections through the Fe–Ni–S phase diagram, were made by cold-pressing Fe powder and powders of NiS, Ni₃S₂, or pentlandite. These pellets were then heated either in a nitrogen stream or in an evacuated silica tube at the appropriate temperature for one week.

For the preparation of the diffusion couples, we used slices of the dense sulfides sawn from bars obtained in the above-mentioned way after a heat treatment at the same temperature as the diffusion annealing. The other couple halves were recrystallized slices of Fe (1 cm diam, 0.15 cm thick from MRC, 99.9%) and Cu (MRC, 99.998%). Couples were made in three different ways: (a) by clamping the couple halves in a vice and heating them in an evacuated silica capsule or in a N₂ atmosphere; (b) by pressing the halves together using a spiral spring in order to keep a constant pressure on the couple during diffusion annealing under a N₂ atmosphere; (c) by means of a vacuum furnace in which a controlled external load can be applied on the couple halves.

After heat treatment the couples were quenched in water when using preparation method (a); the other methods did not permit a rapid quenching procedure. The experimental results were not affected by the origin of the starting materials or the preparation technique used for the diffusion couples. The metallographic preparation of the alloys and couples implied the usual sawing, embedding, grinding, polishing, and etching procedures. The samples were investigated using microscopic, X-ray, and electron microprobe analyses. In the latter case the BAS correction procedure was used for the conversion of relative intensities to concentrations. Pyrite, FeS₂, was used as a standard for Fe and S and Ni₃S₂ as a standard for Ni, whereas for Cu the pure element was used. Other standards were also used in order to check the correction procedure, but no important differences were found.

EXPERIMENTAL RESULTS

Phase Relations in the Fe–Ni–S System

We determined the 460 and 500°C cross-sections through the phase diagram by analyzing alloys of the compositions given in Figs. 3 and 4. These results have been supplemented by the investigation of various
diffusion couples, measuring the compositions in adjacent phases, as discussed below. The compositions of the coexisting α- and γ-(Fe, Ni) phases could not reliably be determined because equilibrium was not obtained at these low temperatures. Therefore, these data in Figs. 3 and 4 have been taken from Romig and Goldstein.⁵
At 500°C we found in equilibrated alloys as well as in diffusion couples an iron stabilized high-temperature modification, \(\beta \)-Ni₃S₂, which could not be retained during the quenching procedure; this phase decomposed into the low-temperature \(\beta' \)-Ni₃S₂ modification, pentlandite, Fe₄.₅Ni₄.₅S₈, and \(\gamma \)-\((\text{Fe}_{22}\text{Ni}_{78})\). From Fig. 2 it can be seen that in the binary Ni-S system, a high-temperature modification of Ni₃S₂ exists above 522°C. According to Kullerud et al.,¹¹ this phase is unquenchable and may dissolve a considerable amount of iron. Obviously the presence of iron extends the stability towards lower temperatures. The dashed lines in Fig. 4 represent parts of the section based on the data of Kullerud,¹² not verified by our experiments. By our techniques it was not possible to detect the presence of a superstructure of ordered FeNi₃. This is, therefore, omitted in Figs. 3 and 4, the more so as the literature data are not consistent in this respect.⁶

Layer Morphology in Fe/Ni₃S₂ and Fe/NiS Diffusion Couples Between 400 and 460°C

The diffusion layer morphology found in the Fe/Ni₃S₂ couples between 400 and 460°C was quite different from the one predicted by Rapp et al.¹ and Shatynski et al.⁴ In Fig. 5 an optical micrograph is presented showing two reaction layers, viz., a \(\gamma \)-(Fe, Ni) layer containing about 36 at.% Fe and a pentlandite layer of constant composition Fe₄.₅Ni₄.₅S₈. Figure 6

![Fig. 5. Optical micrograph of the layered product morphology in a diffusion couple, Fe/Ni₃S₂, annealed for 144 hr in a N₂ atmosphere at 460°C.](image-url)
Fig. 6. Concentration-penetration curves of the elements Fe, Ni, and S in the diffusion couple shown in Fig. 5.

represents the concentration-penetration curves of the three elements; the diffusion path is given in Fig. 3. The sequence of these layers is just the reverse as postulated by Rapp et al. in Fig. 1. At large magnifications, scanning electron microprobe pictures show very small sulfur-rich precipitates to be present in the γ-layer, probably along (sub)grain boundaries. X-ray analysis revealed the γ-layer to consist of textureless, small crystallites giving rise to continuous, somewhat diffuse diffraction lines in contrast to the very coarse-grained iron starting material on which the layer grows.

The Fe/NiS couple reacted much faster and was, in fact, not semiinfinite: after 72 hr at 460°C all the NiS had disappeared. The layer sequence was α-Fe/FeS/pentlandite/Ni$_6$S$_8$/(NiS). The diffusion path is shown in Fig. 3. We tried to make Fe/Ni$_6$S$_8$ couples, but we did not succeed in preparing purely single-phased Ni$_6$S$_8$: the sample always contained some NiS. The reaction products formed in these couples were, however, interesting because composition analysis enabled us to construct the three-phase field pentlandite/Ni$_6$S$_8$/(Fe, Ni)S as shown in Fig. 3.

Reaction Kinetics in the Fe/Ni$_3$S$_2$ Diffusion Couple Between 400 and 460°C

In couples of the type Fe/Ni$_3$S$_2$ at 400, 430, and 460°C both the γ-(Fe, Ni) layer and the pentlandite layer grew parabolically with time, although the latter was quite irregular owing to pores and cracks both in this layer and in the adjacent starting material, Ni$_3$S$_2$. The ratio between
the thicknesses of the γ-(Fe, Ni) and pentlandite layers was 0.54 ± 0.08, as expected from the chemical reaction (discussed below). In Fig. 7 the squares of the γ-layer thickness d are plotted as a function of time for the three temperatures. In Fig. 8 the logarithm of the parabolic rate constant $k_p = d^2/2t$ is plotted as a function of $1/T$, from which the relation

$$k_p = \exp(-(3.4 \pm 1) \exp(-(16000 \pm 700)/T \text{ cm}^2/\text{s})$$

can be derived, and an activation energy of 133 ± 6 kJ/mole for the growth process is found.

Layer Morphology and Growth in Fe/Ni$_3$S$_2$ Couples Between 460 and 600°C

At temperatures above 460°C the reaction zone consisted of a γ-(Fe, Ni) layer containing about 31 at.% Fe and a three-phased layer consisting of pentlandite, β'-Ni$_3$S$_2$, and γ-(Fe, Ni). At 470 and 477°C both β'-Ni$_3$S$_2$ and γ-(Fe, Ni) were present as precipitates along cracks and grain boundaries of a pentlandite matrix. Above 480°C the three phases were closely intermixed on a fine scale; the overall composition of the layer was about Fe$_9$Ni$_{51}$S$_{40}$. Since this kind of structure is not allowed in solid ternary diffusion couples because of Gibbs' phase rule, we looked for possible

![Fig. 7. Plot of the square of the layer width d of γ-(Fe, Ni) vs. diffusion time in Fe/Ni$_3$S$_2$ couples.](image)
reasons for this behavior. The occurrence of liquid phases can be ruled out at these temperatures, the more so as no melting phenomena was observed in the couples. From the analysis of very rapidly quenched alloys, it turned out that at the diffusion temperature, the layer was indeed single-phased and that on cooling, decomposition took place on a very fine scale (see above). The diffusion path at 500°C is given in Fig. 4. The ratio between the thicknesses of the \(\gamma \)-(Fe, Ni) layer and the "Fe\textsubscript{9}Ni\textsubscript{5}S\textsubscript{40}" layer was about 0.14 at this temperature. The parabolic rate constant \(k_p \) of \(\gamma \)-(Fe, Ni) was 1 \(\times \) 10-11 cm2/s.

Layer Morphology and Growth in Cu/Ni\textsubscript{3}S\textsubscript{2} and Cu\textsubscript{70}Ni\textsubscript{30}/Ni\textsubscript{3}S\textsubscript{2} Couples at 500°C

The diffusion layer sequence in the Cu/Ni\textsubscript{3}S\textsubscript{2} couple was in line with the one found in the Fe/Ni\textsubscript{3}S\textsubscript{2} couple (Fig. 9). Concentration-penetration curves are given in Fig. 10, whereas the diffusion path is shown in Fig. 11. The thickness ratio between the (Cu, Ni) layer and the Cu\textsubscript{2}S layer was 1 ± 0.1. The latter layer was quite irregular but dense, contrary to the pentlandite layer in Fe/Ni\textsubscript{3}S\textsubscript{2} couples. The parabolic rate constant of the (Cu, Ni) layer was about 1 \(\times \) 10-11 cm2/s, although it was not as reproducible as the \(\gamma \)-(Fe, Ni) layer in the Fe-Ni-S system. The (Cu, Ni) layer had no fixed composition; a clear concentration gradient was present, giving rise to an average content of about 60 at.% Cu. The sulfide precipitates in the (Cu, Ni) layer were larger than in the \(\gamma \)-(Fe, Ni) layer and microscopically
Fig. 9. Optical micrograph of a Cu/Ni$_3$S$_2$ couple, annealed for 48 hr at 500°C in an evacuated silica capsule.

Fig. 10. Concentration-penetration curves of the elements Cu, Ni, and S in the diffusion couple shown in Fig. 9.
visible, especially near the boundary with Cu and along the grain boundaries. The grains in the (Cu, Ni) layer were much smaller than those in the Cu starting material, but larger than those in the γ-(Fe, Ni) layer discussed above.

In order to gain an insight into the reaction kinetics, we also investigated some couples of the type Cu$_{70}$Ni$_{30}$/Ni$_3$S$_2$. We found a Cu$_2$S layer with a thickness of about $\frac{1}{3}$ of the layer formed in a Cu/Ni$_3$S$_2$ couple during the same annealing time, and a (Cu, Ni) layer with a concentration varying between 70 and 37 at.% Cu. This layer could be distinguished from the Cu$_{70}$Ni$_{30}$ starting material because of the much smaller grain size and the small sulfide precipitates along the grain boundaries. Its thickness was about the same as found in Cu/Ni$_3$S$_2$ couples for comparable annealing times.

DISCUSSION OF THE LAYER SEQUENCE, MORPHOLOGY, AND GROWTH RATE IN Fe/Ni$_3$S$_2$ AND Cu/Ni$_3$S$_2$ COUPLES

We will focus our discussion on the couples in which the following reactions occur:

(a) \[100\text{Fe} + 45.2\text{Ni}_3\text{S}_2 \xrightarrow{460^\circ C} 1.34\text{Fe}_{36}\text{Ni}_{64} + 1.92\text{Fe}_{27}\text{Ni}_{26}\text{S}_{47}\]

(b) \[100\text{Cu} + 11.8\text{Ni}_3\text{S}_2 \xrightarrow{500^\circ C} 0.88\text{Cu}_{60}\text{Ni}_{40} + 23.5\text{Cu}_2\text{S}\]
where the numbers under the reactions are the calculated volume ratios. In all cases the reaction products appear as single-phased layers bounded by planar interfaces, apart from the small sulfide precipitates in the grain boundaries of the metallic product layer. The experimentally found thickness ratio of the metallic and sulfidic layers is in agreement with calculations based on the chemical reactions given above, using the appropriate molar volumes. From the volume data it can be seen that Cu$_2$S occupies a larger volume than the original Ni$_3$S$_2$, contrary to the pentlandite phase in the Fe–Ni–S system. This difference undoubtedly accounts for the difference in porosity between the Cu$_2$S and pentlandite layers.

In relation to the layer sequence and morphology two questions arise. Why are they different from the results found and predicted by Shatynski et al.4 and why are they different from those found in displacement reactions on oxides by Rapp et al.1 and Vosters et al.3? The first question can be answered quite easily. Shatynski et al.4 performed their reactions in sulfidic systems at temperatures at which liquid phases are formed in the diffusion couples. This leads to intricated structures in noninfinite couples, further complicated by transitions occurring during the cooling procedure. The morphology found by them in the reaction layers cannot, therefore, be simply related to or predicted from the solid-state model as given in Fig. 1.

The second question is far more interesting. Obviously, with Rapp's model in Fig. 1, a third possibility has been overlooked. In Fig. 12 a scheme is represented of the basic structures which are possible in displacement reactions; several morphological variants may occur in the two-phased aggregate structure as discussed by Rapp et al.1 and Yurek et al.2 Obviously, an initial layer sequence $A/A_pX/B/B_qX$ can lead to the development of a two-phased layer, $B + A_pX$, dependent on the various component fluxes. The initial layer sequence, $A/B/A_pX/B_qX$, however, does not lead to such a two-phased layer: the element X does not diffuse, and at the interfaces only an exchange of the elements A and B occurs.

In continuation of this paper we present in a separate, more general article a model stating that the initial layer sequence is a consequence of the thermodynamic properties of the system.14 More specifically, the immobility of the element X is related to the activity of this element: an element does not diffuse against its own activity gradient. In our case this means that sulfur practically stands still and the metallic elements diffuse.

Concerning the layer growth, it can be seen from Fig. 12 that the rate controlling step is either the interdiffusion of the metal atoms in the metallic product phase or the interdiffusion of the metal ions through the sulfide product layer, depending on which of these is the slowest process. It is clear that at these low temperatures interdiffusion in the metallic phase is by far the slowest. In fact, one can calculate that the layer thickness cannot
Solid-State Displacement Reactions

Diffusion A through A_pX rate determining.

Diffusion X through B rate determining.

Interface B/A_pX remains planar since element X does not diffuse, only A and B exchange.

Fig. 12. Basic morphologies for the reaction zone in the displacement reaction $pA + B_qX \rightarrow qB + A_pX$. For more details see van Loo et al.14

exceed $1 \mu m$ if pure volume diffusion is involved. However, from our experiments it can safely be concluded that the diffusion through the metal phase proceeds along the (sub)grain boundaries. Bastow and Wood15 assume that the bulk diffusion coefficient of Cu^+ through Cu_2S is 10^9 times larger than the grain boundary diffusion of the metal atoms in a Cu–Ni alloy. From this value it follows that the effective diffusion through the metal layer, which is a linear combination of the volume and the grain boundary diffusion,16 is the rate controlling step. This means that the overall layer growth is dependent on the grain size in the (Fe, Ni) or (Cu, Ni) layers. The grain size in the (Fe, Ni) phase is very small compared to the layer thickness which leads to a reproducible growth rate. In the Cu–Ni–S system the mean grain size in the (Cu, Ni) layer is larger and variable for every couple, which makes the material transport more dependent on this grain size and, therefore, less reproducible. In both systems, sulfur probably diffuses in ionic form through these grain boundaries, giving rise to sulfide precipitates.

This kinetic model is substantiated by the experiments on $Cu_{70}Ni_{30}/Ni_3S_2$ couples. If the transport through Cu_2S had been rate determining, then an equally thick Cu_2S layer should have formed in $Cu_{70}Ni_{30}/Ni_3S_2$ and Cu/Ni_3S_2 couples under equal circumstances. We find,
however, an almost equally thick (Cu, Ni) layer, and a much thinner Cu$_2$S layer in the first couple, leading to the conclusion that the transport through (Cu, Ni) is the rate controlling step.

REFERENCES