A simple proof of Heymann's lemma

Hautus, M.L.J.

Published: 01/01/1976

Citation for published version (APA):
Memorandum COSOR 76-17

A simple proof of Heymann's lemma

by

M.L.J. Hautus

Eindhoven, November 1976

The Netherlands
A SIMPLE PROOF OF HEYMANN'S LEMMA

of

M.L.J. Hautus*

Abstract. Heymann's lemma is proved by a simple induction argument.

The problem of pole assignment by state feedback in the system

\[x_{k+1} = Ax_k + Bu_k ; \quad (k = 0, 1, \ldots) \]

where \(A \) is an \(n \times n \)-matrix and \(B \) an \(n \times m \)-matrix, has been considered by many authors. The case \(m = 1 \) has been dealt with by Rissanen [3] in 1960. In 1964 Popov [2] showed the pole assignability for complex systems (more generally systems over an algebraically closed field). In 1967 Wonham gave a proof valid for real systems (or more generally for systems over an infinite field). Finally, in 1968, Heymann [1] gave a proof which is valid for systems over an arbitrary field. Heymann's proof depends on the following result.

Lemma 1. If \((A, b)\) is controllable and \(b = Bv \neq 0 \), then there exists \(F \) such that \((A + BF, b)\) is controllable.

By means of this result the multivariable problem can be reduced to the single variable problem.

It is the aim of this correspondence to give a simple proof of this lemma. The result follows immediately from

Lemma 2. If \((A, B)\) is controllable and \(b = Bv \neq 0 \), then there exists \(u_1, \ldots, u_{n-1} \) such that the sequence defined by

\[\begin{align*}
 x_1 &= b, \\
 x_{k+1} &= Ax_k + Bu_k ,
\end{align*} \]

for \(k = 1, \ldots, n - 1 \) is independent.

* Dept. of Math., Eindhoven University of Technology
Indeed, if Lemma 2 is shown we can choose u_n arbitrary and define F by $Fx_k = u_k$. Then it is easily seen that $(A + BF)^b = x_k$, so that $(A + BF, b)$ is controllable.

PROOF OF LEMMA 2. We proceed stepwise. $x_1 \neq 0$ and hence independent. Suppose that x_1, \ldots, x_k have been constructed according to (1) and are independent. Denote by \mathcal{L} the linear space generated by x_1, \ldots, x_k. We have to choose u_k such that $x_{k+1} = Ax_k + Bu_k \notin \mathcal{L}$. If this is not possible, then

$$ (2) \quad Ax_k + Bu \in \mathcal{L} $$

for all u. Choosing in particular $u = 0$ we find

$$ (3) \quad Ax_k \in \mathcal{L} $$

and consequently, by the linearity of \mathcal{L}, $Bu \in \mathcal{L}$ for all u. That is, $\text{im} B \subseteq \mathcal{L}$. Also, for $i < k$ we have

$$ Ax_i = x_{i+1} - Bu_i \in \mathcal{L} $$

Hence $Ax_i \in \mathcal{L}$ for $i = 1, \ldots, k$, and, consequently, \mathcal{L} is A-invariant. From the controllability of (A, B) it follows that \mathcal{L} must be the whole state space, which implies that $k = n$. \hfill \square

REMARK. In [1] and in [5, Lemma 2.2] proofs of Lemma 1 were given by constructing a particular sequence u_k satisfying the condition of Lemma 2. These constructions may suggest that such a special u_k is essential for the calculation of F, which is not the case as follows from the proof of Lemma 2. It also follows that the u_k's can be constructed recursively in the following sense: Once u_1, \ldots, u_{k-1} have been chosen so as to render x_1, \ldots, x_k independent, one can always continue the construction of the remaining u_k's.

The may be useful when it comes to an actual numerical computation of F.
REFERENCES

